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INTRODUCTION

Theories of unification based on the simple symmetric group are known as Grand Unified Theories (GUT). In the year 1974 H. Georgi and Glashow [1] proposed a theory of unification based on the SU [START_REF] Hisano | Nucleon Decay in the MinimalSupersymmetric SU(5) Grand Unification[END_REF] symmetric group that contains the Standard Model (SM) group as a subgroup. It is this theory unifies all interactions except gravity, because at energy above 10 15 GeV it the SU( 5) symmetric group has one gauge coupling, while at this energy scale it breaks down spontaneously to the symmetric group of the SM [1,[START_REF] Mohapatra | Unification and supersymmetry. The frontiers of quark-leptons physics[END_REF]. The SU [START_REF] Hisano | Nucleon Decay in the MinimalSupersymmetric SU(5) Grand Unification[END_REF] symmetric group is the smallest group which contains the SM gauge group; as such, it has the greatest predictive power. However, there are three problems with SU [START_REF] Hisano | Nucleon Decay in the MinimalSupersymmetric SU(5) Grand Unification[END_REF] theory: the neutrino now appears to have mass [START_REF] Mohapatra | Unification and supersymmetry. The frontiers of quark-leptons physics[END_REF]; the predicted decay rate of the proton is much higher than the current observed limit [START_REF] Mohapatra | Unification and supersymmetry. The frontiers of quark-leptons physics[END_REF]; there is no explanation of the three generations of fermions [2; for details on GUT see [START_REF] Lucas | Nucleon Decay in a Realistic SO(10) SUSY Gut[END_REF][START_REF] Goto | Effect of Rrrr Dimension Five Operator on the Proton Decay in the Minimal SU(5) Sugra GUT Model[END_REF][START_REF] Hisano | Nucleon Decay in the MinimalSupersymmetric SU(5) Grand Unification[END_REF][START_REF] Murayama | Not Even Decoupling Can Save Minimal Supersymmetric SU(5)[END_REF][START_REF] Bajc | Minimal Supersymmetric SU(5) Theory and Proton Decay: Where Do We Stand?[END_REF][START_REF] Marciano | Predictions of Supersymmetric Grand Unified Theories[END_REF][START_REF] Weinberg | Does Gravitation Resolve the Ambiguity Among Supersymmetry Vacua?[END_REF][START_REF] Giudice | R-Parity Violation and Unification[END_REF][START_REF] Aulakh | Implications of Supersymmetric SO(10) Grand Unification[END_REF][START_REF] Clark | A SO(10) Supersymmetric Grand Unified Theory[END_REF][START_REF] Wilczek | Families from Spinors[END_REF][START_REF] Aulakh | SO(10) a La Pati-Salam[END_REF][START_REF] Mohapatra | Neutrino Mass and Spontaneous Parity Nonconservation[END_REF][START_REF] Mohapatra | Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation[END_REF][START_REF] Lazarides | Proton Lifetime and Fermion Masses in an SO(10) Model[END_REF][START_REF] Babu | Predictive Neutrino Spectrum in Minimal SO(10) Grand Unification[END_REF].

Electric Charged Swap (ECS) symmetry for the case of leptons has been proposed by the author [19]. ECS-transformation between ordinary families of leptons produces heavy neutral non-regular leptons of mass of order O(1TeV). These particles may form cold dark matter [19]. Furthermore, ECS symmetry explains certain properties of lepton families within the framework of superstring theories [20][21][22][23][24].

A-Wollmann Kleinert and F. Bulnes considered the Higgs mechanism to re-combine gauge fields of SU [START_REF] Mohapatra | Unification and supersymmetry. The frontiers of quark-leptons physics[END_REF] and U (1), gauge groups through three classes of bosons, W, Z, and A [25]. Based on ECS symmetry (in this case of leptons [19]), they proposed leptons as the subtle Fermions [25].

Recently, a quark (q) and an ECS-quark (q῀)-bound state (qq῀) have been proposed by the author [26]. This suggestion explains the electrically charged charmonium Z + c [START_REF] Lucas | Nucleon Decay in a Realistic SO(10) SUSY Gut[END_REF][START_REF] Weinberg | Does Gravitation Resolve the Ambiguity Among Supersymmetry Vacua?[END_REF] meson as a charm quark (c) and charm ECS-quark (c῀)-bound state (cc῀). It also predicts that J/ψ and π + mesons are the decay products of a Z + c [START_REF] Lucas | Nucleon Decay in a Realistic SO(10) SUSY Gut[END_REF][START_REF] Weinberg | Does Gravitation Resolve the Ambiguity Among Supersymmetry Vacua?[END_REF], as it has been observed recently at BES III [START_REF] Ablikim | [END_REF][53][54]. Furthermore, this suggestion predicts two new mesons: an electrically charged charmed D¯* +(zm) meson and a neutral charmed D *0(zm) meson. A new kind of space-time curvature effects, caused by electric charge swap (ECS) transformations between families of leptons has also been investigated [48].

Quaternions, introduced by Hamilton in 1843 [START_REF]or on a new System of Imaginaries in Algebra[END_REF][START_REF] Rozenfelʹd | The history of non-euclidean geometry: Evolution of the concept of a geometric space[END_REF], are a number system that extends the complex numbers. P.R. Girard [START_REF] Girard | The quaternion group and modern physics[END_REF] shows how various physical covariance groups -SO(3), the Lorentz group, the general relativity group, the Clifford algebra SU [START_REF] Mohapatra | Unification and supersymmetry. The frontiers of quark-leptons physics[END_REF] and the conformal group -can be readily related to the quaternion group in modern algebra. The same author demonstrates how Einstein's equations of general relativity could be formulated within a Clifford algebra that is directly linked to quaternions [START_REF] Girard | Einstein's equations and Clifford algebra[END_REF].

In the present paper, taking as our starting point the SU(2) group of weak interactions in the presence of ECS-symmetry, we show that ordinary and non-regular (ECS) leptons are related by the ECS-rotational SO(3) group and explore some of the implications of this finding.

FUNDAMENTAL OF THE ELECTRIC CHARGE SWAP (ECS) SYMMETRY IN SIX-DIMENSIONAL SPACE-TIME

We begin with the simplest set-up, where only the third family of leptons exists in the four-dimensional part of six-dimensional space-time [19].

Following Gogberashvilli et al. [27], we consider a six-dimensional spacetime with signature ( , , , , , )       . Einstein's equations in this spacetime have the form:

4 11 () 2 AB AB AB AB R g R g T M     (1) 
where M the six-dimensional fundamental scale,  is the cosmological constant and A,B are capital indices equal 0,1,2,3,4,5,

To split the six-dimensional space-time into four-dimensional and twodimensional parts, we use the metric ansatz [27]:

2 2 2 2 2 2 2 ( ) ( ) ( sin ), a ds g x dx dx d b d            (2) 
where  and b are constants and () 
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       
). This 2-surface is attached to the brane at point 0   . When  changes from 0 to π, therefore, the geodesic distance into the extra dimensions shifts from the north to the south pole of the 2-spheroid. For 2), the extra 2-surface is exactly a 2-sphere with radius  (0.1TeV -1 ).

1 b  in equation (
The ansatz for the energy-momentum tensor of the bulk matter fields is:

( ), T g E     ( ), ij ij T g P   0. i T   (3) 
Small latin indices in equation ( 3) correspond to the two extra coordinates. The source functions E and P depend only on the extra coordinate θ. For these ansätze, Einstein's equations (1) take the following form:
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where the prime denotes differentiation d/dθ. For the four-dimensional space-time, we have assumed zero cosmological constant. Einstein's equations take the form:

(4) (4) 1 0, 2 R g R    (5) where (4) 
R  and (4) R are four-dimensional Ricci tensor and scalar curvature, respectively. In [28] M. Gogberashvili and D. Singleton found a non-singular solution of (4) for boundary conditions (0) 1   , (0) 0.

 

This solution was given by: 

( ) 1 ( 1)sin ( / 2), a       ( 6 
)
where a is the integration constant. The source terms for this solution were given by: 

with the radius of the extra 2-spheroid given by 24 10

/ . M   For simplicity, in this paper we take 0 a  so that the warp factor takes the form:

22 ( ) 1 sin ( / 2) cos ( / 2).        (8) 
This warp factor equals one at the brane location (θ = 0) and decreases to zero in the asymptotic region θ = π, i.e., at the south pole of the extra two-dimensional spheroid. The expression for the determinant of the ansatz (2) used in this paper is given by: (4) 2 4 ( )sin ,

gg        (9) 
where

(4) g 
is the determinant of four-dimensional space-time.

Non-Regular Leptons in Six Dimensions

Here we assume that the zero mode corresponds to the non-regular leptons which are copies of the third family of leptons. Although arbitrary, this assumption is not physically implausible: it is reasonable to expect that upon entering the six-dimensional bulk, third family leptons change their properties profoundly and lose, so to speak, their individuality (e.g., their observable masses); they are reduced to their bare mass, spin and magnetic moment [19].

Let us now consider spinors in the six-dimensional space-time (2), where the warp factor ()  has the form [START_REF] Marciano | Predictions of Supersymmetric Grand Unified Theories[END_REF]. The action integral for the six-dimensional massless fermions in a curved background is:

6 . BA B A S d x g i h D h c           ( 10 
)
A D is the covariant derivative and A  is the 6-dimensional flat gamma matrices. We have also introduced the sechsbein A A h through the usual definition [27].

AB AB A B AB g h h   , (11) 
where , AB are local Lorenz index.

The six-dimensional spinor is given by: ( ) .

A x        (12)
This six-dimensional spinor has eight components and is equivalent to a pair of four-dimensional Dirac spinors, ,.

 The representation of the flat (8 × 8) gamma-matrices is given by [27] as:

0 0 1 0 , , , 0 1 0 0 i i                               (13)
where 1 denotes the four-dimensional unit matrix and   are ordinary (4× 4) gamma-matrices. Representation ( 13) gives the correct space-time signature ( , , , , , ).       The generalization of 5  matrix is: 

The variation of action (10) yields the following six-dimensional massless Dirac equation:

( ) ( ) 0, B B B A B BB h D h D h D x              (15) 
with the sechsbein for our background metric (2) given by

1 1 1 ,, sin B B B B A h              . ( 16 
)
From the definition of spin connection:

11 ( ) ( ) 22 1 ( ) . 2 h MN NM N N NN M M M M N N M M N N M PM QN R P Q M QR PR h h h h h h h h h h              (17) 
The non-vanishing components of the spin connection are:
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The covariant derivatives of the spinor field take the form:
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According to [29] and [30], the Dirac equation takes the form:
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This system of first-order partial differential equations has the following solutions:

    00 2 00 () 1 () 2 ( ) () A ax x x               , (21) 
with 00 ( ), ( ) xx   being the four-dimensional Dirac spinors.

We note that since the dimensions of ()

A x  in six dimensions are 5/ 2
m , the dimensions of 00 ( ), ( )     and 00 ( ), ( )

xx 
 should be m and 3/ 2 m , respectively.

We are looking for four-dimensional leptonic zero modes. To this end, we consider the conditions under which equation ( 21) obeys the fourdimensional, massless Dirac equations; 00 ( )

( ) 0 xx              (22) 
Of course, there are also very massive Kaluza Klein (KK) modes of masses n/ε. However, since we assume that 1/ε ≈10TeV, these massive KK modes have a much higher mass and are distinct from the third family of leptons.

For the massless case, the [START_REF] Goto | Effect of Rrrr Dimension Five Operator on the Proton Decay in the Minimal SU(5) Sugra GUT Model[END_REF] . Inserting ( 21) and ( 22) into (20) converts the bulk Dirac equation into:

0 0 () cot 0 ()                    (23) 
Using the representation for   ,   gives the following system of equations for 0 ()  and 0 ()

 0 cot ( ) 0 2          , 0 cot ( ) 0 2          (24) 
The solutions of these equations are: 00 00 ( ) , ( ) sin sin

AB       , ( 25 
)
where A0 and B0 are integration constants with the dimension of mass. The normalizable modes are those for which:

  6 (4) 4 0 0 0 0 gd x g d x          (26) 
In other words, we want the integral over the extra coordinates,  and  to equal 1. Inserting ( 21), ( 25) and the determinant ( 9) into ( 26), the latter requirement gives:

2 * * 0 0 0 0 ( ) 1 A A B B   (27) 
Explicitly, the expressions for the three normalizable 8-spinors (21) that solve the six-dimensional Dirac equations (20) are:

0 00 2 0 1 ( ) ( ) 2 sin ( ) A A xx B          (28) 
where constants A0 and B0 obey the relations (27).

The Set-up of the ECS Symmetry in Six-Dimensional Space-Time

In the four-dimensional part of six-dimensional space-time, nonregular leptons have the same mass as ordinary third family leptons. Hypothetical non-regular leptons are, a) a zero-charged version of the tau, 0  (1784MeV) and, b) a positively charged version of the tau neutrino,    (0,1eV). Non-regular leptons can, therefore, be obtained from the swap of electric charges between tau and tau neutrino particles in the sixdimensional part. We call these proposed non-regular leptons, electric charge swap (ECS) leptons [19].

Although ECS leptons have the same mass as ordinary third family leptons, they are distinguished from the latter by their different lepton numbers ( 1 s L  for ordinary leptons and 1 s L  for ordinary antileptons, respectively) and by their electric charges (positive or neutral for ordinary leptons; negative or neutral for ordinary antileptons, respectively). We hypothesize that ECS leptons are produced from third family leptons when these enter the six-dimensional bulk: in these conditions, the properties of third family leptons change profoundly as these leptons lose, so to say, their individuality and swap their electric charge [19].

Το formulate the swap of electric charge between ordinary leptons, we have to look for symmetry characteristic of the swap process in the framework of 2-extra dimensions with compactification scale 10 TeV [19].

We consider the 2-sphere 2 S as a quotient space 2 (2) / (1)

L S SU U  
and express this space in terms of the symmetry between the original lepton and the new, ECS lepton doublets. To do this, we proceed through the following steps [19]:

Firstly, we observe that both the ordinary lepton doublet 0 ( ) ( , )

L lx    
 and the ECS lepton doublet 0 0 ( ) ( , )

L lx      
can form the fundamental representation of (2) L SU [START_REF] Halzen | Quarks and Leptons: An Introduction Course in Modern Particle Physics[END_REF].

This fundamental representation is given by:

[ , ]

j k jkl l I I i I   . ( 40 
)
Τhe generators are denoted as:

1 2 ii I   . ( 41 
)
where

1 2 3 1 0 0 1 0 ,, 0 1 0 0 1 i i                           (42) 
are the isospin versions of Pauli matrices.

The action of the latter on the new leptons states is represented by: 0 10 , 01

L                 (43) 
To link the two distinct sectors, ordinary and ECS leptons, we assume that neither ordinary L nor ECS s L lepton numbers are conserved, while the overall lepton number is conserved obligatorily.

0 overall s L L L    . ( 44 
) s LL  , ( ) ( ) 1 s LL       . ( 45 
) s LL  , 0 ( ) ( ) 1 s LL    . ( 46 
)
The quantum numbers of the new ECS leptons of mass 1784 MeV and 0,1eV respectively, are given in Table 1 [19].

The next step is to define the group transformation that can account for the swap of electric charges between the tau and tau neutrino particles. The ECS transformation must be derived from a transformation from 1.

(2) / (1) The quotient space SU (2)/U ( 1) is diffeomorphic to the unit 2-sphere S 2 . Consequently, the swap of the electric charges between the tau and neutrino of tau particles must be an automorphism of the 2-sphere to itself [19].

LY SU U , in which the fundamental representation of (2) L SU is 0 ( ) ( , ) L lx      and ( 
Table 1. Quantum numbers (mass M, weak isospin I, charge Q, hypercharge YS, Lepton number LS) of the ECS leptons 0

L  , v   New lepton M I I-z Q YS LS v   0,1eV ½ ½ 1 1 -1 0 L  1784MeV ½ -½ 0 1 -1
Since the two extra dimensions are endowed with the Fubini-Study [1] metric [START_REF] Fubini | [END_REF]33], not all Möbius transformations (e.g., dilations and translations) are isometries. Therefore, the automorphism from the to itself, which brings the electric charge swap between the tau and neutrino of tau particles, is given by the isometries that form a proper subgroup of the group of projective linear transformations (3) ECS SO [START_REF] Fubini | [END_REF]33,19], which is the isometric group of the unit sphere in three-dimensional real space 3 . The automophism of the Riemann sphere ˆis given by: (2) ECS SU [19]. This group is also differomorphic to the unit 3-sphere S 3 .

() ( ) 2( arg ) ( ) (3) 
We regard ordinary and ECS leptons as different electric charge states of the same particlean analogy with the proton-neutron isotopic pair. Finally, in terms of rotational symmetry between the original lepton and the proposed ECS leptons, the ECS two-extra dimensional sphere 2 3 ECS S  is given by: 33 [1] The round metric of the 2-extra dimensional sphere can be expressed in stereographic coordinates as 22 12 22 (1 )

() 2 3 ( ) (2) / (1) [19] s ECS ECS Y Y S SU U   (48) 
dy dy G    
, where ECS symmetry has been tested in various numbers of lepton families and space-time dimensions [19]. This symmetry explains some properties of lepton families within the framework of superstring theories [20][21][22][23][24]. Furthermore, a mechanism has been proposed to explain local symmetry breaking at energy scales below 14TeV [19]. Local symmetry breaking can make the (postulated) non-regular leptons highly massive, 'explaining' thereby why these leptons are unobservable by Large Electron Positron ring (LEP) I, II and neutrino oscillations experiments at energy scales below 14TeV [34][35][36][37][38][39][40]. The existence of these proposed leptons can be tested once the Large Hadron Collider (LHC) becomes operative at 14 TeV energy-scales [41][42][43].

THE ECS-HAMILTONIAN QUATERNION

The basis of ECS gauge group O (3) ECS is given by: Let the ECS-Hamiltonian quaternion be defined as follows:

0 : 1 ( ) ( ) ( ) ECS e H i e j e k       , ( 50 
)
where

1 H j k     , ( 51 
)
and 0

(1, ) (1, , , )

T e R e e    . ( 52 
)
H is the quaternion algebra in a 4-dimensional real vector space with basis 1, , , i j k [49, 50]; (1, )

T R is a basis that contains the ECS-leptons 0 , e e   and an electron, e  .

The multiplication rule of the H quaternion algebra is [START_REF] Itzhack | New method for extracting the quaternion from a rotation matrix[END_REF]:

,, ij k jk i ki j    , 2 2 2 1 i j k     . ( 53 
)
Equation ( 53) induces the following multiplication rule for the ECSquaternion:

0 0 0 ( )( ) , ( )( ) , ( )( ) e e e
i je e k je ke i ke i je

            , ( 54 
) 2 0 2 2 ( ) ( ) ( ) 1 e i je ke       , (55) 
This multiplication rule is extended to HECS via the associative and distributive law. The subalgebra 1  is the central of HECS. For unique , , , t x y z  , every ECS-quaternion ECS ECS qH  may thus be expressed as:

0 ( ) ( ) ( ) ECS e q t x i y e j z e k       . ( 56 
)
The conjugate of (56) is the quaternion:

0 ( ) ( ) ( ) ECS e q t x i y e j z e k       . ( 57 
)
The norm of ECS q is:

() ECS ECS ECS N q q q  . ( 58 
)
Hence 0 ( )

ECS Nq  ,
with equality only for 0

ECS q  .
We also note that

( ) ( ) ( ) ECS ECS ECS ECS N p q N p N q  . ( 59 
)
It follows that, if 0

ECS q  , then 1 () ECS ECS N q q   is the multiplication inverse of ECS q in ECS H .
Hence ECS H is the division algebra whose set of nonzero elements,

  0 ECS ECS HH   , ( 60 
)
is a group under ECS-quaternion multiplication. The norm N is homomorphism 0 

: ECS NH    , (61) 
    0 2 2 2 2 |1 ( ) ( ) ( ) | 1 ECS ECS ECS ECS e ECS KerN q H q q t x i y e j z e k H t x y z                . (62) 

THE LIE GROUP 3

ECS S (Equation 62) can be identified with the 3-dimensional ECS-sphere 34 ECS S 

. The 3-dimensional ECS-sphere 3 ECS S may, therefore, be written as follows:

  3 |1 ECS ECS ECS ECS ECS S q H q q     . (63) 3 ECS 
S is thus a group under ECS-quaternion multiplication, fitting into the exact sequence:

3 0 11 N ECS ECS SH       . (64) Group 3 
ECS S contains as a subgroup the ECS-quaternion group:

  0 8 1, , , ECS e Q i e j e k        , (65) 
of order eight. 3 ECS S is, therefore, nonabelian, and the central of 3

ECS S has

just two elements:

  3 ( ) 1 ECS ZS  . (66) 
Since (66) is already the full central of 8

ECS Q , subgroup     22 ( ) | 1 | i ECS i e s T t x i t x e           , (67) 
is abelian subgroup of 

ECS ECS i e S T C i     (68) 
is the centralizer of ECS-lepton ( e i   ) in 3 ECS S .

Furthermore, we have the three subgroups 3 ,, There are exactly two elements 

ECS i ECS j ECS k ECS T T T S     , ( 69 
) all isomorphic to 1 ECS S .       |, |, |,
( ) ( / 3 ) ECS ECS N Q SL  . ( 76 
)
This is the group of 22  matrices over /3 with determinant equal to one.

THE ORIGIN OF SU (5) SYMMETRIC GROUP BY ECS-QUATERNION ALGEBRA

Let us regard 3 as the ECS-sphere of the pure quaternions:

  0 0 : ( ) ( ) ( ) | ( ) 0 ECS e ECS H i e j e k u H u         ( 77 
)
where  is the trace and u is a vector in 0 ECS H . 

ECS q ECS

RO 

, and we have the continuous homomorphism 3 :

(3)

ECS q ECS ECS R S O  . ( 81 
)
Sending 

ECS ECS q qR  , since 3 ECS S is connected, the image of ECS- rotation ECS q R is also connected. ECS q R thus lies within the (3) ECS SO (the subsets (3) ECS O , (3) 
              , ( 83 
) 0 1 2 2 2 2 0 2( ) ( ) 2 

( )

ECS ECS e q e jq bc ac i a b c d e j cd ab e k 

            , ( 84 
) 1 0 2 2 2 2 2( ) 2 
                          (86) Let , (3) 
pq u v u v u v                  (89) 
With rotation by swap-angle s  about the axis through the vector w, we have cos cos cos (cos sin )

s s s s s uv         , (90) and 
(sin cos ) (cos sin ) (sin sin )

s s s s s s w u v u v           (91) 
The image under ECS-rotation RECS of a binary tetrahedral group 

ECS ECS N Q A      , 1 
(5) Here, the subscripts c refer to colors red, blue, green; L is the ECS- lepton doublet. Table 2. Quantum numbers that form the fundamental representation of the 24 gauge bosons 

F F F F    , ( 96 
)
where 15 F is totally symmetric. There are 2 5 1 24  gauge bosons. In terms of their fundamental representation, they have the form shown in Table 2.

There are, therefore, eight gluons g; three weak ECS-bosonsW  ,W  , Z ; and one photon γ, along with 12 X,Y-bosons. The ECS-SU (5) symmetric group is the smallest group which contains the ECS-SM gauge group [25]. Since we do not observe SU(5) ECS-symmetry ,it means that the latter may be broken. ECS-SM symmetry breaking can occur at some high energy scale; electroweak ECS-symmetry breaking can also occur, at lower scale. The breaking of SU(5) symmetry down to electromagnetism is under investigation [START_REF] Koorambas | The doublet/Triplet splitting problem in the presence of quark and leptons of swap electric charge[END_REF].

CONCLUSION

In the present paper, taking the SU(2) group of weak interactions in the presence of ECS-symmetry as our starting point, we show that ordinary and non-regular (ECS) leptons are related by the ECS-rotational SO(3) group. By considering the ECS-Hamiltonian quaternions for leptons, we find that the SU(5) GUT symmetry originates from the image of normalized quaternions group N(Q8) under the ECS-rotations. Furthermore, the SU(5) symmetry as well as its SM subgroup are not fundamental symmetries, since they can be derived by ECS-leptonic quaternions. This means that gluons and photons are not fundamental particles of nature.
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  G is the Fubini-Study metric of the 2-sphere[START_REF] Fubini | [END_REF]33]. by hypercharge 33 () s YY .



  is the swap angle, L , R are the left and right triplet respectively and

4 ECS

 4 76)) is a symmetric group of a regular tetrahedron and isomorphic to the ECS-alternative group

  The ECS-particle and the SM particle can be contained in the multiples of reproduced for each of the three SM families and their ECS-copies. 10 F is an antisymmetric multiple derived

  ,

	where ˆis the extended complex plane,	PSU	2( arg ) Ch e	is the proper
	subgroup of the projective linear transformations and swap symmetry,
	SO	() (3) ECS	is the group of rotations in three-dimensional vector space	3
	. The universal cover of	SO	() (3) ECS	is the special unitary group
		()			
		Rot	ECS	PSU  Ch e	SO	ECS	(47)
		ˆS    	2