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S-ASYMPTOTICALLY ω-PERIODIC SOLUTION FOR A

NONLINEAR DIFFERENTIAL EQUATION WITH

PIECEWISE CONSTANT ARGUMENT VIA

S-ASYMPTOTICALLY ω-PERIODIC FUNCTIONS IN THE

STEPANOV SENSE

William Dimbour ∗, Solym Mawaki Manou-Abi †

Abstract. In this paper, we show the existence of function

which is not S-asymptotically ω-periodic, but which is

S-asymptotically ω-periodic in the Stepanov sense. We give

sufficient conditions for the existence and uniqueness of

S-asymptotically ω-periodic solutions for a nonautonomous

differential equation with piecewise constant argument in a

Banach space when ω is an integer. This is done using the

Banach fixed point Theorem. An example involving the heat

operator is discussed as an illustration of the theory.

Keywords. S-Asymptotically ω-periodic functions, differen-

tial equations with piecewise constant argument, evolutionnary

process.

1 Introduction

In this paper, we study the existence and uniqueness
of S-asymptotically ω-periodic solution of the follow-
ing differential equation with piecewise constant ar-
gument

{

x′(t) = A(t)x(t) + f(t, x([t])),
x(0) = c0,

(1)

where X is a banach space, c0 ∈ X, [·] is the largest
integer function, f is a continuous function on R

+×X
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and A(t) generates an exponentially stable evolution-
nary process in X. The study of differential equa-
tions with piecewise constant argument (EPCA) is
an important subject because these equations have
the structure of continuous dynamical systems in in-
tervals of unit length. Therefore they combine the
properties of both differential and difference equa-
tions. There have been many papers studying EPCA,
see for instance [14], [15], [16], [17], [18] and the ref-
erences therein.

Recently, the concept of S-asymptotically ω-periodic
function has been introduced in the litterature by
Henŕıquez, Pierri and Táboas in [8], [9]. In [1],
the authors studied properties of S-asymptotically
ω-periodic function taking values in Banach spaces
including a theorem of composition. They applied
the results obtained in order to study the existence
and uniqueness of S-asymptotically ω-periodic mild
solution to a nonautonomous semilinear differential
equation. In [22], the authors established some suffi-
cient conditions about the existence and uniquenes of
S-asymptotically ω-periodic solutions to a fractionnal
integro-differential equation by applying fixed point
theorem combined with sectorial operator, where the
nonlinear pertubation term f is a Lipschitz and non-
Lipschitz case. In [2], the authors prove the exis-
tence and uniqueness of mild solution to some func-
tional differential equations with infinite delay in
Banach spaces which approach almost automorphic
function ([6], [11]) at infinity and discuss also the
existence of S-asymptotically ω-periodic mild solu-
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tions. In [20], the author discussed about the exis-
tence of S-asymptotically ω-periodic mild solution of
semilinear fractionnal integro-differential equations
in Banach space, where the nonlinear pertubation is
S-asymptotically ω-periodic or S-asymptotically ω-
periodic in the Stepanov sense ([10], [20], [21]). The
reader may also consult [3], [4], [5], [7], [12] in order
to obtain more knowledge about S-asymptotically
ω-periodic functions. Motivated by [1] and [7],
we will show the existence and uniqueness of S-
asymptotically ω-periodic solution for (1) where the
nonlinear pertubation term f is a S-asymptotically
ω-periodic function in the Stepanov sense. The work
has four sections. In the next section, we recall some
properties about S-asymptotically ω-periodic func-
tions. We study also qualitative properties of S-
asymptotically ω-periodic functions in the Stepanov
sense. In particular, we will show the existence of
functions which are not S-asymptotically ω-periodic
but which are S-asymptotically ω-periodic in the
Stepanov sense. In section 3, we study the exis-
tence and uniquenes of S-asymptotically ω-periodic
mild solutions for (1) considering S-asymptotically
ω-periodic functions in the Stepanov sense. In sec-
tion 4, we deal with the existence and uniqueness
of S-asymptotically ω-periodic solution for a partial
differential equation.

2 Preliminaries

Definition 2.1. ([8]) A function f ∈ BC(R+,X)
is called S-asymptotically ω periodic if there exists ω
such that lim

t→∞
(f(t+ ω)− f(t)) = 0. In this case we

say that ω is an asymptotic period of f and that f
is S-asymptotically ω periodic. The set of all such
functions will be denoted by SAPω(R

+,X).

Definition 2.2. ([8]) A continuous function f :
R

+×X → X is said to be uniformly S-asymptotically
ω periodic on bounded sets if for every bounded set
K∗ ⊂ X, the set {f(t, x) : t ≥ 0, x ∈ K∗} is bounded
and

lim
t→∞

(f(t, x)− f(t+ ω, x)) = 0

uniformly in x ∈ K∗.

Definition 2.3. ([8]) A continuous function f :
R

+ × X → X is said to be asymptotically uniformly
continuous on bounded sets if for every ǫ > 0 and
every bounded set K∗, there exist Lǫ,K∗ > 0 and
δǫ,K∗ > 0 such that ||f(t, x) − f(t, y)|| < ǫ for all
t ≥ Lǫ,K∗ and all x, y ∈ K∗ with ||x− y|| < δǫ,K∗.

Lemma 2.1. ([1]) Let X and Y be two Banach
spaces, and denote by B(X,Y), the space of all
bounded linear operators from X into Y. Let A ∈
B(X,Y). Then when f ∈ SAPω(R

+,X), we have
Af := [t→ Af(t)] ∈ SAPω(R

+,Y).

Lemma 2.2. ([8]) Let f : R+ × X → X be a func-
tion which is uniformly S-asymptotically ω periodic
on bounded sets and asymptotically uniformly con-
tinuous on bounded sets. Let u : R

+ → X be S-
asymptotically ω periodic function. Then the Nemyt-
skii operator φ(·) := f(·, u(·)) is a S-asymptotically
ω periodic function.

Lemma 2.3. ([22]) Assume f : R+ × X → X be a
function which is uniformly S-asymptotically ω peri-
odic on bounded sets and satisfies the Lipschitz cond-
tion, that is, there exists a constant L > 0 such that

||f(t, x)− f(t, y)|| ≤ L||x− y||, ∀t ≥ 0, ∀x, y ∈ X.

If u ∈ SAPω(R
+,X), then the function t→ f(t, u(t))

belongs to SAPω(R
+,X).

Let p ∈ [0,∞[. The spaceBSp(R+,X) of all Stepanov
bounded functions, with the exponent p, consists of
all measurable functions f : R

+ → X such that
f b ∈ L

∞(R, Lp([0, 1];X)), where f b is the Bochner
transform of f defined by f b(t, s) := f(t + s), t ∈
R

+, s ∈ [0, 1]. BSp(R+, X) is a Banach space with
the norm

||f ||Sp = ||f b||L∞(R+,Lp) = sup
t∈R+

(

∫ t+1

t

||f(τ)||pdτ
)

1
p

.

It is obvious that Lp(R+,X) ⊂ BSp(R+,X) ⊂
Lp
loc(R

+,X) and BSp(R+,X) ⊂ BSq(R+,X) for
p ≥ q ≥ 1. We denote by BSp

0 (R
+,X) the subspace

of BSp(R+,X) consisting of functions f such that
∫ t+1

t
||f(s)||pds→ 0 when t→ ∞.

Now we give the definition of S-asymptotically ω-
periodic functions in the Stepanov sense.
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Definition 2.4. [10] A function f ∈ BSp(R+,X)
is called S-asymptotically ω-periodic in the Stepanov
sense (or Sp-S-asymptotically ω-periodic)if

lim
t→∞

∫ t+1

t

||f(s+ ω)− f(s)||p = 0.

Denote by SpSAPω(R
+,X) the set of such functions.

Remark 2.1. It is easy to see that SAPω(R
+,X) ⊂

SpSAPω(R
+,X).

Lemma 2.4. Let u ∈ SAPω(R
+,X) where ω ∈ N

∗ ,
then the step function t→ u([t]) satisfies

lim
t→∞

u(
[

t+ ω
]

)− u(
[

t
]

) = 0.

Remark 2.2. The proof of the above Lemma is con-
tained in the lines of the proof of the Lemma 2 in
[7].

Corollary 2.5. Let u ∈ SAPω(R
+,X) where ω ∈

N
∗, then the function t → u([t]) is S-asymptotically

ω-periodic in the Stepanov sense but is not S-
asymptotically ω-periodic.

Proof. By the above Lemma we have :

∀ǫ1/p > 0, ∃T > 0; t ≥ T ⇒ ||u([t+ω])−u([t])|| ≤ ǫ1/p.

The function t → u[t] is a step function therefore it
is measurable on R+. Then for t ≥ [T ] + 1, we have

∫ t+1

t

||u([s+ ω])− u([s])||p ≤

∫ t+1

t

ǫds

≤ ǫ.

Therefore the function t→ u([t]) is S-asymptotically
ω-periodic in the Stepanov sense. Now since the func-
tion t → u([t]) is not continuous on R+, it can’t be
S-asymptotically ω-periodic.

Definition 2.5. [10] A function f : R+ × X → X

is said to be uniformly S-asymptotically ω-periodic
on bounded sets in the Stepanov sense if for ev-
ery bounded set B ⊂ X,there exist positive func-
tions gb ∈ BSp(R+,R) and hb ∈ BSp

0 (R
+,R) such

that f(t, x) ≤ gb(t) for all t ≥ 0, x ∈ B and
||f(t+ ω, x)− f(t, x)|| ≤ hb(t) for all t ≥ 0, x ∈ B.

Denote by SpSAPω(R
+ ×X,X) the set of such func-

tions.

Definition 2.6. [10] A function f : R+ × X → X

is said to be asymptotically uniformly continuous on
bounded sets in the Stepanov sense if for every ǫ > 0
and every bounded set B ⊂ X, there exists tǫ ≥ 0 and
δǫ > 0 such that

∫ t+1

t

||f(s, x)− f(s, y)||pds ≤ ǫp,

for all t ≥ tǫ and all x, y ∈ B with ||x − y|| ≤ δǫ.

Lemma 2.6. [10] Assume that f ∈ SpSAPω(R
+ ×

X,X) is an asymptotically uniformly continuous on
bounded sets in the Stepanov sense function. Let u ∈
SAPω(R

+,X), then v(.) = f(., u(.)) ∈ SpSAPω(R
+×

X,X).

Lemma 2.7. Let ω ∈ N
∗. Assume f : R+ × X → X

be a function which is uniformly S-asymptotically ω
periodic on bounded sets and satisfies the Lipschitz
condition, that is, there exists a constant L > 0 such
that

||f(t, x)− f(t, y)|| ≤ L||x− y||, ∀t ≥ 0, ∀x, y ∈ X.

If u ∈ SAPω(R
+,X), then

(1) the bounded piecewise continuous function t →
f(t, u(

[

t
]

)) satisfies

lim
t→∞

(f(t+ ω, u(
[

t+ ω
]

))− f(t, u(
[

t
]

)) = 0.

(2) the function t → f(t, u(
[

t
]

)) belongs to
SpSAPω(R

+,X).

(3) the function t → f(t, u(
[

t
]

)) does not belongs to
SAPω(R

+,X).

Proof. (1) Since R(u) = {u(
[

t
]

)|t ≥ 0} is a bounded
set, then for every ǫ

2 > 0, there exists a constant
Lǫ > 0 such that

||f(t+ ω, x)− f(t, x)|| ≤
ǫ

2

for every t > Lǫ and x ∈ R(u).
By Lemma 2.4, for every ǫ

2L > 0, there exist Tǫ > 0
such that for all t > Tǫ

||u(
[

t+ ω
]

)− u(
[

t
]

)|| ≤
ǫ

2L
.
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We have

||f(t+ ω, u(
[

t+ ω
]

))− f(t, u(
[

t
]

)||

≤ ||f(t+ ω, u(
[

t+ ω
]

))− f(t, u(
[

t+ ω
]

))||

+ ||f(t, u(
[

t+ ω
]

))− f(t, u(
[

t
]

)||

≤ ||f(t+ ω, u(
[

t+ ω
]

))− f(t, u(
[

t+ ω
]

))||

+ L||u(
[

t+ ω
]

)− u(
[

t
]

)||.

We put T = max(Tǫ, Lǫ). Then for all t > T we
deduce that

||f(t+ ω, u(
[

t+ ω
]

))− f(t, u(
[

t
]

)|| ≤
ǫ

2
+ L

ǫ

2L
≤ ǫ.

(2) According to (1) we have

lim
t→∞

(f(t+ ω, u([t+ ω])− f(t, u([t]))) = 0,

meaning that

∀ǫ1/p > 0, ∃T > 0, t ≥ T

⇒ ||f(t+ ω, u([t+ ω]))− f(t, u([t]))|| ≤ ǫ1/p.

The function t → f(t, u[t]) is continuous on every in-
tervals ]n,+1[ but lim

t→n−

f(t, u(
[

t
]

)) = f
(

n, u(n− 1)
)

and lim
t→n+

f(t, u([t]) = f(n, u(n)). Therefore the func-

tion t → f(t, u[t]) is a piecewise continuous function
and it is measurable on R+. Then for t ≥ [T ] + 1, we
have

∫ t+1

t

||f(s, u([s+ ω]))− f(s, u([s]))||p

≤

∫ t+1

t

ǫ ds

≤ ǫ.

(3) Since the function t → f(t, u([t])) is not con-
tinuous on R+, it can’t be S-asymptotically ω-
periodic.

Lemma 2.8. Let ω ∈ N
∗. Assume that f : R+ ×

X → X is uniformly S-asymptotically ω-periodic on
bounded sets in the Stepanov sense and asymptoti-
cally uniformly continuous on bounded sets in the
Stepanov sense. Let u : R

+ → X be a function
in SAPω(R

+,X), and let v(t) = f(t, u([t])). Then
v ∈ SpSAPω(R

+,X).

Proof. Set B =: R(u) = {u[t], t ≥ 0} ⊂ X.
Since f is uniformly S-asymptotically ω-periodic on
bounded sets in the Stepanov sense, there exist func-
tions gB ∈ BSp(R+,R) and hB ∈ BSp

0 (R
+,R) sat-

isfying the properties involved in Definition 2.6 and
2.8 in relation with the set B =: R(u).
The function v belongs to BSp(R+,X) because

∫ t+1

t

||v(τ)||pdτ =

∫ t+1

t

||f(τ, u([τ ]))||pdτ

≤

∫ t+1

t

||gB(τ)||
pdτ

≤ sup
t≥0

(

∫ t+1

t

||gB(τ)||
pdτ

)

.

Therefore

||vb||L∞(R+,Lp) ≤ ||gB||Sp .

We have for all t ≥ 0 :

∫ t+1

t

||f(s+ ω, u([s+ ω]))− f(s, u([s+ ω]))||pds

≤

∫ t+1

t

||hB(s)||
pds.

Note that hB ∈ BSp
0 (R

+,R); this implies that for
ǫ > 0 there exists t′ǫ > 0 such that for all t ≥ t′ǫ we
have

∫ t+1

t

||hB(s)||
pds ≤ ǫp/2.

Thus

∫ t+1

t

||f(s+ ω, u([s+ ω]))− f(s, u([s+ ω]))||pds

≤ ǫp/2 for all t ≥ t′ǫ(∗).

Furthermore since f is asymptotically uniformly con-
tinuous on bounded sets in the Stepanov sense, thus
for all ǫ > 0, theres exists tǫ ≥ 0 and δǫ > 0 such that

∫ t+1

t

||f(s, u([s+ ω]))− f(s, u([s]))||pds

≤ ǫp/2 for all t ≥ tǫ (∗∗)
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because
||u([s+ ω])− u([s])|| ≤ δǫ.

The estimates (∗) and (∗∗) lead to

∫ t+1

t

||v(s+ ω)− v(s)||pds

=

∫ t+1

t

||f(s+ ω, u([s+ ω]))− f(s, u([s]))||pds

≤

∫ t+1

t

||f(s+ ω, u([s+ ω]))

− f(s, u([s+ ω]))||pds

+

∫ t+1

t

||f(s, u([s+ ω]))− f(s, u([s]))||pds

≤ ǫp/2 + ǫp/2 = ǫp.

Therefore for all ǫ > 0 there exists Tǫ =Max(tǫ, t
′
ǫ) >

0 such that for all t ≥ Tǫ we have

(

∫ t+1

t

||v(s+ ω)− v(s)||pds
)1/p

≤ ǫ.

We conclude that v ∈ SpSAPω(R
+,X).

3 Main Results

Definition 3.1. A solution of (1) on R
+ is a func-

tion x(t) that satisfies the conditions:

(1) x(t) is continuous on R
+.

(2) The derivative x′(t) exists at each point t ∈ R
+,

with possible exception at the points [t], t ∈ R
+

where one-sided derivatives exists.

(3) The equation (1) is satisfied on each interval
[n, n+ 1[ with n ∈ N.

Now we make the following hypothesis:

(H1) : The function f is uniformly S-asymptotically
ω-periodic on bounded sets in the Stepanov sense and
satisfies the Lipschitz condition

||f(t, u)− f(t, v)|| ≤ L||u− v||, u, v ∈ X, t ∈ R
+.

We assume that A(t) generates an evolutionary pro-
cess (U(t, s))t≥s in X, that is, a two-parameter family
of bounded linear operators that satisfies the follow-
ing conditions:

1. U(t, t) = I for all t ≥ 0 where I is the identity
operator.

2. U(t, s)U(s, r) = U(t, r) for all t ≥ s ≥ r.

3. The map (t, s) 7→ U(t, s)x is continuous for every
fixed x ∈ X.

Then the function g defined by g(s) = U(t, s)x(s),
where x is a solution of (1), is differentiable for s < t.

dg(s)

ds
= −A(s)U(t, s)x(s) + U(t, s)x′(s)

= −A(s)U(t, s)x(s) + U(t, s)A(s)x(s)

+ U(t, s)f(s, x([s]))

= U(t, s)f(s, x([s])).

dg(s)

ds
= U(t, s)f(s, x([s])). (2)

The function x([s]) is a step function. By (H1),
f(s, x([s])) is piecewise continuous. Therefore
f(s, x([s])) is integrable on [0, t] where t ∈ R

+. Inte-
grating (2) on [0, t] we obtain that

x(t)− U(t, 0)c0 =

∫ t

0

U(t, s)f(s, x([s]))ds.

Therefore, we define

Definition 3.2. We assume (H1) is satisfied
and that A(t) generates an evolutionary process
(U(t, s))t≥s in X. The continuous function x given
by

x(t) = U(t, 0)c0 +

∫ t

0

U(t, s)f(s, x([s]))ds

is called the mild solution of equation (1).
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Now we make the following hypothesis.

(H2): A(t) generates a ω-periodic (ω > 0) expo-
nentially stable evolutionnary process (U(t, s))t≥s in
X, that is, a two-parameter family of bounded linear
operators that satisfies the following conditions:

1. For all t ≥ 0,

U(t, t) = I where I is the identity operator.

2. For all t ≥ s ≥ r,

U(t, s)U(s, r) = U(t, r).

3. The map (t, s) 7→ U(t, s)x is continuous for every
fixed x ∈ X.

4. For all t ≥ s,

U(t+ ω, s+ ω) = U(t, s)

(ω-periodicity).

5. There exist K > 0 and a > 0 such that

||U(t, s)|| ≤ Ke−a(t−s)

for t ≥ s.

Theorem 3.1. We assume that (H2) is satisfied
and that f ∈ SpSAPω(R

+,X). Then

(∧f)(t) =

∫ t

0

U(t, s)f(s)ds ∈ SAPω(R
+,X), t ∈ R

+.

Proof. Let u(t) =
∫ t

0
U(t, s)f(s)ds.

For n ≤ t ≤ n+ 1, n ∈ N, we observe that

||u(t)||

≤

∫ t

0

||U(t, s)f(s)|| ds

≤

∫ n

0

||U(t, s)f(s)|| ds+

∫ t

n

||U(t, s)f(s)|| ds

≤

∫ n

0

Me−a(t−s)||f(s)|| ds

+

∫ t

n

Me−a(t−s)||f(s)|| ds

≤

∫ n

0

Me−a(n−s)||f(s)|| ds+

∫ t

n

M ||f(s)|| ds

≤

n−1
∑

k=0

∫ k+1

k

Me−a(n−s)||f(s)|| ds+

∫ t

n

M ||f(s)|| ds

≤

n−1
∑

k=0

∫ k+1

k

Me−a(n−k−1)||f(s)|| ds

+

∫ n+1

n

M ||f(s)|| ds

≤

n−1
∑

k=0

Me−a(n−k−1)

∫ k+1

k

||f(s)|| ds

+ M

∫ n+1

n

||f(s)|| ds

≤
n−1
∑

k=0

Me−a(n−k−1)
(

∫ k+1

k

||f(s)||p ds
)

1
p

+ M
(

∫ n+1

n

||f(s)||p ds
)

1
p

≤ M
(

∞
∑

j=0

e−aj + 1
)

||f ||Sp

≤ M
(2− e−a

1− e−a

)

||f ||Sp .

Therefore u is bounded.

Now, show that lim
t→∞

u(t+ ω)− u(t) = 0.
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We have

u(t+ ω)− u(t) =

∫ t+ω

0

U(t+ ω, s)f(s)ds

−

∫ t

0

U(t, s)f(s)ds

=

∫ ω

0

U(t+ ω, s)f(s)ds

+

∫ t+ω

ω

U(t+ ω, s)f(s)ds

−

∫ t

0

U(t, s)f(s)ds

= I1(t) + I2(t),

where

I1(t) =

∫ ω

0

U(t+ ω, s)f(s)ds,

and

I2(t) =

∫ t+ω

ω

U(t+ ω, s)f(s)ds−

∫ t

0

U(t, s)f(s)ds.

We note that

I1(t) = U(t+ω, ω)

∫ ω

0

U(ω, s)f(s)ds = U(t+ω, ω)u(ω),

and by using the fact that (U(t, s))t≥s is exponen-
tially stable, we obtain

||I1(t)|| ≤ Ke−at||u(ω)||,

which shows that

lim
t→∞

I1(t) = 0.

Let ǫ > 0. Since f ∈ SpSAPω(R
+,X), there exists

m ∈ N such that for t ≥ m

(

∫ t+1

t

||f(s+ ω)− f(s)||pds
)

1
p

< ǫ.

For m ≤ n ≤ t ≤ n+ 1, we have

I2(t) =

∫ t

0

U(t, s)
(

f(s+ ω)− f(s)
)

ds

≤ I2,1(t) + I2,2(t) + I2,3(t),

where



















I2,1(t) =
∫m

0 U(t, s)
(

f(s+ ω)− f(s)
)

ds

I2,2(t) =
∑n−1

k=m

∫ k+1

k
U(t, s)

(

f(s+ ω)− f(s)
)

ds,

I2,3(t) =
∫ t

n U(t, s)
(

f(s+ ω)− f(s)
)

ds.

We observe that

||I2,1(t)|| ≤

∫ m

0

||U(t, s)|| ||f(s+ ω)− f(s)|| ds

≤ Me−a(t−m)

∫ m

0

||f(s+ ω)− f(s)||ds.

Therefore, there exists νm ∈ N, νm ≥ m such that
for t ≥ νm

||I2,1(t)|| ≤ ǫ.

Using Holder’s inequality, we observe also that

||I2,2(t)||

≤

n−1
∑

k=m

∫ k+1

k

||U(t, s)|| ||f(s+ ω)− f(s)|| ds

≤

n−1
∑

k=m

M

∫ k+1

k

e−a(t−s) ||f(s+ ω)− f(s)|| ds

≤

n−1
∑

k=m

M

∫ k+1

k

e−a(n−k−1) ||f(s+ ω)− f(s)|| ds

≤ M

n−1
∑

k=m

e−a(n−k−1)

∫ k+1

k

||f(s+ ω)− f(s)|| ds

≤ M
n−1
∑

k=m

e−a(n−k−1)
(

∫ k+1

k

||f(s+ ω)− f(s)||p ds
)

1
p

≤ M
(

e−a(n−m−1) + e−a(n−m−2) + ...+ 1
)

ǫ

≤
M

1− e−a
ǫ.
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We observe also that

||I2,3(t)|| ≤

∫ t

n

||U(t, s)|| ||f(s+ ω)− f(s)|| ds

≤

∫ t

n

Me−a(t−s) ||f(s+ ω)− f(s)|| ds

≤ M

∫ t

n

||f(s+ ω)− f(s)|| ds

≤ M

∫ n+1

n

||f(s+ ω)− f(s)|| ds

≤ M
(

∫ n+1

n

||f(s+ ω)− f(s)||p ds
)

1
p

≤ Mǫ.

Finally, for t ≥ νm

||I2(t)|| ≤ ||I2,1(t)||+ ||I2,2(t)|| + ||I2,3(t)||

≤
(

1 +
M

1− e−a
+M

)

ǫ,

thus lim
t→∞

I2(t) = 0. We conclude that u ∈

SAPω(R
+,X).

Now we make the following hypothesis.

Theorem 3.2. Let ω ∈ N
∗. We assume that the

hypothesis (H1) and (H2) are satisfied. Then (1)
has a unique S-asymptotically ω-periodic mild solu-
tion provided that

Θ :=
LM

a
< 1.

Proof. We define the nonlinear operator Γ by the ex-
pression

(Γφ)(t) = U(t, 0)c0 +

∫ t

0

U(t, s)f(s, φ([s]))ds

= U(t, 0)c0 + (∧1φ)(t),

where

(∧1φ)(t) =

∫ t

0

U(t, s)f(s, φ([s])).

According to the hypothesis (H2), we have

||U(t+ ω, 0)− U(t, 0)|| ≤ ||U(t+ ω, 0)||+ ||U(t, 0)||

≤ Ke−a(t+ω) +Ke−at.

Therefore lim
t→∞

||U(t+ ω, 0)− U(t, 0)|| = 0.

According to the Lemma 2.7 (resp. lemma 2.8) the
function t → f(t, φ(

[

t
]

)) belongs to SpSAPω(R
+,X).

According to the Theorem 3.1 the operator ∧1 maps
SAPω(R

+,X) into itself. Therefore the operator Γ
maps SAPω(R

+,X) into itself.
We have

||(Γφ)(t) − Γψ)(t)||

=

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

U(t, s)
(

f(s, φ([s])) − f(s, ψ([s]))
)

ds

∣

∣

∣

∣

∣

∣

∣

∣

≤

∫ t

0

||U(t, s)|| ||f(s, φ([s]))− f(s, ψ([s]))||ds

≤ L

∫ t

0

||U(t, s)|| ||φ([s]) − ψ([s])||ds

≤ LM

∫ t

0

e−a(t−s) ||φ([s]) − ψ([s])||ds

≤ LM

∫ t

0

e−a(t−s) ||φ− ψ||∞ds

≤ LM
1− e−at

a
||φ− ψ||∞

≤
LM

a
||φ− ψ||∞.

Hence we have :

||Γφ− Γψ||∞ ≤
LM

a
||φ− ψ||∞.

This proves that Γ is a contraction and we conclude
that Γ has a unique fixed point in SAPω(R

+,X). The
proof is complete.

4 Application

Consider the following heat equation with Dirichlet
conditions:






∂u(t,x)
∂t = ∂2u(t,x)

∂x2 + (−3 + sin(πt))u(t, x) + f(t, u([t], x)),
u(t, 0) = u(t, π) = 0, t ∈ R

+,
u(0, x) = c0,

(3)
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where c0 ∈ L2[0, π] and the function f is uniformly S-
asymptotically ω-periodic on bounded sets and sat-
isfies the lipschitz condition, that is, there exists a
constant L > 0 such that

||f(t, x)− f(t, y)|| ≤ L||x− y||, ∀t ≥ 0, ∀x, y ∈ X.

Let X = L2[0, π] be endowed with it’s natural topol-
ogy. Define

D(A) = {u ∈ L2[0, π] such that u′′ ∈ L2[0, π]

andu(0) = u(π) = 0}

Au = u′′ for all u ∈ D(A).

Let φn(t) =
√

2
π sin(nt) for all n ∈ N. φn are eigen-

functions of the operator (A,D(A)) with eigenvalues
λn = −n2. A is the infinitesimal generator of a semi-
group T (t) of the form

T (t)φ =

∞
∑

n=1

e−n2t〈φ, φn〉φn, ∀φ ∈ L2[0, π]

and
||T (t)|| ≤ e−t, for t ≥ 0

(see [13],[19]).
Now define A(t) by:

{

D(A(t)) = D(A)
A(t) = A+ q(t, x),

where q(t, x) = −3 + sin(πt).
Note that A(t) generates an evolutionnary process
U(t, s) of the form

U(t, s) = T (t− s)e
∫

t

s
q(,v,x)dx.

Since q(t, x) = −3 + sin(πt) ≤ −2, we have

U(t, s) ≤ T (t− s)e−2(t−s)

and

||U(t, s)|| ≤ ||T (t− s)||e−(t−s) ≤ e−3(t−s).

Since q(t + 2, x) = q(t, x), we conclude that U(t, s)
is a 2-periodic evolutionnary process exponentially
stable.

The equation (3) is of the form

{

x′(t) = A(t)x(t) + f(t, x([t])),
x(0) = c0.

By Theorem 3.2, we claim that
Theorem 4.1. If L < 3 then the equation (3) admits
an unique mild solution u(t) ∈ SAPω(R

+,X).
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