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1 Introduction

The correlation between the returns on government bonds and stock indices has been

deeply scrutinized in the literature. The main motivation lies in the fact that these two

assets are considered not only as complementary but also as substitutes, and the level

and dynamics of their return’s correlation are important elements for asset allocation

decisions. Theoretically, uncertainties about growth and inflation are the main drivers

of this correlation via their impact on both the equity risk premium and the term

premium (Ilmanen, 2003). Indeed, when uncertainty about growth raises, the equity

risk premium increases, depressing stock market, while bond prices boom in response

to a drop in the term premium. This leads to a negative correlation between the

returns on stocks and bonds. Moreover, a positive correlation arises from increased

uncertainty about expected inflation, via the impact of the latter on the common

interest rate factor that drives stock and bond prices (Li, 2002). Of major importance

are episodes of pronounced negative correlation between these two assets, referred to as

flight-to-safety (hereafter FTS), with large decline (rise) in stock (bond) prices. FTS

refers to a sudden increase in appetite for safe assets relative to risky assets. Typically,

it is a combination of a preference for safe assets (low volatility, downside risk), high

quality assets (low default) and highly liquid assets. A recent literature pioneered by

the seminal paper of Vayanos (2004) has analyzed FTS episodes, both theoretically

and empirically.

Economic theories of investor FTS include Vayanos (2004), Caballero and Krish-

namurthy (2008) and Brunnermeier and Pedersen (2009), to cite but a few. Vayanos

(2004) develops an equilibrium model with assets differing in their liquidity, and where

asset managers are subject to funding constraints that (endogenously) depend on the

level of market volatility. When volatility increases, fund managers face redemption

risk they tend to mitigate by allocating more to relatively safer assets, generating

FTS.1 Caballero and Krishnamurthy (2008) build a model where FTS episodes arise

not only from the risk about asset payoffs, but also from (Knightian) uncertainty about

the states of the world. In their model, facing market turmoil and limited aggregate

liquidity, uncertainty-averse agents with max-min preferences consider the most unfa-

vorable scenario among all possible ones. This leads them to project liquidity shortages
1In the literature FTS episodes refers to both flight-to-quality and flight-to-liquidity episodes. The

difference between them results from the economic motives (preference for less risky assets or preference
for liquidity) that lead investors rebalancing their portfolios in time of increased uncertainty. Beber
et al. (2009) deeply analyzes both episodes in the Euro-area bond market. In this paper we do not
focus on these motives and consider the FTS phenomenon, globally.
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and to switch from risky to safe assets. Using the relation between market liquidity

and trader’s funding liquidity, Brunnermeier and Pedersen (2009) develop a model

in which deterioration of market liquidity pushes speculators to mostly provide liq-

uidity in safer securities (with lower margins), leading to an increase in the liquidity

differential between safe and risky securities, an evidence of FTS.

On the empirical side, Baur and Lucey (2009) propose a test of FTS from stocks

to bonds, with applications to eight developed countries. Their results evidence the

existence of FTS episodes that coincide with crisis periods, and which appear to be

country-specific with a common occurrence among countries. Baele et al. (2015) pro-

vide many interesting stylized facts about FTS episodes from stock to bond markets,

using daily data for 23 countries. They found, among other things, that FTS days

comprise less than 3% of the sample, and in those days, bond returns exceed stock

returns by 2.5 to 4% on average. Moreover, FTS episodes coincide with increases in

the VIX and the TED spreads, decreases in sentiment and appreciations of Yen and

Swiss franc. Both real activity and inflation decrease immediately (and year after)

following a FTS spell.

The objective of this paper is to provide additional stylized facts about FTS. Pre-

cisely, we investigate whether bond yield regimes (low or high yield environment) can

affect the strength of FTS between stocks and bonds. Indeed, market participants

usually consider Treasury bonds as attractive in times of market stress, not only for

their low level of default risk, but also for their high levels of liquidity. But our intu-

ition is that low nominal yield can potentially jeopardizes the desirability of treasury

bonds in FTS episodes. This research question is important for portfolio managers to

evaluate whether the well-known diversification benefits of FTS continue to hold in a

low-yield environment, when low inflation and expansionary monetary policies push

yields to historically low levels.2 In relation to the existing literature, our approach

goes beyond the traditional motives of FTS (wealth protection, liquidity) asking if they

remain sufficient in the current context of low yields. In other words, (i) when yields
2U.S. nominal interest rates remained low since 2007-2008 as the result of low inflation and low

neutral real interest rate estimates. To support the economic recovery from the Great Recession,
the Federal Reserve held the federal funds rate near zero for over seven years and acquired large
holdings of longer-term securities. Despite these extraordinary measures, real GDP has grown at only
a modest pace during the recovery. Commentators and policymakers have described this combination
of low growth and low-interest rates as a "new normal" for the U.S. economy. Some observers, such as
Rogoff (2015), trace these development to persistent, but ultimately transitory, debt deleveraging and
borrowing headwinds in the wake of the global financial crisis. Some others, like Summers (2014), see
these developments as more structural and symptomatic of "secular stagnation", i.e., a confluence of
structural changes persistently weakening GDP growth and lowering interest rates.
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are low, do investors still find it rational in times of stress to rebalance their equity

portfolios in favor of bonds? (ii) Are there some transfers to other more profitable

safe havens, such as gold or currencies? To our knowledge, this is the first paper that

addresses these two issues about FTS.

To provide answers to the first research question, we build on Ghysels et al. (2016)

and Aslanidis and Christiansen (2017) and use an econometric model based on dynamic

quantile regression that helps measuring the strength of FTS from stocks to bonds.

The model draws on the conditional autoregressive value at risk (CAViaR) specification

of Engle and Manganelli (2004) for the estimation of an extreme upper quantile of the

distribution of r(bs)
t = r

(b)
t − r

(s)
t , with r

(b)
t the returns on government bond and r

(s)
t

the returns on a representative stock index. Remark that the excess returns r(bs)
t take

extreme values for FTS events, i.e, when realized bond (stock) returns are located

in the upper (lower) tail of its conditional distribution. Hence, the upper extreme

quantile of r(bs)
t can be viewed as a measure of the strength of FTS.3 We consider

an extended version of this CAViaR model including a low-yield environment dummy

variable. The coefficient of this dummy variable when statistically different from zero

and negative (positive) is the evidence that in low-yield environment, the strength of

FTS from stocks to bonds decreases (increases).

Empirical results using data for U.S. government bonds and the S&P 500 index

show that the strength of FTS is related to the level of yields. This result holds for

all maturities (10-year, 5-year and 2-year). For illustration, with the 10-year maturity

bond, when yields are lower than 2%, the strength of FTS from stocks to bonds

decreases, suggesting less strong FTS events in low-yield environment. For the medium

5-year (resp. short term 2-year) maturity, we observe the same result when yields are

lower than 1% (resp. 0.5%). It is worth noting that these results remain statistically

significant, even when controlling for the effects of traditional flight-to-safety factors

including the VIX, the TED spreads and the overall level of illiquidity in the stock

market.

Equipped with these results, we focus on the second research question, i.e., whether

the observed decreases in the strength of FTS from stocks to bonds, can be explained

by some transfers to other more profitable safe haven assets. We thus build on the VAR

for VaR (vector autoregressive model for value at risk) model of White et al. (2015).
3Note that we focus only on measuring the strength of FTS and do not consider identifying FTS

events as in Ghysels et al. (2016) and Aslanidis and Christiansen (2017). FTS days can indeed be
identified as the days corresponding to a quantile exception, i.e., when r(bs)

t is higher than its extreme
upper conditional quantile.
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Precisely, we consider a bivariate CAViaR model for the joint dynamics of the upper

extreme quantiles of r(bs)
t and r(as)

t with r(as)
t = r

(a)
t − r

(s)
t , and r(a)

t the returns on an

alternative (to bonds) safe haven assets such as gold or currencies. This model helps

measuring to what extent the strength of FTS from stocks to bonds is related to the

strength of FTS from stocks to other safe haven assets (gold, Swiss Franc and Japanese

Yen). Results show that when the strength of FTS from stocks to bonds decreases,

the strength of FTS from stocks to these alternative safe haven assets increases. This

result holds only in the low-yield environment, suggesting a kind of substitution effect

of safe haven assets in stress episodes, similar to the reaching for yield behavior.

The rest of the paper is organized as follows. In Section 2, we develop and estimate

(using U.S. data) a model that relates the strength of FTS from stocks to bonds to

the state of the world as measured by the level of yields. Section 3 is devoted to the

bivariate model that relates the strength of FTS from stocks to bonds to the strength

of FTS from stocks to other safe haven assets. The last Section concludes the paper.

2 Strength of FTS and low-yield environment

2.1 The model

Traditional econometric models to measure the strength of FTS are based on the so-

called tail-dependence coefficient. Formally, let r(s)
t and r(b)

t be the returns at time t

for a given country in its stock index and benchmark government bond, respectively.

Denote Q(j)
t (α), j ∈ {s, b}, the α-quantile at time t of r(j)

t , 0 < α < 1, conditional on

the information set Ft available at time t. The tail-dependence coefficient measures

the dependence between the lower tail of r(s)
t and the upper tail of r(b)

t , and is given

by

τ b|s = lim
α→1

Pr
(
r

(b)
t > Q

(b)
t (α)

∣∣∣r(s)
t < Q

(s)
t (1− α)

)
. (1)

The tail-dependence coefficient τ b|s lies between zero and one. It takes value zero

(one) in the case of full tail-independence (dependence), corresponding to the complete

absence (presence) of a flight-to-safety event from stocks to bonds. In the literature,

there are two different approaches to make inference on the tail-dependence coefficient

τ b|s , stemming from the multivariate extreme value theory (EVT). The first one is

linked to the theory of copulas which offers a fully parametric approach to specify the

bivariate probability distribution of any couple of asset returns. From this distribu-

tion, estimating and testing for the significance of the tail-dependence coefficient is

straightforward within the maximum likelihood framework (McNeil et al., 2005; Hua
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and Joe, 2011). The second approach is semi parametric and consists in transpos-

ing some results in univariate EVT to the bivariate or multivariate case (Ledford and

Tawn, 1996; Draisma et al., 2004; Poon et al., 2004; Hartmann et al., 2004). More

recently, van Oordt and Chen (2012) introduce a linear regression model to estimate

the tail-dependence parameter τ b|s . The advantage of the regression approach arises

from its simplicity regarding the estimation, which can be achieved via the method of

ordinary least squares (OLS), available on common econometric software.4

The above contributions have the common property that they produce an uncon-

ditional measure of the tail-dependence coefficient. Since our goal in this paper is to

investigate whether a variable measuring yield regimes (high or low) can affect the

strength of a flight-to-safety event from stocks to bonds, we need a conditional model

for the tail-dependence coefficient. Note that such a conditional framework was intro-

duced in the literature by Patton (2006) in the context of copulas theory, to test for

the asymmetry in the dependence between exchange rates. The approach of Cappiello

et al. (2014) can also be used to measure the impact of exogenous dummy variables

on the probability of flight-to-safety.

Although these two approaches are attractive, we follow Ghysels et al. (2016) and

Aslanidis and Christiansen (2017) and opt to measure the strength of FTS using simple

dynamic quantile regression with target variable being r(bs)
t = r

(b)
t − r

(s)
t , where again

r
(b)
t is the return on government bond and r(s)

t is the return on a representative stock

index. It is worth noting that the excess returns r(bs)
t take positive extreme values

with realized large negative stock returns concomitant to large positive bond returns,

an evidence of FTS. Thus, the magnitude of an extreme upper-quantile of the excess

return r(bs)
t is a natural proxy of the strength or intensity of FTS events. Obviously,

the level of this extreme quantile should be high (low) in FTS (non-FTS) days, and

can be considered as a barometer of wealth rebalancing across the two markets. Let

Q
(bs)
t (α), α = 99% be the extreme upper quantile of r(bs)

t at the risk level α. We

consider the following specification for Q(bs)
t (α) ≡ Q(bs)

t (α; θ)

Q
(bs)
t (α) = θ0 + θ1Q

(bs)
t−1 (α) + θ2r

(bs)
t−1I(r

(bs)
t−1 < 0) + θ3r

(bs)
t−1I(r

(bs)
t−1 ≥ 0), (2)

with I(.) the usual indicator function. This specification corresponds to the asym-

metric slope version of the CAViaR model of Engle and Manganelli (2004) that offers

a parsimonious specification to model quantiles for heteroskedastic time series. As

already stressed, the quantile Q(bs)
t (α) can be viewed as a measure of the strength

4See also Cappiello et al. (2014) for a similar approach.
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of FTS from stocks to bonds, since larger values are indicative of a more leptokurtic

conditional distribution of the excess returns r(bs)
t . The main advantage of this semi-

parametric model is that, one does not need to specify the full conditional distribution

of the excess returns, as for example in a GARCH-type methodology. The parameters

of the model are estimated by minimizing with respect to the unknown parameters the

"tick" loss function of Koenker and Bassett (1978), i.e.,

θ̂ = arg min
θ

T−1
T∑
t=2

(α− I(u(bs)
t < 0))u(bs)

t , (3)

u
(bs)
t = r

(bs)
t −Q(bs)

t (α) , (4)

with T the sample size. Under weak regularity assumptions, Engle and Manganelli

(2004) show that
√
TA
−1/2
T DT (θ̂ − θ0) −→ N (0, 1) , (5)

where

AT = E(T−1α (1− α)
T∑
t=1
∇′Q(bs)

t (α)∇Q(bs)
t (α)), (6)

DT = E(T−1
T∑
t=1

ht (0 |Ft )∇′Q(bs)
t (α)∇Q(bs)

t (α)), (7)

with ht (0 |Ft ) the conditional density of the quantile residuals u(bs)
t , and ∇Q(bs)

t (α))

the vector of derivative of Q(bs)
t (α)) with respect to the parameter vector θ. Inference

about the parameters can thus be conducted using (5), with consistent estimates of

AT and DT .

To evaluate the impact of low-yield environment to the strength of FTS, we con-

sider an extended version of the CAViaR model in (2) corresponding to the following

specification

Q
(bs)
t (α) = θ0 + θ1Q

(bs)
t−1 (α) + θ2r

(bs)
t−1I(r

(bs)
t−1 < 0) + θ3r

(bs)
t−1I(r

(bs)
t−1 ≥ 0) + δI(it < ī), (8)

where it is the value of the bond yield at time t, and ī an exogenous threshold. As

Q
(bs)
t (α) is a measure of the strength of FTS, the parameter δ when statistically

different from zero is the evidence that there exists a relation between yield regimes

and the intensity of FTS from stocks to bonds. Moreover in the case of significance, a

negative (positive) value for the estimate δ̂ means that in low-yield environment, the

strength of FTS from stocks to bonds decreases (increases).

Let us note that correct specification of both models in (2,8) can be tested relying

on the dynamic quantile (DQ) test of Engle and Manganelli (2004). The related
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null hypothesis checks for an orthogonality condition between the centered process of

quantile-exception equal to Hitt (θ0) = I(r(bs)
t > Q

(bs)(α)
t ) − (1 − α) and a set Xt(θ0)

of instruments. Under the null hypothesis of a correctly specified dynamic quantile

model, the authors show that5

DQ = Hit(θ̂)X(θ̂)(M̂T M̂
′
T )X ′(θ̂)Hit′(θ̂)

α (1− α) , (9)

with M̂T given by the difference between X ′(θ̂) and a function of the gradient of

Q̂
(bs)
t (α) ≡ Q(bs)

t (α; θ̂).

2.2 Data and descriptive statistics

Before presenting the estimation results of the extended CAViaR model in (8) that

helps measuring the impact of yield regimes on the strength of FTS, this subsection

provides descriptive statistics for the input variables and gives some graphical illustra-

tions of FTS through our sample.

Our dataset includes weekly total return prices on U.S. government bonds and the

S&P 500 index over the period ranging from February 2, 1990 to November 23, 2018,

with a total of T = 1504 observations. Empirical papers on the subject use either

daily, weekly or monthly data. For instance, Baur and Lucey (2009) and Baele et al.

(2015) use daily data, while Ilmanen (2003) and Li (2002) use both daily and monthly

data. Daily, weekly and monthly data are covered in Baur and McDermott (2010). We

make the choice of weekly data for a main reason. Indeed, all the papers cited above

operated in a framework where the main objective is to check for the occurrence of

FTS phenomenons. In such a context, using high-frequency data is appropriate because

the sharp rise in bond returns that follows a sharp decline in equity returns is often

contemporary, and hence is more significant when measured at the daily frequency.

Our approach here is different because we are not trying to detect the occurrence

of FTS events, but rather their magnitudes. In such a context, the use of a lower

frequency (weekly or monthly) makes it possible to better measure the magnitude of

FTS events, which is not only limited to capital flows occurring the day of the fall in

the equity market, but also those caused by market participants the following days.6

To analyze the sensitivity of our results to the maturity of bonds, we consider three

different maturities, i.e., long (10-year), medium (5-year) and short (2-year). Figure
5See the reference for more details on the DQ test.
6We choose weekly instead of monthly data as almost all our econometric models are about quantile

regression that needs enough data to provide consistent estimates of parameters.

8



B.1 in Appendix displays the dynamics of prices over the sample for the four assets.

For the S&P 500 index, we observe the typical two bear markets (2000-2003 and 2007-

2009) corresponding to the dot-com crash and the global financial crisis, respectively.

In these market turmoils characterized by a large drop in the stocks index prices, the

prices of bonds were rising, a symptom of a FTS event from stocks to bonds.

Table 1: Summary statistics for returns
Avg Mean Min Max Std. dev. Skewness Kurtosis

2-year bond 0.0810 -1.1939 1.2693 0.2296 0.2528 6.1805
5-year bond 0.1029 -2.4731 2.1606 0.5784 -0.2068 4.0178
10-year bond 0.1159 -4.2460 4.8254 0.9751 -0.2821 3.9623
S&P 500 0.2152 -18.1405 12.0919 2.2176 -0.5017 8.4075

Notes: The table displays some main statistics for the weekly returns on the assets. The data covers
the period ranging from February 2, 1990 to November 23, 2018, with a total of T = 1504 observations.
Values in the first four columns are in percentage. Min (Max) refers to the minimum (maximum)
returns, and Std. dev. the standard deviation.

Table 1 gives some descriptive statistics for the corresponding weekly returns. The

S&P 500 index has higher average mean than that of the bonds, indicating that overall

investing in stocks is more profitable over the sample period. But this is at the cost

of a higher risk as measured by the volatility or standard deviation. Indeed, on a

annualized basis, the volatility of the stock market is equal to 16.29%, with the same

statistics taking values 1.68%, 4.25%, and 7.16% for the 2-year, 5-year and 10-year

U.S. government bond returns. The figure is the same when risk is measured as the

probability of loss. Indeed, the kurtosis of the S&P 500 index is equal to 8.40 and

higher than that of the three bonds, suggesting a significant tail-risk for the former

asset. The minimum values of the weekly returns over the sample confirm this result.

Figure 1 displays the U.S. stock-bond correlation estimated on rolling-window sam-

ples of size n = 52 (one year of weekly data). At the beginning of the sample, in the

1990s, the correlation fluctuated around a positive average level. Consistent with the

literature mentioned above (Li, 2002), this positive level of correlation arises from

increased uncertainty about expected inflation, following high and volatile inflation

(shocks in oil prices) in the previous decades (1970s, 1980s). The correlation became

negative since the 2000s, and fluctuated around the average value of −30%. Uncertain-

ties about growth and earnings can partly explain this dynamic, with bonds appearing

to be good hedges against stocks. Note that the hedging property is related to the un-

correlatedness or the existence of negative correlation between stocks and bonds in all

states of the world, and hence differs from FTS phenomenons which capture uncorrelat-
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Figure 1: Rolling-window estimates of U.S. stock-bond correlation

edness or negative correlation only in a market crash (Baur and Lucey, 2010). Indeed,

as recently analyzed by Baele and Van Holle (2017), the negative and persistent level

of correlation since the 2000s should not be attributed to an increase in the frequency

of FTS events, but rather to the prolonged period of accommodating monetary policy.

Precisely, they show that in times of low inflation, central bank policies that seek to

stimulate economic growth by loosening money supply, lead to a negative correlation

between stocks and bonds. Indeed, in low inflation environment, investors would be

mainly concerned about deflationary risks and central banks are constrained by the

zero lower bound. In such environment, a negative inflation shock leads to higher

risk aversion and a fall of equity prices, while the accommodating monetary policy,

by unconventional measures such as forward guidance and asset purchases, leads to a

flattened yield curve and a rise in bond prices. Given these elements, asking whether

the strength of FTS from stocks to bonds remains the same in the current context of

low yields, is not irrelevant, even when the correlation between stocks and bonds is

empirically negative.

Figure 2 displays the incidences of FTS through our sample. Precisely, we compute

our variable of interest r(bs)
t = r

(b)
t −r

(s)
t , with r(b)

t the returns on the 10-year government

bond and r(s)
t the returns on the S&P500 index. As already stressed the excess returns

r
(bs)
t take extreme values for FTS events, i.e, when realized bond (stock) returns are

high (low). Hence, we use a threshold γ we set to 3% and define an FTS indicator as

10



Figure 2: Historical evidences of FTS

follows7

FTS-Indicatort =
{
r

(bs)
t if r

(bs)
t > γ

0 else.

We observe in this figure that FTS events occur mainly in crisis periods, with

the FTS indicator taking large values. Indeed, the FTS indicator clearly identifies

well known episodes of financial crisis including the 1997 Asian crisis, the Russian

crisis and LTCM debacle in 1998, the 2001-2002 dot-com crash, the 2007-2008 global

financial crisis and the 2011-2012 European sovereign debt crisis. Table 2 displays with

respect to the threshold γ some statistics for the FTS indicator variable, including the

frequency of FTS, the average value and the standard deviation. The frequency of

FTS occurrence is equal to 3.35% for the largest value of γ, and as expected the means

and standard deviations have increasing values with respect to γ.

Table 2: Summary statistics for FTS indicator
γ = 2% γ = 3% γ = 4% γ = 5%

Frequency of FTS (%) 16.1390 8.4420 5.4004 3.3520
Mean of FTS indicator 0.0385 0.0512 0.0605 0.0702

Std. dev. of FTS indicator 0.0204 0.0212 0.0215 0.0222
Notes: The table displays some main statistics for the FTS indicator variable.
The data covers the period ranging from February 2, 1990 to November 23, 2018,
with a total of T = 1504 observations. Std. dev. refers to the standard deviation.

Although Figure 2 and Table 2 are informative on the frequency and strength
7We vary the threshold γ and give some summary statistics for our FTS indicator in Table 2.
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of FTS, they offer only an unconditional analysis that does not take into account

the states of the world or the information available at each date. In the next sub-

section, our objective is to provide such an analysis by asking the following question:

conditional on the information available at any given date, is the strength of FTS

dependent on the level of bond’s yields? As stressed in sub-section 2.1, we provide

answer to this question via the dynamic quantile regression as specified in (8).

2.3 Estimation results

Table 3 gives the estimation results of the extended CAViaR model in (8) with the

quantile level set to 99%. Recall that this model relates the strength of FTS as mea-

sured by an extreme upper-quantile of r(bs)
t to the level of bond yields (low-yield envi-

ronment).8

Results are displayed for the longest maturity (10-year government bond), with

the parameter estimates followed in parentheses by their standard deviations. The

threshold parameter ī is set to 2%, meaning that the low-yield environment corresponds

to the case where the 10-year U.S. government bond is lower than 2%.9

Model [1] is the benchmark regression, i.e., the usual CAViaR model, while model

[2] corresponds to the same model extended by including as an explanatory variable,

a dummy variable measuring low-yield environment (it < ī), with it the yields on

the 10-year U.S. Government bond and ī = 2%. Models [3] to [5] are estimated for

robustness checks controlling model [2] for the effects of traditional factors of FTS.

Let us stress that these factors are those identified in the literature to impact the

comovements between stock and bond returns, and potentially the occurrence/strength

of FTS from stocks to bonds. Indeed, in standard rational pricing models, the funda-

mental factors or determinants driving stock and bond returns either affect cash flows

or discount rates. Hence, the literature has identified business cycle variables that can

influence both fixed income and equity returns via cash-flow growth and/or discount

rates such as inflation, output-gaps, short-term interest rates, the term premium, eco-

nomic uncertainty and risk aversion. But as shown by Baele et al. (2010) these factors

fail to explain the conditional correlation between stock and bond returns.
8Figure B.2 in Appendix displays the three time series of U.S. government bond yields over the

sample. We observe that the low-yield environment is located at the end of the sample, as there is
globally a downward trend in all series as the result of successive easing monetary policies linked to a
continuous desinflation.

9We consider only this value for ease of presentation. Moreover, results available from the authors
upon request show that the effect of yield regimes on the strength of FTS is weak for other values of
ī, i.e., ī = 3%, 3.5%, 4%.

12



Table 3: Strength of FTS and low yields: S&P 500 & 10-year U.S. Government bond
[1] [2] [3] [4] [5]

θ0 0.0092
(0.0056)

∗ 0.0116
(0.0033)

∗∗∗ 0.0018
(0.0011)

0.0048
(0.0026)

∗ 0.0045
(0.0017)

∗∗∗

θ1 0.7184
(0.0911)

∗∗∗ 0.6934
(0.0636)

∗∗∗ 0.8445
(0.0591)

∗∗∗ 0.8644
(0.0622)

∗∗∗ 0.7108
(0.0407)

∗∗∗

θ2 −0.1675
(0.1419)

−0.1107
(0.1210)

−0.3511
(0.0847)

∗∗∗ −0.0243
(0.1173)

−0.2727
(0.0986)

∗∗∗

θ3 0.8841
(0.1437)

∗∗∗ 0.8781
(0.1204)

∗∗∗ 0.1571
(0.0835)

∗ 0.4408
(0.1859)

∗∗ 0.8326
(0.1180)

∗∗∗

δ −0.0082
(0.0018)

∗∗∗ −0.0020
(0.0008)

∗∗∗ −0.0035
(0.0017)

∗∗ −0.0046
(0.0017)

∗∗∗

∆VIX 0.0052
(0.0005)

∗∗∗

∆TED Spreads 0.0419
(0.0141)

∗∗∗

∆illiquidity 0.0202
(0.0080)

∗∗

Specification Test
Hit-Frequency 0.0093 0.0106 0.0100 0.0100 0.0100

DQ-Stat 1.1196 5.6116 1.4975 1.3695 11.0653
DQ-Pvalue 0.9997 0.8468 0.9989 0.9993 0.3525

Notes: This table displays the results (parameter estimates followed by standard errors in parenthe-
ses) of different CAViaR models (at the risk level α = 99%) with the dependent variable being the
returns on 10-year U.S. Government bond in excess of the returns on S&P500. Model [1] refers to
the usual CAViaR model, while model [2] corresponds to an extended CAViaR model that includes
(as explanatory variable) a dummy variable measuring low-yield environment (it < ī), with it the
yields on the 10-year U.S. Government bond and ī = 2%. Models [3] to [5] are similar to model
[2] with an additional control variable. The last panel provides relevant statistics for the test of
correct specification, including the frequencies of Hit, the dynamic quantile (DQ) test statistics and
the associated p-values. All estimations are performed using weekly data ranging from February 2,
1990 to November 23, 2018, with a total of T = 1504 observations. Significances at 1%, 5% and
10% are emphasized by ***, ** and *, respectively.
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Other macro-financial variables are identified by Baele et al. (2010) as significant

determinants of stock and bond returns, and hence appear as potential factors of the

FTS phenomenon. First, they find that the VIX implied volatility measure as a proxy

for stock market uncertainty is negatively related to stock and bond return comove-

ments, hence confirming the results in Connolly et al. (2005). Second, consistent with

Goyenko (2006), their empirical results highlight the role of stock market illiquidity

in explaining the correlation between stock and bond returns. The mechanism be-

hind this relation goes through the link between negative liquidity shocks in the stock

market and expected returns. Indeed, if stock market liquidity is priced, a negative

liquidity shock increases expected returns, with a decrease in stock prices and a flow

of funds into treasuries (flight-to-liquidity) that decreases (increases) yields (returns).

Note that the authors also consider as a potential determinant, the level of illiquid-

ity in the bond market, which however does not appear significant in explaining the

comovement between stock and bond returns.

Results in Baele et al. (2015) also provide some guidance about other potential

determinants of FTS from stocks to bonds. Focusing directly in identifying FTS events,

instead of measuring correlations between stock and bond returns, they find that FTS

episodes coincide with increases in the VIX and the TED spreads.

Based on these stylized facts, our results for the core quantile regression in Table 3

are controlled for the effects of three different variables: the VIX (model [3]), the TED

spreads (model [4]) and the level of illiquidity in the stock market (model [5]).10 For

the latter variable, we follow Amihud (2002) and approximate the level of illiquidity

by the average value over the week of the ratio of daily absolute stock returns to its

dollar volume. As argued by Amihud (2002), this measure can be interpreted as the

price response associated with one dollar of trading volume, thus serving as a rough

measure of price impact.

For each model in Table 3, the last panel provides statistics for specification tests,

including the frequency of quantile-exceptions, the DQ test statistics for correct specifi-

cation and the corresponding p-values.11 For the computation of the DQ test statistics,

we use as instruments X(θ̂) (see equation 9) the 10 lagged values of the estimated pro-

cess of quantile-exceptions. Note that we do not consider a model that includes all
10We consider the first differences of these variables rather than their levels, because differentiating

helps reducing the level of persistence that characterizes these variables and which can jeopardize the
inference.

11For a quantile risk level of α = 99%, the frequency of quantile-exceptions should be close to
1 − α = 1% for a correctly specified dynamic quantile model.
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control variables at the same time. The main reason is to avoid a model that is affected

by over-parametrization.12

The first important result in Table 3 is that all models do a good job in measuring

the strength of FTS as given by the upper-quantile of the excess returns r(bs)
t . Indeed,

the frequencies of quantile exceptions (or Hit frequencies) are close to 1 − α = 1%.

Moreover the p-values of the DQ test are higher than 5% suggesting a correct condi-

tional calibration of the dynamic quantile models. The second result to underline is

that the autoregressive coefficient θ1 is always highly significant, meaning that there

exists clustering in the tails, even at the weekly frequency. We also observe that while

the coefficient θ3 is always significant, the coefficient θ2 is insignificant, except in two

cases. Hence, positive returns seem to drive the dynamics of the upper-quantile of the

excess returns r(bs)
t , while negative returns do not play any role in much cases.

Focusing on our parameter of interest δ, results show that this parameter is negative

and significant in all models. We deduce from this result that the strength of FTS from

stocks to bonds decreases at very low levels of yields. So, our conjecture that when

yields are low, the traditional motives of FTS (wealth protection, liquidity) could not

be sufficient, inducing weaker FTS events, seems to hold at least on the U.S. market

and for the longest bond maturity considered (10-year).

Figure 3: Dynamics of the yields impact curve

Figure 3 displays for model [2] the yields impact curve computed in the same spirit
12Empirical results show indeed that this model fails the correct specification test of the dynamic

quantile model.
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as the news impact curve of Engle and Manganelli (2004). For different values of the

yield, the curve displays the strength of FTS from stocks to bonds as measured by

the dynamic quantiles estimated in (8), keeping each of the first three explanatory

variables, Q(bs)
t−1 (α), r(bs)

t−1I(r
(bs)
t−1 < 0), and r

(bs)
t−1I(r

(bs)
t−1 ≥ 0), at its average value over

the sample. We observe the asymmetry of the curve with jumps in the value of the

strength at the threshold value ī = 2%, which is the result of the retained specification

in (8). To give more insights about the magnitude of the jump, we display in Figure

3 the quantiles of order 49% and 65% of the strength of FTS. The former (latter)

quantile is the lower (upper) bound of the yields impact curve. The difference between

the orders is equal to 16%, meaning that the strength of FTS decreases by more than

one decile when moving from high-yield environment to low-yield environment.

It is worth noting that all control variables are positive and statistically significant.

For the VIX and the TED spreads, these results are in line with those obtained by

Baele et al. (2015). Indeed, they report that a rise in the implicit volatility and the

TED spread, seem to be concomitant to FTS episodes. Our results confirm that the

variations of these variables also impact positively the strength or intensity of FTS.

Regarding the illiquidity variable, this result shows that stock liquidity shortages do not

only explain negative correlations (Baele et al., 2010) between the returns on stock and

bond, but also extreme negative correlations corresponding to FTS events. Let us stress

that our parameter of interest δ that measures the impact of low yield environment on

the strength of FTS has estimated values that decrease when controlling for the macro-

financial variables. However, it remains statistically significant in all configurations.

Tables B.1 and B.2 in Appendix display the results for the 5-year and the 2-year

U.S. government bonds, respectively. The presentation is similar to that of Table 3. As

in Table 3, we cannot reject the null hypothesis of a correctly specified dynamic quantile

regression model for the models considered, except model [5] for the 2-year government

bond. Moreover, the autoregressive parameter θ1 appears always significant suggesting

temporal dependence in quantile dynamics. Regarding the parameter of interest δ, the

results are qualitatively similar to those in Table 3, but the magnitude of the estimates

are lower than the ones obtained in Table 3, mainly for the 2-year government bond.

As a consequence, the result that the strength of FTS from stocks to bonds decreases

at very low levels of yields, seems to operate at all maturities, but to a greater extent at

the highest maturities (10-year and 5-year government bonds). Indeed, FTS episodes

are much more pronounced on the 10-year (5-year) maturity due to its relative liquidity.
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As a result, the decrease of the FTS strength is more likely to operate at the highest

maturities.

3 Bond alternatives and flight-to-safety transfers

This section tackles the issue of FTS transfers across markets. Formally, we built a

bivariate dynamic quantile model that measures to what extent the strength of FTS

from stocks to bonds is related to the strength of FTS from stocks to another safe

haven, such as gold or currencies. By doing so, our objective is to check whether the

observed decreases in the strength of FTS from stocks to bonds when yields are low,

can be explained by some transfers to other more profitable safe havens. We describe

the econometric model in the first part of the section, and the last part presents and

analyzes the empirical results.

3.1 The econometric model

Since our goal is to measure to what extent low-yield environment impacts the depen-

dence between the strength of FTS from stocks to bonds and the same phenomenon

from stocks to gold (or currencies), a simple way to proceed would be to estimate in a

first step both levels of strength using the dynamic quantile model as specified in (2),

then to estimate in a second step a linear model that relates both time series. To be

more precise, let Q̂(bs)
t (α) be the fitted value of the quantile from (2) which measures

the strength of FTS from stocks to bonds at time t. Similarly, we denote Q̂(as)
t (α)

the estimated quantile of r(as)
t = r

(a)
t − r

(s)
t at time t, where r(a)

t is the return on an

alternative (to bonds) safe haven asset like gold or currencies. The following linear

model which can be estimated by the ordinary least squares (OLS) method can be

used to provide an answer to our second research question, i.e.,

Q̂
(as)
t (α) = β0 + β1Q̂

(bs)
t−1(α) + β2Q̂

(bs)
t−1(α)I(it−1 < ī). (10)

Indeed, if the parameter β2 is statistically significant and negative, this means

that the observed decrease in the strength of FTS from stocks to bonds in low-yield

environment as evidenced in Section 2, leads to an increase in the strength of FTS

from stocks to the considered alternative safe haven asset (gold or currencies).

Nevertheless, two main reasons prevent the use of such a two-step estimation pro-

cedure. Firstly, to proceed in this way assumes the independence between the two

models of quantile regression from which the two time series measuring the strength of
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FTS are extracted. This is a quite strong assumption, as the strength of FTS, which is

linked to wealth re-balancing is likely to have dynamics that is correlated across mar-

kets. Secondly, the second-step OLS regression as specified in (10) would be affected

by the estimation errors in the two quantile regressions, rendering obsolete the usual

tool of OLS inference.

To avoid these two shortcomings, we build on the VAR (vector autoregressive

model) for VaR (value at risk) of White et al. (2015), and consider modeling in a one

step the joint dynamics of both upper-extreme quantiles. The model writes
Q

(as)
t (α) = c1 + a11

∣∣∣r(as)
t−1

∣∣∣+ a12
∣∣∣r(bs)
t−1

∣∣∣+ b11Q
(as)
t−1 (α) + b12Q

(bs)
t−1 (α) + ρQ

(bs)
t−1 (α) I

(
it−1 ≤ i

)
Q

(bs)
t (α) = c2 + a21

∣∣∣r(as)
t−1

∣∣∣+ a22
∣∣∣r(bs)
t−1

∣∣∣+ b21Q
(as)
t−1 (α) + b22Q

(bs)
t−1 (α) ,

(11)

where again Q(bs)
t (α) is the upper-quantile of r(bs)

t at the risk level α, and Q(as)
t (α) the

upper-quantile of r(as)
t at the same risk level. Recall that both Q(bs)

t (α) and Q(as)
t (α)

measure the strength of FTS, the first from stocks to bonds, and the second from

stocks to an alternative safe haven. The bivariate specification thus captures the link

between these two forms of FTS. In a matrix notation, the model is equal to

Qt (α) = c+A |rt−1|+BQt−1 (α) +DQ̃t−1 (α) , (12)

with c = (c1, c2)′, |rt| =
(∣∣∣r(as)

t

∣∣∣ , ∣∣∣r(bs)
t

∣∣∣)′, and
Qt (α) =

(
Q

(as)
t (α) , Q(bs)

t (α)
)′
, (13)

Q̃t (α) =
(
Q

(as)
t (α) , Q(bs)

t (α) I
(
it < i

))′
, (14)

where the matrices A, B, and D are given by

A =
(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
, D =

(
0 ρ
0 0

)
. (15)

Apart from the last term in the first equation of (11) or equivalently the last term

in (12), this specification corresponds to the VAR for VaR model of White et al. (2015)

which has many potential applications in co-tail risk analysis. This last term is crucial

in our context, as it allows us to provide an answer to our second research question.

Indeed, if the parameter ρ is negative and statistically significant, this means that

when yields are low (it−1 ≤ i) a decrease in the strength of FTS from stocks to bonds

leads to an increase in the FTS from stocks to the alternative (to bond) safe haven

asset, and this increase is higher than what prevails (statistically significant or not) in
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high-yield environment. This result would be the evidence of a FTS transfer across

markets in low-yield environment.

Note that independence between the dynamics of both quantiles can be easily tested

by checking for the joint nullity of off-diagonal elements in the matrices A, B and D.

The corresponding null hypothesis is defined as

H0 : a12 = 0, b12 = 0, ρ = 0, a21 = 0, b21 = 0. (16)

With an appropriately chosen matrix R of dimension (5, p), the Wald test statistics is

equal to

W = (Rψ̂)′[RΩ̂R′]−1(Rψ̂), (17)

with Ω̂ the estimated covariance matrix of ψ̂, where ψ is the vector of parameters

of length p = 11, i.e., ψ = (c1, a11, a12, b11, b12, ρ, c2, a21, a22, b22, b21)′. Remark that

when the null hypothesis is not rejected at the usual nominal risk levels, this means

that the dynamics of both quantiles are not related, and the two equations can be

estimated separately using the univariate CAViaR specification. In our framework,

this case corresponds to the absence of dependence between both FTS phenomenons.

Say differently, when the null hypothesis holds, the FTS from stocks to bonds is not

related to the FTS from stocks to the alternative safe haven asset.

3.2 Estimation results

We provide estimates of the parameters ψ in the bivariate dynamic quantile model

using gold and two currencies, that is, the Japanese Yen (JPY) and the Switzerland

Franc (CHF), as alternative (to bonds) safe haven assets.

The safe haven nature of gold has been deeply analyzed in the academic literature.

Early contributions are Baur and Lucey (2010) and Baur and McDermott (2010). Baur

and Lucey (2010) scrutinize both constant and time-varying dependencies between

the returns on gold and the returns on international stock indexes (U.S., U.K. and

German). Their empirical analyzes show evidence that gold is a safe haven asset in

times of market turmoil. The same conclusion is obtained by Baur and McDermott

(2010) who stress that gold reduces the effect of highly adverse stock market movements

in most developed countries worldwide, and can be viewed as an asset that helps

stabilizing the financial system. This figure is nuanced by Hood and Malik (2013) who

show that gold serves the function of safe haven, which seems to disappear in periods of

extreme high volatility. Nevertheless, two more recent papers confirm the role of gold
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as safe haven. For instance, using the more sophisticated smooth transition regression

tool, Beckmann et al. (2015) confirm the figure which appears to be market-specific.

Moreover, Baur and McDermott (2016) confirm the safe haven nature by linking the

decision to buy gold to behavioral biases associated with gold’s history as a currency.

Their empirical analysis shows that gold was a strong safe haven in the aftermath of

September 11, 2001 and the Lehman bankruptcy in September 2008.

The safe haven property of JPY and CHF currencies has also been covered by

the financial literature. For instance, Ranaldo and Söderlind (2010) using a factor

specification to model linear and non-linear linkages between currencies and stocks

markets, show that the Swiss franc and Japanese Yen appreciate against the U.S.

dollar when U.S. stock prices decrease. They report that these effects last from a

few hours to several days, and are more pronounced for the Yen during the great

financial crisis. Theoretically, there is no clear consensus on the determinants of this

phenomenon, except for a positive net foreign asset position (Habib and Stracca, 2012).

As argued by Habib and Stracca (2014), this difficulty arises from the changing motives

and investor’s categories that drive currencies FTS, and the mixed results obtained in

the empirical applications can be viewed as a proof of their assertion. For instance,

de Carvalho Filho (2015) finds that CHF appreciations during market turmoil are

associated to significant capital inflows, while the results in Yesin (2016) suggest an

insignificant relation between appreciations and capital inflows. These latter results

seem to hold for the JPY currency, with exchange rate movements arising mainly from

derivative trading, without capital inflows (Botman et al., 2013). Beyond this debate,

there is nevertheless a consensus in the literature that recognizes the property of safe

haven to these two currencies.

Table 4 displays the results of the bivariate CAViaR models for the 10-year U.S.

government bond, while Tables B.3 and B.4 in Appendix display the same results for

the 5-year and 2-year government bonds, respectively. We use weekly data over the

same time period as in Section 2, i.e., from February 2, 1990 to November 23, 2018,

with a total of T = 1504 observations. We set the quantile risk level at α = 99%,

and the yield threshold ī to 2%, 1% and 0.5% for the 10-year, 5-year and 2-year,

respectively. The three tables present the results only for the first equation including

our parameter of interest ρ (see equation (11)). For each parameter, we report the

estimates followed in parentheses by the standard deviations. The last column gives

the Wald test statistics of the joint nullity of off-diagonal elements in the system
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Table 4: FTS transfers and low yields: 10-year U.S. government bond with α = 99%
c1 a11 a12 b11 b12 ρ Wald

Gold
0.0070
(0.0064)

0.6328
(0.1922)

∗∗∗ 0.3210
(0.1486)

∗∗ 0.6756
(0.2235)

∗∗∗ −0.0000
(0.2067)

−0.1045
(0.0583)

∗ 12.4164
[0.0295]

JPY
0.0244
(0.0157)

0.5308
(0.3738)

0.4734
(0.6244)

0.1185
(0.2279)

0.3492
(0.4269)

−0.2641
(0.2124)

20.2571
[0.0011]

CHF
0.0144
(0.0073)

∗∗ −0.1281
(0.1598)

0.7502
(0.3287)

∗∗ 0.7246
(0.1406)

∗∗∗ −0.0749
(0.0649)

−0.1581
(0.0491)

∗∗∗ 45.0007
[0.0000]

Notes: This table displays the results (parameter estimates followed by standard errors in parenthe-
ses) of the first equation of the bivariate dynamic quantile model in (11) assuming three different
alternative (to bonds) safe haven assets. The last column gives the Wald test statistics of the joint
nullity of off diagonal elements in the system followed in brackets by the corresponding p-values.
Results are presented for the quantile level α = 99%. The threshold ī is set to 2%. All estimations
are performed using weekly data ranging from February 2, 1990 to November 23, 2018, with a total
of T = 1504 observations. Significances at 1%, 5% and 10% are emphasized by ***, ** and *,
respectively.

followed in brackets by the corresponding p-values.

First, with results in Table 4, it appears that in all configurations, the Wald test

rejects the null hypothesis of the nullity of off-diagonal elements in the bivariate dy-

namic quantile model at the nominal significance level of 5%. We deduce that the

dynamics of both quantiles are linked. Economically, this means that the strength of

FTS from stocks to bonds is related to the strength of FTS from stocks to the three

alternative safe haven assets, regardless of the direction of causality. This result con-

firms the relevance of using a one-step approach that assumes the dependence between

the dynamics of the two quantiles.

Second, the parameter b12 is, in all cases, insignificant. Recall that this parameter

measures to what extent the strength of FTS from stocks to bonds impacts the strength

of FTS from stocks to the alternative asset, in only high-yield environment. This result

suggests that when yields are high, a decrease (or an increase) in the strength of FTS

from stocks to bonds does not have any predictive content for the strength of FTS

from stocks to each of the alternative asset.

Lastly, focusing on our parameter of interest ρ, it appears overall negative and

significant at the 1% (resp. 10%) significance level, when one considers CHF (resp.

gold) as the alternative safe haven asset. For instance, with CHF, the estimate of
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ρ is equal to ρ̂ = −0.1581. As a consequence, the negative relation between the

strength of FTS from stocks to bonds and the strength of FTS from stocks to CHF

is reinforced, when the 10-year government bond yield is lower than ī = 2%. This

is a clear-cut evidence of FTS transfer in a low-yield environment. To give insights

about the magnitude of this relation, Table 5 displays with respect to the 10-year

U.S. government bond yield environment (high versus low) the elasticity (in %) of the

strength of FTS from stocks to CHF (Q(as)
t (α)), as a function of the strength of FTS

from stocks to bonds (Q(bs)
t (α)). The elasticities are computed using the output from

the estimation of the first equation in (11), taking Q(as)
t as a function of Q(bs)

t , yielding

E
Q̂(as)

(
Q̂(bs)

)
= Q̂(bs)

Q̂(as)
∂Q̂(as)

∂Q̂(bs)
(18)

=


Q̂(bs)

Q̂(as) b̂12 if High-yield environment

Q̂(bs)

Q̂(as)

(
b̂12 + ρ̂

)
if Low-yield environment

The elasticities in Table 5 are displayed for some selected values of Q̂(bs) correspond-

ing to its deciles. We observe that the reported values in low-yield environment are

much higher (in absolute value) than their counterparts in high-yield environment. For

instance, the average value of these elasticities are equal to −8.33% (resp. −25.91%)

in high (resp. low)-yield environment, suggesting that a 1% decrease in the strength

of FTS from stocks to bonds leads on average to an increase of 8.33% (resp. 25.91%)

in the strength of FTS from stocks to CHF. This difference is noticeable and validates

the hypothesis of FTS transfer across markets in low-yield environment.

This result of FTS transfers or substitutions across markets in low-yield environ-

ment is reminiscent of the reaching for yield behavior documented in the literature.

This behavior which does not depend on the level of stress in the stock market is ma-

terialized by investors chasing yield by overinvesting (underinvesting) in riskier (safer)

bond instruments in low-yield environment (Acharya and Naqvi, 2015; Choi and Kro-

nlund, 2018; Di Maggio and Kacperczyk, 2017; Hanson and Stein, 2015). For instance,

Acharya and Naqvi (2015) build a theoretical model in which, in the absence of any

agency problems, managers reduce their holdings of liquid assets (money market in-

struments) when yields are low and subsequently increase their investments made in

risky and safer assets. They interpret this result as a substitution effect whereby man-

agers who are maximizing the expected profit of intermediaries hold liquid assets up

to the point where the marginal benefit of holding an additional unit of a safe as-
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Table 5: Elasticity of the strength of FTS from stocks to CHF as a
function of the strength of FTS from stocks to bonds
Deciles of Q(bs)

t (α) Elasticity (in %) of Q(as)
t (α)

High-yield environment Low-yield environment
0.0402 −3.8730 −12.0504
0.0470 −5.0909 −15.8396
0.0514 −6.5815 −20.4775
0.0561 −6.0503 −18.8249
0.0608 −18.3706 −57.1578
0.0683 −6.9960 −21.7673
0.0774 −12.8503 −39.9820
0.0888 −6.2996 −19.6003
0.1038 −8.8580 −27.5608

Average value −8.3300 −25.9179
Notes: This table displays with respect to the 10-year U.S. government bond yield
environment (high versus low) the elasticity (in %) of the strength of FTS from
stocks to CHF (Q(as)

t (α)), as a function of the strength of FTS from stocks to bonds
(Q(bs)

t (α)). Results are obtained using equation (18) along with the output of the
estimated bi-variate dynamic quantile model as displayed in the last panel of Table
4. The elasticities are presented for some selected values (deciles) of the strength of
FTS from stocks to bonds.

set just equals the corresponding marginal cost. In the same vain, Di Maggio and

Kacperczyk (2017) focusing on the U.S. money fund industry, empirically find that

in response to policies that maintain zero interest rates, money funds invest in riskier

asset classes. Moreover, Hanson and Stein (2015) show that in low-yield environment,

investors rebalance their portfolios toward longer-term bonds in an effort to keep their

overall portfolio yield from declining too much. This mechanism raises the prices of

long-term bonds and lowers long-term real yields and forward rates. Choi and Kro-

nlund (2018) highlight the same phenomenon in the corporate bond universe. They

show that in low-yield environment, U.S. corporate bond mutual funds reach for yield

tilting portfolios toward bonds with yields higher than the benchmarks.

Our results of FTS transfers can thus be viewed as a kind of substitution effect

of safe haven assets in stress episodes, similar to the reaching for yield behavior, with

investors arbitraging between the safer government bond instruments and other safe

haven assets like currencies and gold.

Tables B.3 and B.4 display the estimation results of the first equation of the bi-

variate dynamic quantile model in (11) for the other two bond maturities, i.e., 5-year

and 2-year respectively. The presentation is similar to that of Table 4. For the 5-year

(resp. 2-year) maturity the low-yield environment corresponds to yields lower than
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ī = 1% (resp. ī = 0.5%). Results in Table B.3 are slightly different when compared to

those reported in Table 4. For our parameter of interest ρ, CHF appears one again as

the candidate safe haven asset, but results do not longer support FTS transfers when

considering gold as safe haven asset. Lastly, for the 2-year government bond, only JPY

appears as an alternative (to bonds) safe haven asset in low-yield environment. Thus,

from the viewpoint of robustness across maturities, CHF appears as the safe haven

asset that most benefits from the described reaching for yield behavior as described

above. This safe haven transfer on the CHF is far from neutral, since it participated to

the Swiss Franc appreciation that the Swiss National Bank has tried to limit through

exchange rate interventions and increasing foreign reserves.

4 Conclusion

This explores the phenomenon of flight-to-safety from stocks to bonds in the U.S.

markets. The main objective is to assess the strength of this stylized fact in line of the

current environment of low yields. Indeed, non conventional monetary policies over

the last decade have pushed U.S. government bond yields to historically low levels,

and rationalizes the question of whether the traditional motives of flight-to-safety, i.e.,

wealth protection and liquidity, are still sufficient for investors to rebalance their equity

portfolios in favor of bonds in market turmoils. To explore this issue, we develop a

dynamic quantile model that models the strength of flight-to-safety from stocks to

bonds. An augmented version of this regression, with low-yield regime as additional

predictor, helps to evaluate the impact of the latter. Empirical applications using

weekly data for the S&P 500 index and three U.S. government bonds, show that when

yields are low, the strength of flight-to-safety from stocks to bonds decreases. This

result holds, even when controlling for the effects of traditional flight-to-safety factors

including the VIX, the TED spreads and the overall level of illiquidity in the stock

market.

As an extension of these results, we check via a bivariate dynamic quantile model,

whether the observed decreases of the strength of flight-to-safety from stocks to bonds,

are related to some transfers to other more profitable safe haven assets. Using gold

and two safe haven currencies (Swiss Franc and Japanese Yen) as alternative assets,

results show that when U.S. government bond yields are low, a decrease in the strength

of flight-to-safety from stocks to bonds leads to an increase in the flight-to-safety from

stocks to these safe haven assets. This result suggests a kind of substitution effect of

24



safe haven assets in low-yield environment, similar to the reaching for yield behavior,

with investors arbitrating between the safer government bond instruments and other

safe haven assets like currencies and gold.

The question of whether a low yield environment modifies FTS strength is crucial

for academics, policy makers and practitioners. For academics and policy makers that

have to consider all the implications of the shortage of safe assets as well as the exter-

nalities of unconventional monetary policies on financial stability. For practitioners,

especially asset managers in portfolio construction and risk managers in extreme risk

follow-up, as FTS strength reduction can have important consequences in asset alloca-

tion and risk management. Lastly, these results are also important for central bankers

as the transfers imply currencies appreciation and the related negative externalities.
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A Appendix A: Estimation and inference of the bivariate
dynamic quantile model

Estimation of the system of equations in (11) can be achieved minimizing the sum of

the quantile loss functions related to the two equations, yielding

ψ̂ = arg min
ψ

T−1
T∑
t=2
{(α− I(u(bs)

t < 0))u(bs)
t + (α− I(u(as)

t < 0))u(as)
t } (19)

where ψ = (c1, a11, a12, b11, b12, ρ, c2, a21, a22, b22, b21)′ is the vector of length p = 11

with elements the unknown parameters, u(bs)
t = r

(bs)
t − Q(bs)

t (α) and u
(as)
t = r

(as)
t −

Q
(as)
t (α) the quantile residuals. This likelihood-based objective function assumes that

the vector of quantile residuals (u(bs)
t , u

(as)
t )′ has independent components each fol-

lowing an asymmetric double exponential random variable (Komunjer, 2005), and the

estimation method can be viewed as a quasi maximum likelihood, when this assump-

tion does not hold.

Inference about the parameters is conducted using the asymptotic distribution of ψ̂

as provided by White et al. (2015). By making explicit the dependence of the quantiles

to the vector of parameters, i.e., Q(bs)
t (α) = Q

(bs)
t (α;ψ), and Q(as)

t (α) = Q
(as)
t (α;ψ),

we have

T 1/2(ψ̂ − ψ∗) −→ N
(
0,M∗−1V ∗M∗−1

)
, (20)

with

M∗ = E[f (bs)
t (0)∇Q(bs)

t (α;ψ∗)∇′Q(bs)
t (α;ψ∗)] + (21)

E[f (as)
t (0)∇Q(as)

t (α;ψ∗)∇′Q(as)
t (α;ψ∗)],

V ∗ = E(η∗t η∗′t ), (22)

η∗t = ∇Q(bs)
t (α;ψ∗)[α− I(r(bs)

t < Q
(bs)
t (α;ψ∗))] + (23)

∇Q(as)
t (α;ψ∗)[α− I(r(as)

t < Q
(as)
t (α;ψ∗))]

where ∇Q(j)
t (α;ψ∗), j ∈ {(bs), (as)}, are the p× 1 gradient vector of Q(j)

t (α;ψ∗) with

respect to ψ∗, and f (j)
t (0) the conditional density of the residuals u(j)

t .

A consistent estimator of the asymptotic covariance matrix M∗−1V ∗M∗−1 is ob-

tained using consistent estimators of M∗ and V ∗, with

V̂T = T−1
T∑
t=1

η̂tη̂
′
t (24)
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η̂t = ∇Q(bs)
t (α; ψ̂)[α− I(r(bs)

t < Q
(bs)
t (α; ψ̂)] + (25)

∇Q(as)
t (α; ψ̂)[α− I(r(as)

t < Q
(as)
t (α; ψ̂)]

M̂T = T−1
T∑
t=1

{
(2ĉ(bs)

T )−1I(−ĉ(bs)
T ≤ u(bs)

t ≤ ĉ(bs)
T )∇Q(bs)

t (α; ψ̂)∇′Q(bs)
t (α; ψ̂) +(26)

(2ĉ(as)
T )−1I(−ĉ(as)

T ≤ u(as)
t ≤ ĉ(as)

T )∇Q(as)
t (α; ψ̂)∇′Q(as)

t (α; ψ̂)
}
,

where the terms (2ĉ(bs)
T )−1I(−ĉ(bs)

T ≤ u
(bs)
t ≤ ĉ

(bs)
T ) and (2ĉ(as)

T )−1I(−ĉ(as)
T ≤ u

(as)
t ≤

ĉ
(as)
T ) are taken as the estimators of f (bs)

t (0) and f (as)
t (0), respectively, with ĉ(bs)

T and

ĉ
(as)
T two bandwidth parameters. We follow White et al. (2015) setting values to these

two parameters as

ĉ
(j)
T = κ(j)

[
Φ−1 (α+ hT )− Φ−1 (α− hT )

]
, (27)

with

hT = T−1/3
(
Φ−1 (1− 0.05/2)

)2/3
(

1.5
(
φ
(
Φ−1 (α)

))2
2 (Φ−1 (α))2 + 1

)1/3

, (28)

where φ(.) and Φ(.) are the p.d.f. and the c.d.f. of the standard normal distri-

bution, and κ(j) the median absolute deviation of the quantile residual series u(j)
t ,

j ∈ {(bs), (as)}.
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B Appendix B: Additional Tables and Figures

Figure B.1: Dynamics of asset prices

Figure B.2: Dynamics of U.S. government bond yields
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Table B.1: Strength of FTS and low yields: S&P 500 & 5-year U.S. Government
bond

[1] [2] [3] [4] [5]
θ0 0.0077

(0.0038)
∗∗ 0.0085

(0.0027)
∗∗∗ 0.0012

(0.0008)
0.0052
(0.0021)

∗∗ 0.0032
(0.0013)

∗∗

θ1 0.7091
(0.0676)

∗∗∗ 0.7034
(0.0529)

∗∗∗ 0.8593
(0.0628)

∗∗∗ 0.8140
(0.0394)

∗∗∗ 0.6974
(0.0372)

∗∗∗

θ2 −0.2023
(0.1160)

∗ −0.1572
(0.1055)

−0.3146
(0.0964)

∗∗∗ −0.0732
(0.1073)

−0.3190
(0.1018)

∗∗∗

θ3 1.0159
(0.1057)

∗∗∗ 1.0095
(0.0929)

∗∗∗ 0.1623
(0.1296)

0.6982
(0.1586)

∗∗∗ 1.0333
(0.0706)

∗∗∗

δ −0.0059
(0.0013)

∗∗∗ −0.0017
(0.0009)

∗ −0.0043
(0.0013)

∗∗∗ −0.0060
(0.0011)

∗∗∗

∆VIX 0.0048
(0.0003)

∗∗∗

∆TED Spreads 0.0264
(0.0095)

∗∗∗

∆illiquidity 0.0193
(0.0074)

∗∗∗

Specification Test
Hit-Frequency 0.0100 0.0100 0.0100 0.0106 0.0106

DQ-Stat 6.1155 6.1339 5.9797 5.8923 10.1434
DQ-Pvalue 0.8055 0.8039 0.8170 0.8242 0.4280

Notes: This table displays the results (parameter estimates followed by standard errors in parenthe-
ses) of different CAViaR models (at the risk level α = 99%) with the dependent variable being the
returns on 5-year U.S. Government bond in excess of the returns on S&P500. Model [1] refers to
the usual CAViaR model, while model [2] corresponds to an extended CAViaR model that includes
(as explanatory variable) a dummy variable measuring low-yield environment (it < ī), with it the
yields on the 5-year U.S. Government bond and ī = 1%. Models [3] to [5] are similar to model
[2] with an additional control variable. The last panel provides relevant statistics for the test of
correct specification, including the frequencies of Hit, the dynamic quantile (DQ) test statistics and
the associated p-values. All estimations are performed using weekly data ranging from February 2,
1990 to November 23, 2018, with a total of T = 1504 observations. Significances at 1%, 5% and
10% are emphasized by ***, ** and *, respectively.
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Table B.2: Strength of FTS and low yields: S&P 500 & 2-year U.S. Government
bond

[1] [2] [3] [4] [5]
θ0 0.0089

(0.0044)
∗∗ 0.0094

(0.0037)
∗∗ 0.0015

(0.0004)
∗∗∗ 0.0072

(0.0036)
∗∗ 0.0039

(0.0024)
∗

θ1 0.6669
(0.0817)

∗∗∗ 0.6614
(0.0868)

∗∗∗ 0.7890
(0.0300)

∗∗∗ 0.7427
(0.0638)

∗∗∗ 0.6370
(0.0613)

∗∗∗

θ2 −0.1951
(0.1328)

−0.1778
(0.1334)

−0.4400
(0.0413)

∗∗∗ −0.1013
(0.1171)

−0.4198
(0.1232)

∗∗∗

θ3 1.1474
(0.1061)

∗∗∗ 1.1447
(0.0911)

∗∗∗ 0.2514
(0.0969)

∗∗∗ 0.9577
(0.1659)

∗∗∗ 1.2027
(0.0744)

∗∗∗

δ −0.0035
(0.0015)

∗∗ −0.0019
(0.0005)

∗∗∗ −0.0030
(0.0018)

∗ −0.0039
(0.0013)

∗∗∗

∆VIX 0.0052
(0.0002)

∗∗∗

∆TED Spreads 0.0207
(0.0113)

∗

∆illiquidity 0.0189
(0.0087)

∗∗

Specification Test
Hit-Frequency 0.0100 0.0100 0.0113 0.0100 0.0093

DQ-Stat 1.4615 1.4966 5.5504 1.4499 26.9351
DQ-Pvalue 0.9991 0.9989 0.8515 0.9991 0.0027

Notes: This table displays the results (parameter estimates followed by standard errors in parenthe-
ses) of different CAViaR models (at the risk level α = 99%) with the dependent variable being the
returns on 2-year U.S. Government bond in excess of the returns on S&P500. Model [1] refers to
the usual CAViaR model, while model [2] corresponds to an extended CAViaR model that includes
(as explanatory variable) a dummy variable measuring low-yield environment (it < ī), with it the
yields on the 2-year U.S. Government bond and ī = 0.5%. Models [3] to [5] are similar to model
[2] with an additional control variable. The last panel provides relevant statistics for the test of
correct specification, including the frequencies of Hit, the dynamic quantile (DQ) test statistics and
the associated p-values. All estimations are performed using weekly data ranging from February 2,
1990 to November 23, 2018, with a total of T = 1504 observations. Significances at 1%, 5% and
10% are emphasized by ***, ** and *, respectively.
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Table B.3: FTS transfers and low yields: 5-year U.S. government bond with α = 99%
c1 a11 a12 b11 b12 ρ Wald

Gold
0.0028
(0.0044)

0.4846
(0.4784)

0.3563
(0.5062)

0.8390
(0.8005)

−0.1006
(0.9432)

−0.0702
(0.0973)

13.0449
[0.0230]

JPY
0.0182
(0.0074)

∗∗ 0.0370
(0.2510)

0.7520
(0.5974)

0.0643
(0.2626)

0.7198
(0.2715)

∗∗∗ −0.3381
(0.2551)

16.3927
[0.0058]

CHF
0.0088
(0.0034)

∗∗ −0.3141
(0.1297)

∗∗ 1.1268∗∗∗
(0.4368)

0.9172
(0.1940)

∗∗∗ −0.2425
(0.2469)

−0.1607
(0.0864)

∗ 225.4224
[0.0000]

Notes: This table displays the results (parameter estimates followed by standard errors in parenthe-
ses) of the first equation of the bivariate dynamic quantile model in (11) assuming three different
alternative (to bonds) safe haven assets. The last column gives the Wald test statistics of the joint
nullity of off diagonal elements in the system followed in brackets by the corresponding p-values.
Results are presented for the quantile level α = 99%. The threshold ī is set to 1%. All estimations
are performed using weekly data ranging from February 2, 1990 to November 23, 2018, with a total
of T = 1504 observations. Significances at 1%, 5% and 10% are emphasized by ***, ** and *,
respectively.

Table B.4: FTS transfers and low yields: 2-year U.S. government bond
with α = 99%

c1 a11 a12 b11 b12 ρ Wald

Gold
0.0025
(0.0074)

0.4966
(0.2559)

∗ 0.3537
(0.8120)

0.8039
(0.7159)

−0.0553
(1.2764)

−0.0100
(0.0496)

7.9622
[0.1583]

JPY
0.0328
(0.0239)

−0.4757
(0.3159)

1.5022
(1.3989)

−0.0801
(0.3747)

0.7508
(0.4636)

∗ −0.4246
(0.2127)

∗∗ 43.0533
[0.0000]

CHF
0.0109
(0.0111)

−0.2053
(0.2157)

1.0546
(0.5689)

∗ 0.5892
(1.5411)

0.1056
(1.7635)

−0.0428
(0.0947)

18.1854
[0.0027]

Notes: This table displays the results (parameter estimates followed by standard
errors in parentheses) of the first equation of the bivariate dynamic quantile model
in (11) assuming three different alternative (to bonds) safe haven assets. The last
column gives the Wald test statistics of the joint nullity of off diagonal elements in
the system followed in brackets by the corresponding p-values. Results are presented
for the quantile level α = 99%. The threshold ī is set to 0.5%. All estimations
are performed using weekly data ranging from February 2, 1990 to November 23,
2018, with a total of T = 1504 observations. Significances at 1%, 5% and 10% are
emphasized by ***, ** and *, respectively.

31



Bibliography

Acharya, V. and Naqvi, H. (2015). On reaching for yield and the coexistence of bubbles

and negative bubbles. Working paper.

Amihud, Y. (2002). Illiquidity and stock returns: Cross-section and time series effects.

Journal of Financial Markets, 5:31–56.

Aslanidis, A. and Christiansen, C. (2017). Flight to safety from european stock mar-

kets. Working paper SSRN.

Baele, L., Bekaert, G., and Inghelbrecht, K. (2010). The determinants of stock and

bond return comovements. The Review of Financial Studies, 23(6):2374–2428.

Baele, L., Bekaert, G., Inghelbrecht, K., and Wei, M. (2015). Flight to safety. Working

paper SSRN.

Baele, L. and Van Holle, F. (2017). Stock-bond correlations, macroeconomic regimes

and monetary policy. Working paper SSRN.

Baur, D. G. and Lucey, B. M. (2009). Flights and contagion-an empirical analysis of

stock-bond correlations. Journal of Financial Stability, 5(4):339–352.

Baur, D. G. and Lucey, B. M. (2010). Is gold a hedge or a safe haven? an analysis of

stocks, bonds and gold. The Financial Review, 45(2):217–229.

Baur, D. G. and McDermott, T. K. (2010). Is gold a safe haven? international evidence.

Journal of Banking & Finance, 34(8):1886–1898.

Baur, D. G. and McDermott, T. K.-J. (2016). Why is gold a safe haven? Journal of

Behavioral and Experimental Finance, 10:63–71.

Beber, A., Brandt, M. W., and Kavajecz, K. A. (2009). Flight-to-quality or flight-to-

liquidity? evidence from the euro area bond market. Review of Financial Studies,

22:925–957.

Beckmann, J., Berger, T., and Czudaj, R. (2015). Does gold act as a hedge or a safe

haven for stocks? a smooth transition approach. Economic Modelling, 48:16–24.

Botman, D. P., de Carvalho Filho, I. E., and Lam, W. R. (2013). The curious case

of the yen as a safe haven currency: A forensic analysis. IMF Working Paper, No.

228/13.

32



Brunnermeier, M. K. and Pedersen, L. H. (2009). Market liquidity and funding liquid-

ity. Review of Financial Studies, 22:2201–2238.

Caballero, R. J. and Krishnamurthy, A. (2008). Collective risk management in a flight

to quality episode. Journal of Finance, 63:2195–2230.

Cappiello, L., Gerard, B., Kadareja, A., and Manganelli, S. (2014). Measuring comove-

ments by regression quantiles. Journal of Financial Econometrics, 12(4):645–678.

Choi, J. and Kronlund, M. (2018). Reaching for yield in corporate bond mutual funds.

The Review of Financial Studies, 31(5):1930–1965.

Connolly, R., Stivers, C., and Sun, L. (2005). Stock market uncertainty and the stock-

bond return relation. Journal of Financial and Quantitative Analysis, 40(1):161–194.

de Carvalho Filho, I. E. (2015). Risk-off episodes and swiss franc appreciation: the

role of capital flows. German Economic Review, 16(4):439–463.

Di Maggio, M. and Kacperczyk, M. (2017). The unintended consequences of the zero

lower bound policy. Journal of Financial Economics, 123(1):59–80.

Draisma, G., Drees, H., Ferreira, A., and de Haan, L. (2004). Bivariate tail estimation:

dependence in asymptotic independence. Bernouilli, 10(2):251–280.

Engle, R. F. and Manganelli, S. (2004). Caviar: Conditional autoregressive value at risk

by regression quantiles. Journal of Business and Economic Statistics, 22(4):367–381.

Ghysels, E., Plazzi, A., and Valkanov, R. (2016). The risk-return relationship and

financial crises. Working paper SSRN.

Goyenko, R. (2006). Stock and bond pricing with liquidity risk. Working paper, McGill

University.

Habib, M. M. and Stracca, L. (2012). Getting beyond carry trade-what makes a safe-

haven currency? Journal of International Economics, 87(1):50–64.

Habib, M. M. and Stracca, L. (2014). Foreign investors and crises: There is no safe

haven for all seasons. VoxEu.org, 28(February).

Hanson, S. G. and Stein, J. C. (2015). Monetary policy and long-term real rates.

Journal of Financial Economics, 115(3):429–448.

33



Hartmann, P., Straetmans, S., and de Vries, C. G. (2004). Asset market linkages in

crisis periods. Review of Economics and Statistics, 86:313–326.

Hood, M. and Malik, F. (2013). Is gold the best hedge and a safe haven under changing

stock market volatility? Review of Financial Economics, 22(2):47–52.

Hua, L. and Joe, H. (2011). Tail order and intermediate tail dependence of multivariate

copulas. Journal of Multivariate Analysis, 102:1454–1471.

Ilmanen, A. (2003). Stock-bond correlations. The Journal of Fixed Income, 13(2):55–

66.

Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46(1):33–50.

Komunjer, I. (2005). Quasi-maximum likelihood estimation for conditional quantiles.

Journal of Econometrics, 128:127–164.

Ledford, A. and Tawn, J. (1996). Statistics for near independence in multivariate

extreme values. Biometrika, 83:169–187.

Li, L. (2002). Macroeconomic factors and the correlation of stock and bond returns.

Yale International Center for Finance, Working Paper 02-46.

McNeil, A. J., Frey, R., and Embrechts, P. (2005). Quantitative Risk Management:

Concepts, Techniques, and Tools. Princeton University Press.

Patton, A. J. (2006). Modelling asymmetric exchange rate dependence. International

Economic Review, 47(2):527–556.

Poon, S. H., Rockinger, M., and Tawn, J. (2004). Extreme value dependence in fi-

nancial markets: Diagnosis, models, and financial implications. Review of Financial

Studies, 17:581–610.

Ranaldo, A. and Söderlind, P. (2010). Safe haven currencies. Review of Finance,

14(3):385–407.

Rogoff, K. (2015). Debt supercycle, not secular stagnation. VOX: CEPR’s Policy

Portal, 22(April).

Summers, L. H. (2014). Reflections on the ’new secular stagnation hypothesis’. Secular

Stagnation: Facts, causes and cures, pages 27–40.

34



van Oordt, M. R. C. and Chen, Z. (2012). The simple econometrics of tail dependence.

Economics Letters, 116(3):371–373.

Vayanos, D. (2004). Flight to quality, flight to liquidity,and the pricing of risk. Working

paper NBER.

White, H., Kim, T.-H., and Manganelli, S. (2015). Var for var: Measuring tail depen-

dence using multivariate regression quantiles. Journal of Econometrics, 187:169–188.

Yesin, P. (2016). Capital flows and the swiss franc. Swiss National Bank Working

Paper, 8.

35




