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In this paper, we show the existence of function which is not S-asymptotically ω-periodic, but which is S-asymptotically ω-periodic in the Stepanov sense. We give sufficient conditions for the existence and uniqueness of S-asymptotically ω-periodic solutions for a nonautonomous differential equation with piecewise constant argument in a Banach space when ω is an integer. This is done using the Banach fixed point Theorem. An example involving the heat operator is discussed as an illustration of the theory.

Introduction

In this paper, we study the existence and uniqueness of S-asymptotically ω-periodic solution of the following differential equation with piecewise constant argument

x ′ (t) = A(t)x(t) + f (t, x([t])), x(0) = c 0 , (1) 
where X is a banach space, c 0 ∈ X, [•] is the largest integer function, f is a continuous function on R + × X and A(t) generates an exponentially stable evolutionnary process in X. The study of differential equations with piecewise constant argument (EPCA) is an important subject because these equations have the structure of continuous dynamical systems in intervals of unit length. Therefore they combine the properties of both differential and difference equations. There have been many papers studying EPCA, see for instance [START_REF] Wiener | A Second-Order delay differential equation with multiple Periodic solutions[END_REF], [START_REF] Wiener | Boundary Value Problems for the diffusion equation with piecewise continuous time delay[END_REF], [START_REF] Wiener | A survey of partial differential equations with piecewise continuous arguments[END_REF], [START_REF] Wiener | Excitability of a second-order delay differential equation[END_REF], [START_REF] Wiener | Generalized solutions of functional differential equations[END_REF] and the references therein.

Recently, the concept of S-asymptotically ω-periodic function has been introduced in the litterature by Henríquez, Pierri and Táboas in [START_REF] Henríquez | On S asymptotically ω-periodic function on Banach spaces and applications[END_REF], [START_REF] Henríquez | Existence of S-asymptotically ω-periodic solutions for abstract neutral equations[END_REF]. In [START_REF] Blot | Guérékata S asymptotically ω-periodic functions and applications to evolution equations[END_REF], the authors studied properties of S-asymptotically ω-periodic function taking values in Banach spaces including a theorem of composition. They applied the results obtained in order to study the existence and uniqueness of S-asymptotically ω-periodic mild solution to a nonautonomous semilinear differential equation. In [START_REF] Wu | Asymptotic periodicity for a class of fractional integrodifferential equations[END_REF], the authors established some sufficient conditions about the existence and uniquenes of S-asymptotically ω-periodic solutions to a fractionnal integro-differential equation by applying fixed point theorem combined with sectorial operator, where the nonlinear pertubation term f is a Lipschitz and non-Lipschitz case. In [START_REF] Caicedo | Asymptotically behavior of solutions of some semilinear functional differential and integro-differential equations with infinite delay in Banach spaces[END_REF], the authors prove the existence and uniqueness of mild solution to some functional differential equations with infinite delay in Banach spaces which approach almost automorphic function ( [START_REF] Diagana | Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces[END_REF], [START_REF] N'guérékata | Almost Automorphic and Almost Periodic Functions in Abstract Spaces[END_REF]) at infinity and discuss also the existence of S-asymptotically ω-periodic mild solu-tions. In [START_REF] Xia | Asymptotically periodic of semilinear fractional integro-differential equations[END_REF], the author discussed about the existence of S-asymptotically ω-periodic mild solution of semilinear fractionnal integro-differential equations in Banach space, where the nonlinear pertubation is S-asymptotically ω-periodic or S-asymptotically ωperiodic in the Stepanov sense ( [START_REF] Henríquez | Asymptotically periodic solutions of abstract differential equations[END_REF], [START_REF] Xia | Asymptotically periodic of semilinear fractional integro-differential equations[END_REF], [START_REF] Xie | Criteria of asymptotic ω-periodicity and their applications in a class of fractional differential equations[END_REF]). The reader may also consult [START_REF] Cuevas | S asymptotically ω-periodic solutions of semilinear fractional integro-differential equations[END_REF], [START_REF] Cuevas | S asymptotically ω-periodic solutions of semilinear Volterra equations[END_REF], [START_REF] Cuevas | Existence of S asymptotically ω-periodic solutions for two-times fractional order differential equations. Southeast[END_REF], [START_REF] Dimbour | S asymptotically ω-periodic solution for a nonlinear differential equation with piecewise constant argument in a Banach space[END_REF], [START_REF] Pierri | On S-Asymptotically ω-periodic functions and applications[END_REF] in order to obtain more knowledge about S-asymptotically ω-periodic functions. Motivated by [START_REF] Blot | Guérékata S asymptotically ω-periodic functions and applications to evolution equations[END_REF] and [START_REF] Dimbour | S asymptotically ω-periodic solution for a nonlinear differential equation with piecewise constant argument in a Banach space[END_REF], we will show the existence and uniqueness of Sasymptotically ω-periodic solution for [START_REF] Blot | Guérékata S asymptotically ω-periodic functions and applications to evolution equations[END_REF] where the nonlinear pertubation term f is a S-asymptotically ω-periodic function in the Stepanov sense. The work has four sections. In the next section, we recall some properties about S-asymptotically ω-periodic functions. We study also qualitative properties of Sasymptotically ω-periodic functions in the Stepanov sense. In particular, we will show the existence of functions which are not S-asymptotically ω-periodic but which are S-asymptotically ω-periodic in the Stepanov sense. In section 3, we study the existence and uniquenes of S-asymptotically ω-periodic mild solutions for (1) considering S-asymptotically ω-periodic functions in the Stepanov sense. In section 4, we deal with the existence and uniqueness of S-asymptotically ω-periodic solution for a partial differential equation.

Preliminaries

Definition 2.1.

([8]) A function f ∈ BC(R + , X)
is called S-asymptotically ω periodic if there exists ω such that lim t→∞ (f (t + ω) -f (t)) = 0. In this case we say that ω is an asymptotic period of f and that f is S-asymptotically ω periodic. The set of all such functions will be denoted by SAP ω (R + , X).

Definition 2.2. ([8]

) A continuous function f : R + × X → X is said to be uniformly S-asymptotically ω periodic on bounded sets if for every bounded set ) Assume f : R + × X → X be a function which is uniformly S-asymptotically ω periodic on bounded sets and satisfies the Lipschitz condtion, that is, there exists a constant L > 0 such that

K * ⊂ X, the set {f (t, x) : t ≥ 0, x ∈ K * } is bounded and lim t→∞ (f (t, x) -f (t + ω, x)) = 0 uniformly in x ∈ K * .
||f (t, x) -f (t, y)|| ≤ L||x -y||, ∀t ≥ 0, ∀x, y ∈ X.
If u ∈ SAP ω (R + , X), then the function t → f (t, u(t)) belongs to SAP ω (R + , X).

Let p ∈ [0, ∞[. The space BS p (R + , X) of all Stepanov bounded functions, with the exponent p, consists of all measurable functions f :

R + → X such that f b ∈ L ∞ (R, L p ([0, 1]; X)), where f b is the Bochner transform of f defined by f b (t, s) := f (t + s), t ∈ R + , s ∈ [0, 1]. BS p (R + , X) is a Banach space with the norm ||f || S p = ||f b || L ∞ (R + ,L p ) = sup t∈R + t+1 t ||f (τ )|| p dτ 1 p . It is obvious that L p (R + , X) ⊂ BS p (R + , X) ⊂ L p loc (R + , X) and BS p (R + , X) ⊂ BS q (R + , X) for p ≥ q ≥ 1. We denote by BS p 0 (R + , X) the subspace of BS p (R + , X) consisting of functions f such that t+1 t ||f (s)|| p ds → 0 when t → ∞.
Now we give the definition of S-asymptotically ωperiodic functions in the Stepanov sense.

Definition 2.4. [10] A function f ∈ BS p (R + , X) is called S-asymptotically ω-periodic in the Stepanov sense (or S p -S-asymptotically ω-periodic)if lim t→∞ t+1 t ||f (s + ω) -f (s)|| p = 0. Denote by S p SAP ω (R + , X) the set of such functions. Remark 2.1. It is easy to see that SAP ω (R + , X) ⊂ S p SAP ω (R + , X). Lemma 2.4. Let u ∈ SAP ω (R + , X) where ω ∈ N * , then the step function t → u([t]) satisfies lim t→∞ u( t + ω ) -u( t ) = 0.
Remark 2.2. The proof of the above Lemma is contained in the lines of the proof of the Lemma 2 in [START_REF] Dimbour | S asymptotically ω-periodic solution for a nonlinear differential equation with piecewise constant argument in a Banach space[END_REF].

Corollary 2.5. Let u ∈ SAP ω (R + , X) where ω ∈ N * , then the function t → u([t]) is S-asymptotically ω-periodic in the Stepanov sense but is not S- asymptotically ω-periodic.
Proof. By the above Lemma we have :

∀ǫ 1/p > 0, ∃T > 0; t ≥ T ⇒ ||u([t+ω])-u([t])|| ≤ ǫ 1/p . The function t → u[t] is a step function therefore it is measurable on R + . Then for t ≥ [T ] + 1, we have t+1 t ||u([s + ω]) -u([s])|| p ≤ t+1 t ǫds ≤ ǫ.

Therefore the function t → u([t]

) is S-asymptotically ω-periodic in the Stepanov sense. Now since the function t → u([t]) is not continuous on R + , it can't be S-asymptotically ω-periodic. Definition 2.5. [10] A function f : R + × X → X is said to be uniformly S-asymptotically ω-periodic on bounded sets in the Stepanov sense if for every bounded set B ⊂ X,there exist positive functions

g b ∈ BS p (R + , R) and h b ∈ BS p 0 (R + , R) such that f (t, x) ≤ g b (t) for all t ≥ 0, x ∈ B and ||f (t + ω, x) -f (t, x)|| ≤ h b (t) for all t ≥ 0, x ∈ B.
Denote by S p SAP ω (R + × X, X) the set of such functions.

Definition 2.6. [START_REF] Henríquez | Asymptotically periodic solutions of abstract differential equations[END_REF] A function f : R + × X → X is said to be asymptotically uniformly continuous on bounded sets in the Stepanov sense if for every ǫ > 0 and every bounded set B ⊂ X, there exists t ǫ ≥ 0 and

δ ǫ > 0 such that t+1 t ||f (s, x) -f (s, y)|| p ds ≤ ǫ p , for all t ≥ t ǫ and all x, y ∈ B with ||x -y|| ≤ δ ǫ . Lemma 2.6. [10] Assume that f ∈ S p SAP ω (R + × X, X) is an asymptotically uniformly continuous on bounded sets in the Stepanov sense function. Let u ∈ SAP ω (R + , X), then v(.) = f (., u(.)) ∈ S p SAP ω (R + × X, X).
Lemma 2.7. Let ω ∈ N * . Assume f : R + × X → X be a function which is uniformly S-asymptotically ω periodic on bounded sets and satisfies the Lipschitz condition, that is, there exists a constant L > 0 such that

||f (t, x) -f (t, y)|| ≤ L||x -y||, ∀t ≥ 0, ∀x, y ∈ X. If u ∈ SAP ω (R + , X), then (1) the bounded piecewise continuous function t → f (t, u( t )) satisfies lim t→∞ (f (t + ω, u( t + ω )) -f (t, u( t )) = 0.
(2) the function t → f (t, u( t )) belongs to S p SAP ω (R + , X).

(3) the function t → f (t, u( t )) does not belongs to SAP ω (R + , X).

Proof.

(1) Since R(u) = {u( t )|t ≥ 0} is a bounded set, then for every ǫ 2 > 0, there exists a constant L ǫ > 0 such that ||f (t + ω, x) -f (t, x)|| ≤ ǫ 2 for every t > L ǫ and x ∈ R(u). By Lemma 2.4, for every ǫ 2L > 0, there exist T ǫ > 0 such that for all t > T ǫ

||u( t + ω ) -u( t )|| ≤ ǫ 2L .
We have

||f (t + ω, u( t + ω )) -f (t, u( t )|| ≤ ||f (t + ω, u( t + ω )) -f (t, u( t + ω ))|| + ||f (t, u( t + ω )) -f (t, u( t )|| ≤ ||f (t + ω, u( t + ω )) -f (t, u( t + ω ))|| + L||u( t + ω ) -u( t )||.
We put T = max(T ǫ , L ǫ ). Then for all t > T we deduce that

||f (t + ω, u( t + ω )) -f (t, u( t )|| ≤ ǫ 2 + L ǫ 2L ≤ ǫ.
(2) According to (1) we have

lim t→∞ (f (t + ω, u([t + ω]) -f (t, u([t]))) = 0, meaning that ∀ǫ 1/p > 0, ∃T > 0, t ≥ T ⇒ ||f (t + ω, u([t + ω])) -f (t, u([t]))|| ≤ ǫ 1/p . The function t → f (t, u[t]) is continuous on every in- tervals ]n, +1[ but lim t→n -f (t, u( t )) = f n, u(n -1) and lim t→n + f (t, u([t]) = f (n, u(n)). Therefore the func- tion t → f (t, u[t]
) is a piecewise continuous function and it is measurable on R + . Then for t ≥ [T ] + 1, we have

t+1 t ||f (s, u([s + ω])) -f (s, u([s]))|| p ≤ t+1 t ǫ ds ≤ ǫ.
(3) Since the function t → f (t, u([t])) is not continuous on R + , it can't be S-asymptotically ωperiodic.

Lemma 2.8. Let ω ∈ N * . Assume that f : R + × X → X is uniformly S-asymptotically ω-periodic on bounded sets in the Stepanov sense and asymptotically uniformly continuous on bounded sets in the Stepanov sense. Let u : R + → X be a function in SAP ω (R + , X), and let

v(t) = f (t, u([t])). Then v ∈ S p SAP ω (R + , X). Proof. Set B =: R(u) = {u[t], t ≥ 0} ⊂ X.
Since f is uniformly S-asymptotically ω-periodic on bounded sets in the Stepanov sense, there exist functions g B ∈ BS p (R + , R) and h B ∈ BS p 0 (R + , R) satisfying the properties involved in Definition 2.6 and 2.8 in relation with the set B =: R(u). The function v belongs to BS p (R + , X) because

t+1 t ||v(τ )|| p dτ = t+1 t ||f (τ, u([τ ]))|| p dτ ≤ t+1 t ||g B (τ )|| p dτ ≤ sup t≥0 t+1 t ||g B (τ )|| p dτ . Therefore ||v b || L ∞ (R + ,L p ) ≤ ||g B || S p .
We have for all t ≥ 0 :

t+1 t ||f (s + ω, u([s + ω])) -f (s, u([s + ω]))|| p ds ≤ t+1 t ||h B (s)|| p ds.
Note that h B ∈ BS p 0 (R + , R); this implies that for ǫ > 0 there exists t ′ ǫ > 0 such that for all t ≥ t ′ ǫ we have

t+1 t ||h B (s)|| p ds ≤ ǫ p /2. Thus t+1 t ||f (s + ω, u([s + ω])) -f (s, u([s + ω]))|| p ds ≤ ǫ p /2 for all t ≥ t ′ ǫ ( * )
. Furthermore since f is asymptotically uniformly continuous on bounded sets in the Stepanov sense, thus for all ǫ > 0, theres exists t ǫ ≥ 0 and δ ǫ > 0 such that

t+1 t ||f (s, u([s + ω])) -f (s, u([s]))|| p ds ≤ ǫ p /2 for all t ≥ t ǫ ( * * ) because ||u([s + ω]) -u([s])|| ≤ δ ǫ .
The estimates ( * ) and ( * * ) lead to

t+1 t ||v(s + ω) -v(s)|| p ds = t+1 t ||f (s + ω, u([s + ω])) -f (s, u([s]))|| p ds ≤ t+1 t ||f (s + ω, u([s + ω])) -f (s, u([s + ω]))|| p ds + t+1 t ||f (s, u([s + ω])) -f (s, u([s]))|| p ds ≤ ǫ p /2 + ǫ p /2 = ǫ p .
Therefore for all ǫ > 0 there exists T ǫ = M ax(t ǫ , t ′ ǫ ) > 0 such that for all t ≥ T ǫ we have

t+1 t ||v(s + ω) -v(s)|| p ds 1/p ≤ ǫ.
We conclude that v ∈ S p SAP ω (R + , X).

Main Results

Definition 3.1. A solution of (1) on R + is a function x(t) that satisfies the conditions:

(1) x(t) is continuous on R + .

(2) The derivative x ′ (t) exists at each point t ∈ R + , with possible exception at the points [t], t ∈ R + where one-sided derivatives exists.

(3) The equation ( 1) is satisfied on each interval

[n, n + 1[ with n ∈ N.
Now we make the following hypothesis:

(H1) : The function f is uniformly S-asymptotically ω-periodic on bounded sets in the Stepanov sense and satisfies the Lipschitz condition

||f (t, u) -f (t, v)|| ≤ L||u -v||, u, v ∈ X, t ∈ R + .
We assume that A(t) generates an evolutionary process (U (t, s)) t≥s in X, that is, a two-parameter family of bounded linear operators that satisfies the following conditions:

1. U (t, t) = I for all t ≥ 0 where I is the identity operator.

2. U (t, s)U (s, r) = U (t, r) for all t ≥ s ≥ r.

3. The map (t, s) → U (t, s)x is continuous for every fixed x ∈ X.

Then the function g defined by g(s) = U (t, s)x(s), where x is a solution of (1), is differentiable for s < t.

dg(s) ds

= -A(s)U (t, s)x(s) + U (t, s)x ′ (s) = -A(s)U (t, s)x(s) + U (t, s)A(s)x(s) + U (t, s)f (s, x([s])) = U (t, s)f (s, x([s])). dg(s) ds = U (t, s)f (s, x([s])). (2) 
The function x([s]) is a step function. By (H1),

f (s, x([s])) is piecewise continuous. Therefore f (s, x([s])) is integrable on [0, t] where t ∈ R + . Inte- grating (2) on [0, t] we obtain that x(t) -U (t, 0)c 0 = t 0 U (t, s)f (s, x([s]))ds.
Therefore, we define Definition 3.2. We assume (H1) is satisfied and that A(t) generates an evolutionary process (U (t, s)) t≥s in X. The continuous function x given by

x(t) = U (t, 0)c 0 + t 0 U (t, s)f (s, x([s]))ds
is called the mild solution of equation ( 1). Now we make the following hypothesis.

(H2): A(t) generates a ω-periodic (ω > 0) exponentially stable evolutionnary process (U (t, s)) t≥s in X, that is, a two-parameter family of bounded linear operators that satisfies the following conditions:

1. For all t ≥ 0, U (t, t) = I where I is the identity operator.

2. For all t ≥ s ≥ r, U (t, s)U (s, r) = U (t, r).

3. The map (t, s) → U (t, s)x is continuous for every fixed x ∈ X.

4. For all t ≥ s,

U (t + ω, s + ω) = U (t, s)
(ω-periodicity).

5. There exist K > 0 and a > 0 such that

||U (t, s)|| ≤ Ke -a(t-s)
for t ≥ s.

Theorem 3.1. We assume that (H2) is satisfied and that f ∈ S p SAP ω (R + , X). Then

(∧f )(t) = t 0 U (t, s)f (s)ds ∈ ω (R , X), t ∈ R + . Proof. Let u(t) = t 0 U (t, s)f (s)ds.
For n ≤ t ≤ n + 1, n ∈ N, we observe that

||u(t)|| ≤ t 0 ||U (t, s)f (s)|| ds ≤ n 0 ||U (t, s)f (s)|| ds + t n ||U (t, s)f (s)|| ds ≤ n 0 M e -a(t-s) ||f (s)|| ds + t n M e -a(t-s) ||f (s)|| ds ≤ n 0 M e -a(n-s) ||f (s)|| ds + t n M ||f (s)|| ds ≤ n-1 k=0 k+1 k M e -a(n-s) ||f (s)|| ds + t n M ||f (s)|| ds ≤ n-1 k=0 k+1 k M e -a(n-k-1) ||f (s)|| ds + n+1 n M ||f (s)|| ds ≤ n-1 k=0 M e -a(n-k-1) k+1 k ||f (s)|| ds + M n+1 n ||f (s)|| ds ≤ n-1 k=0 M e -a(n-k-1) k+1 k ||f (s)|| p ds 1 p + M n+1 n ||f (s)|| p ds 1 p ≤ M ∞ j=0 e -aj + 1 ||f || S p ≤ M 2 -e -a 1 -e -a ||f || S p .
Therefore u is bounded. Now, show that lim

t→∞ u(t + ω) -u(t) = 0.
We have

u(t + ω) -u(t) = t+ω 0 U (t + ω, s)f (s)ds - t 0 U (t, s)f (s)ds = ω 0 U (t + ω, s)f (s)ds + t+ω ω U (t + ω, s)f (s)ds - t 0 U (t, s)f (s)ds = I 1 (t) + I 2 (t),
where

I 1 (t) = ω 0 U (t + ω, s)f (s)ds,
and

I 2 (t) = t+ω ω U (t + ω, s)f (s)ds - t 0 U (t, s)f (s)ds.
We note that

I 1 (t) = U (t+ω, ω) ω 0 U (ω, s)f (s)ds = U (t+ω, ω)u(ω),
and by using the fact that (U (t, s)) t≥s is exponentially stable, we obtain

||I 1 (t)|| ≤ Ke -at ||u(ω)||, which shows that lim t→∞ I 1 (t) = 0. Let ǫ > 0. Since f ∈ S p SAP ω (R + , X), there exists m ∈ N such that for t ≥ m t+1 t ||f (s + ω) -f (s)|| p ds 1 p < ǫ.
For m ≤ n ≤ t ≤ n + 1, we have

I 2 (t) = t 0 U (t, s) f (s + ω) -f (s) ds ≤ I 2,1 (t) + I 2,2 (t) + I 2,3 (t),
where

         I 2,1 (t) = m 0 U (t, s) f (s + ω) -f (s) ds I 2,2 (t) = n-1 k=m k+1 k U (t, s) f (s + ω) -f (s) ds, I 2,3 (t) = t n U (t, s) f (s + ω) -f (s) ds.
We observe that

||I 2,1 (t)|| ≤ m 0 ||U (t, s)|| ||f (s + ω) -f (s)|| ds ≤ M e -a(t-m) m 0 ||f (s + ω) -f (s)||ds. Therefore, there exists ν m ∈ N, ν m ≥ m such that for t ≥ ν m ||I 2,1 (t)|| ≤ ǫ.
Using Holder's inequality, we observe also that

||I 2,2 (t)|| ≤ n-1 k=m k+1 k ||U (t, s)|| ||f (s + ω) -f (s)|| ds ≤ n-1 k=m M k+1 k e -a(t-s) ||f (s + ω) -f (s)|| ds ≤ n-1 k=m M k+1 k e -a(n-k-1) ||f (s + ω) -f (s)|| ds ≤ M n-1 k=m e -a(n-k-1) k+1 k ||f (s + ω) -f (s)|| ds ≤ M n-1 k=m e -a(n-k-1) k+1 k ||f (s + ω) -f (s)|| p ds 1 p
≤ M e -a(n-m-1) + e -a(n-m-2) + ...

+ 1 ǫ ≤ M 1 -e -a ǫ.
We observe also that

||I 2,3 (t)|| ≤ t n ||U (t, s)|| ||f (s + ω) -f (s)|| ds ≤ t n M e -a(t-s) ||f (s + ω) -f (s)|| ds ≤ M t n ||f (s + ω) -f (s)|| ds ≤ M n+1 n ||f (s + ω) -f (s)|| ds ≤ M n+1 n ||f (s + ω) -f (s)|| p ds 1 p ≤ M ǫ. Finally, for t ≥ ν m ||I 2 (t)|| ≤ ||I 2,1 (t)|| + ||I 2,2 (t)|| + ||I 2,3 (t)|| ≤ 1 + M 1 -e -a + M ǫ, thus lim t→∞ I 2 (t) = 0.
We conclude that u ∈ SAP ω (R + , X). Now we make the following hypothesis.

Theorem 3.2. Let ω ∈ N * . We assume that the hypothesis (H1) and (H2) are satisfied. Then (1) has a unique S-asymptotically ω-periodic mild solution provided that

Θ := LM a < 1.
Proof. We define the nonlinear operator Γ by the expression

(Γφ)(t) = U (t, 0)c 0 + t 0 U (t, s)f (s, φ([s]))ds = U (t, 0)c 0 + (∧ 1 φ)(t), where (∧ 1 φ)(t) = t 0 U (t, s)f (s, φ([s])).
According to the hypothesis (H2), we have

||U (t + ω, 0) -U (t, 0)|| ≤ ||U (t + ω, 0)|| + ||U (t, 0)|| ≤ Ke -a(t+ω) + Ke -at . Therefore lim t→∞ ||U (t + ω, 0) -U (t, 0)|| = 0.
According to the Lemma 2.7 (resp. lemma 2.8) the function t → f (t, φ( t )) belongs to S p SAP ω (R + , X).

According to the Theorem 3.1 the operator ∧ 1 maps SAP ω (R + , X) into itself. Therefore the operator Γ maps SAP ω (R + , X) into itself.

We have

||(Γφ)(t) -Γψ)(t)|| = t 0 U (t, s) f (s, φ([s])) -f (s, ψ([s])) ds ≤ t 0 ||U (t, s)|| ||f (s, φ([s])) -f (s, ψ([s]))||ds ≤ L t 0 ||U (t, s)|| ||φ([s]) -ψ([s])||ds ≤ LM t 0 e -a(t-s) ||φ([s]) -ψ([s])||ds ≤ LM t 0 e -a(t-s) ||φ -ψ|| ∞ ds ≤ LM 1 -e -at a ||φ -ψ|| ∞ ≤ LM a ||φ -ψ|| ∞ .
Hence we have :

||Γφ -Γψ|| ∞ ≤ LM a ||φ -ψ|| ∞ .
This proves that Γ is a contraction and we conclude that Γ has a unique fixed point in SAP ω (R + , X). The proof is complete.

Application

Consider the following heat equation with Dirichlet conditions: + (-3 + sin(πt))u(t, x) + f (t, u([t], x)), u(t, 0) = u(t, π) = 0, t ∈ R + , u(0, x) = c 0 ,

where c 0 ∈ L 2 [0, π] and the function f is uniformly Sasymptotically ω-periodic on bounded sets and satisfies the lipschitz condition, that is, there exists a constant L > 0 such that ||f (t, x) -f (t, y)|| ≤ L||x -y||, ∀t ≥ 0, ∀x, y ∈ X.

Let X = L 2 [0, π] be endowed with it's natural topology. Define

D(A) = {u ∈ L 2 [0, π] such that u ′′ ∈ L 2 [0, π]
and u(0) = u(π) = 0} Au = u ′′ f or all u ∈ D(A).

Let φ n (t) = 2 π sin(nt) for all n ∈ N. φ n are eigenfunctions of the operator (A, D(A)) with eigenvalues λ n = -n 2 . A is the infinitesimal generator of a semigroup T (t) of the form

T (t)φ = ∞ n=1 e -n 2 t φ, φ n φ n , ∀φ ∈ L 2 [0, π]
and ||T (t)|| ≤ e -t , f or t ≥ 0 (see [START_REF] Rong-Hua | Stepanov-like pseudo-almost automorphic mild solutions for some abstract differential equations[END_REF], [START_REF] Xia | Weighted pseudo asymptotically periodic mild solutions of evolutions equations[END_REF]). Now define A(t) by: D(A(t)) = D(A) A(t) = A + q(t, x), where q(t, x) = -3 + sin(πt). Note that A(t) generates an evolutionnary process U (t, s) of the form U (t, s) = T (t -s)e t s q(,v,x)dx .

Since q(t, x) = -3 + sin(πt) ≤ -2, we have U (t, s) ≤ T (t -s)e -2(t-s) and ||U (t, s)|| ≤ ||T (t -s)||e -(t-s) ≤ e -3(t-s) .

Since q(t + 2, x) = q(t, x), we conclude that U (t, s) is a 2-periodic evolutionnary process exponentially stable.

The equation ( 3) is of the form

x ′ (t) = A(t)x(t) + f (t, x([t])), x(0) = c 0 .

By Theorem 3.2, we claim that Theorem 4.1. If L < 3 then the equation ( 3) admits an unique mild solution u(t) ∈ SAP ω (R + , X).