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ASYMPTOTICALLY ω-PERIODIC FUNCTIONS IN THE

STEPANOV SENSE AND ITS APPLICATION FOR AN

ADVANCED DIFFERENTIAL EQUATION WITH

PIECEWISE CONSTANT ARGUMENT IN A BANACH

SPACE

WILLIAM DIMBOUR, SOLYM MAWAKI MANOU-ABI

Abstract. In this paper, we give sufficient conditions for the existence
and uniqueness of Asymptotically ω-periodic solutions for a nonlinear
differential equation with piecewise constant argument in a Banach space
via Asymptotically ω-periodic functions in the Stepanov sense. This is
done using the Banach fixed point Theorem.

1. Introduction

We are concerned in this paper with the existence of asymptotically ω-
periodicity of the following nonlinear differential equation with piecewise
constant argument{

x′(t) = A(t)x(t) +
∑N

j=0Aj(t)x([t+ j]) + f(t, x([t]))dt,

x(0) = c0,
(1)

where c0 ∈ X, [·] is the largest integer function, f is a continuous function on
R+×X and A(t) generates an exponentially stable evolutionnary process in
X.
The study of differential equations with piecewise constant argument (EPCA)
is an important subject because these equations have the structure of con-
tinuous dynamical systems in intervals of unit length. Therefore they com-
bine the properties of both differential and difference equations. There have
been many papers studying EPCA, see for instance [11], [12], [13], [14], [15]
and the references therein. The study of the existence of asymptotically ω-
periodic solutions is one of the most attracting topics in the qualitative the-
ory due to its applications in mathematical biology, control theory, physics.
Some concepts generalise asymptotically ω-periodic functions. It is the case
of S-asymptotically ω-periodic functions ([4],[5],[6],[9]), S-asymptotically ω-
periodic functions in the Stepanov sense ([3],[17]) and asymptotically ω-
periodic function in the Stepanov sense ([16]). S-asymptotically ω-periodic
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functions have properties similar to those of periodic functions, but the the-
ory of S-asymptotically ω-periodic functions has the advantage to easily al-
lowing the consideration of initial distortions to periodicity. S-asymptotically
ω-periodic functions has been introduced by Henriquez et al. in [5, 8]. In
[1], the concept of S-asymptotically ω-periodic in the Stepanov sense was
introduced and the application to semilinear first-order abstract differential
equations were studied. In [3], the authors show the existence of a func-
tions wich is not S-asymptotically ω-periodic, but wich is S-asymptotically
ω-periodic in the Stepanov sense. They study the existence and uniqueness
of S-asymptotically ω-periodic of the following differential equation with
piecewise constant argument{

x′(t) = A(t)x(t) + f(t, x([t])),
x(0) = c0,

considering S-asymptotically ω-periodic functions in the Stepanov sense. In
[16], Xie and Zhang characterize the asymptotically ω-periodic functions in
the Stepanov sense. They apply a criteria obtained to investigate the exis-
tence and uniqueness of asymptotically ω-periodic mild solutions to semi-
linear fractional integro-differential equations with Stepanov asymptotically
ω-periodic coefficients.
Recently, N’Guérékata and Valmorin introduced the concept of asymptoti-
cally antiperiodic functions and studies their properties in [7]. In this paper,
they also studied the existence os asymptotically antiperiodic mild solution
of the following semilinear integro-differential equation in a Banach space X

u′(t) = Au(t) +

∫ t

∞
a(t− s)Au(s)ds+ f(t, Cu(t))

where C : X→ X is a bounded linear operator, A is a closed linear operator
defined in a Bancah space X, and a ∈ L1

loc(R+) is a scalar-valued kernel.
In [2], the existence and uniqueness of asymptotically ω-antiperiodic solu-
tion for the following nonlinear differential equation with piecewise constant
argument {

x′(t) = Ax(t) +A0x([t]) + f(t, x([t]))dt,
x(0) = c0,

is studied, when ω is an integer. Motivated by the work presented in [2], [3]
and [16], we investigate the existence of asymptotically ω-periodic solutions
for the equation (1), when ω is an integer.
This paper is organized as follows. In Section 2, we recall the concepts
of asymptotically ω-periodic functions, asymptotically ω-periodic functions
in the Stepanov sense and their basic properties. In Section 3, we present
some results showing the existence of function wich are not asymptotically
ω-periodic but asymptotically ω-periodic in the Stepanov sense. In section 4,
we study the existence and uniqueness of asymptotically ω-periodic solution
of the equation (1).
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2. Preliminaries

Let X be a Banach space. The space BC(R+,X) of the continuous bounded
functions from R+ into X, endowed with the norm ‖f‖∞ := supt≥0 ‖f(t)‖,
is a Banach space. Set C0(R+,X) = {f ∈ BC(R+,X) : limt→∞ f(t) = 0}
and Pω(R+,X) = {f ∈ BC(R+,X) : f is periodic}.

Definition 2.1. A function f ∈ BC(R+,X) is said to be asymptotically
ω-periodic if it can be expressed as f = g+h, where g ∈ Pω(R+,X) and h ∈
C0(R+,X). The collection of such function will be denoted by APω(R+,X).

Theorem 2.1. [16] Let f ∈ BC(R+,X) and ω > 0. Then the following
statements are equivalent:

(1) f ∈ APω(R+,X)
(2) g(t) = limn→∞ f(t+ nω) uniform on R+;
(3) g(t) = limn→∞ f(t+ nω) uniformly on compact subset of R+;
(4) g(t) = limn→∞ f(t+ nω) is well defined for each t ∈ R+ and g(t) =

limn→∞ f(t+ nω) uniformly on [0, ω].

Let p ∈ [1,∞[. The space BSp(R+,X) of all Stepanov bounded functions,
with the exponent p,consists of all measurable functions f : R+ → X such
that f b ∈ L∞(R, Lp([0, 1];X)), where f b is the Bochner transform of f de-
fined by f b(t, s) := f(t+s), t ∈ R+, s ∈ [0, 1]. BSp(R+, X) is a Banach space
with the norm

||f ||Sp = ||f b||L∞(R+,Lp) = sup
t∈R+

(∫ t+1

t
||f(τ)||pdτ

)
.

It is obvious that Lp(R,X) ⊂ BSp(R,X) ⊂ Lploc(R,X) and BSp(R,X) ⊂
BSq(R,X) for p ≥ q ≥ 1. Define the subspaces of BSp(R+X) by

SpPω(R+, X) =

{
f ∈ BSp(R+,X) :

∫ t+1

t
||f(s+ ω)− f(s)||pds = 0, t ∈ R+

}
and

BSp0(R+,X) =

{
f ∈ BSp(R+,X) : lim

t→∞

∫ t+1

t
||f(s)||pds = 0

}
.

Definition 2.2. [16] A function f ∈ BSp(R+,X) is called asymptotically
ω-periodic in the Stepanov sense if it can be expressed as f = g + h, where
g ∈ SpPω(R+,X) and h ∈ BSp0(R+,X). The collection of such functions will
be denoted by SpAPω(R+,X).

Definition 2.3. [16] A function f ∈ BSp(R+×X,X) with f(t, x) ∈ Lploc(R
+,X)

for each x ∈ X is said to be asymptotically ω-periodic in the Stepanov sense
uniformly on bounded sets of X if there exists a function g : R+ × X → X
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with g(t, x) ∈ SpPω(R+,X) for each x ∈ X such that for every bounded set
K ⊂ X we have (∫ t+1

t
||f(s+ nω, x)− g(s, x)||p

) 1
p → 0

as n → ∞ pointwise on R+ uniformly for x ∈ K. The collection of such
functions will be denoted by SpAPω(R+ × X,X).

Theorem 2.2. [16] Let f ∈ Lploc(R
+,X) and ω > 0. Then the following

statements are equivalent:

(1) f ∈ SpAPω(R+,X)

(2) There exists a function g ∈ SpPω(R+,X) such that
∫ t+1
t ||f(s+nω)−

g(s)||pds→ 0 as n→∞ uniformly for t ∈ R+;

(3) There exists a function g ∈ SpPω(R+,X) such that
∫ t+1
t ||f(s+nω)−

g(s)||pds→ 0 as n→∞ pointwise for t ∈ R+.

Lemma 2.3. [16] Suppose f ∈ SpAPω(R+,X), f = g + h where g ∈
SpPω(R+,X) and h ∈ BSp0(R+,X). Let ω = n0 + θ, where n0 ∈ N and
θ ∈ (0, 1). then the following statements are true.

(1)
∫ t+ω
t ||f(s)||ds ≤ (n0 + 1)||f ||Sp for each t ∈ R+;

(2)
∫ t+ω
t ||g(s+mω)− g(s)|| = 0 for each t ∈ R+ and any m ∈ N;

(3) lim
n→∞

∫ t+ω

t
||h(s+ n)||ds = 0 uniformly for t ∈ R+.

3. Properties of Asymptotically ω-periodic functions in the
Stepanov sense

In this section we study some qualitative properties of Asymptotically ω-
periodic functions in the Stepanov sense.

Proposition 3.1. Let u ∈ APω(R+,X) where ω ∈ N∗. Then the function
t → u([t + k]), where k ∈ N is Asymptotically ω-periodic in the Stepanov
sense but is not Asymptotically ω-periodic.

Proof. Since u ∈ APω(R+,X), we can write u = v+h, where v ∈ Pω(R+,X)
and h ∈ C0(R+,X). We observe that

v([t+ k + ω]) = v([t+ k] + ω)

= v([t+ k]).

The function t→ v([t+k]) is not continuous. Therefore t→ v([t+k]) can not
be ω-periodic. However, since s→ v([s+k+ω])−v([s+k]) is a step function,
we deduce so that t → v([t + k]) ∈ SpPω(R+,X)\Pω(R+,X). Since h ∈
C0(R+,X) then lim

t→∞
h([t + k]) = 0, but t → h([t + k]) /∈ C0(R+,X) because

this function is not continous. However, since the function t→ h([t+k]) is a
step function, we deduce so that t→ h([t+k]) ∈ BSp0(R+,X)\C0(R+,X). �
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Example 3.1. Let the function f : R+ → R defined by f(t) = g(t) + h(t)
for each t ∈ R+, where f(t) = sin(π[t]) and h(t) = 1

[t] . Then we have

f ∈ SpAPω(R+,R)\APω(R+,R), where ω = 2n and n ∈ N∗.

Theorem 3.2. Let ω ∈ N∗. Let f : R × X → X be a continuous function
such that:

(i) ∀ (t, x) ∈ R× X, f(t+ ω, x) = f(t, x);
(ii) ∃Lf > 0, ∀(t, x) ∈ R× X

||f(t, x)− f(t, y)|| ≤ Lf ||x− y||
If u ∈ APω(R+,X), then the function t → f(t, u([t])) is Asymptotically ω-
periodic in the Stepanov sense but is not Asymptotically ω-periodic.

Proof. Since u ∈ APω(R+,X), then u = v + l, with v ∈ Pω(R+,X) and
l ∈ C0(R+,X). We have f(t, u([t])) = f(t, v([t])) + h(t) where h(t) =
f(t, u([t]))− f(t, v([t])) is a piecewise continuous function wich satisfies

||h(t)|| ≤ Lf ||l([t])||.
Since l ∈ C0(R+,X), then lim

t→∞
l([t]) = 0. We deduce so that lim

t→∞
h(t) = 0.

Moreover f(t+ω, v([t+ω])) = f(t, v([t])) because f(t, v([t+ω])) = f(t, v([t]+
ω)). Since the function t→ f(t, v([t])) is not continuous on R+, it can’t be
ω-periodic. However, since f(t + ω, v([t + ω])) = f(t, v([t])) and that the
function t → f(t, v([t])) is piecewise constant on R+, we deduce so that
t→ f(t, v([t])) ∈ SpPω(R+,X)\APω(R+,R).
Since the function t→ h(t) is not continuous, then h /∈ C0(R+,X). We have

also limt→∞ h(t) = 0. Then ∀ε1/p > 0,∃Tε > 0, t > Tε ⇒ ||h(t)|| < ε1/p. The
function t→ h(t) is a piecewise continuous function and it is measurable on
R+. Then for t ≥ [Tε] + 1, we have∫ t+1

t
||h(s)||p ≤

∫ t+1

t
ε ds

≤ ε.

This means that h ∈ BSp0(R+,X)\C0(R+,X).

�

Lemma 3.3. Let ω ∈ N∗. Assume that f ∈ SpAPω(R+×X,X) and assume
that f satisfies a Lipschitz condition in X uniformly in t ∈ R+:

||f(t, x)− f(t, y)|| ≤ L||x− y||
for all x, y ∈ X and t ∈ R+, where L is a positive constant. Let u ∈
APω(R+,X). Then the function F : R+ → X defined by F (t) = f(t, u([t]))
is asymptotically ω-periodic in the Stepanov sense.

;



6 WILLIAM DIMBOUR, SOLYM MAWAKI MANOU-ABI

Proof. Since u ∈ APω(R+,X), we can write u = v + l, where v ∈ Pω(R+,X)
and l ∈ C0(R+,X). The function u([t]) = v([t]) + l([t]) ∈ SpAPω(R+,X)
according to the proposition 3.1. In particular, we have t → u([t]) ∈
SpPω(R+,X) and t→ l([t]) ∈ BSp0(R+,X). By theorem 2.2, we obtain(∫ t+1

t
||u([s+ nω])− v([s])||pds

)
→ 0

as n→∞ pointwise on R+.

Denote K = {v([t]) : t ∈ R+}; K is a bounded set. Since f is asymptotically
ω-periodic in the Stepanov sense uniformly on bounded sets of X, there
exists a function g : R+×X→ X with g(t, x) ∈ SpPω(R+,X) for each x ∈ X
such that for every bounded set K ⊂ X we have(∫ t+1

t
||f(s+ nω, x)− g(s, x)||p

) 1
p → 0

as n→∞ pointwise on R+ uniformly for x ∈ K.

We observe that(∫ t+1

t
||f(s+ nω, u([s+ nω]))− g(s, v([s]))||pds

) 1
p

≤
(∫ t+1

t
||f(s+ nω, u([s+ nω]))− f(s+ nω, v([s]))||pds

) 1
p

+
(∫ t+1

t
||f(s+ nω, v([s]))− g(s, v([s]))||pds

) 1
p

≤ L
(∫ t+1

t
||u([s+ nω])− v([s])||pds

) 1
p

+
(∫ t+1

t
||f(s+ nω, v([s]))− g(s, v([s]))||pds

) 1
p

Hence, we deduce so that(∫ t+1

t
||f(s+ nω, u([s+ nω]))− g(s, v([s]))||pds

) 1
p → 0

as n→∞ pointwise on R+. By Theorem 2.2, we deduce that F ∈ SpAPω(R+,X).

�

4. Main Results

Definition 4.1. A solution of (1) on R+ is a function x(t) that satisfies the
conditions:
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(1) x(t) is continuous on R+.
(2) The derivative x′(t) exists at each point t ∈ R+, with possible excep-

tion of the points [t] ∈ R+ where one-sided derivatives exists.
(3) The equation (1) is satisfied on each interval [n, n+ 1[ with n ∈ N.

Now we make the following hypthesis:

(H1) : The function f ∈ SpAPω(R+ × X,X) and satisfies a Lipschitz con-
dition in X uniformly in t ∈ R+:

||f(t, x)− f(t, y)|| ≤ L||x− y||

for all x, y ∈ X and t ∈ R+, where L is a positive constant.

We assume that A(t) generates an evolutionary process (U(t, s))t≥s in X.
Then the function g defined by g(s) = U(t, s)x(s), where x is a solution of
(1), is differentiable for s < t.

dg(s)

ds
= −A(s)U(t, s)x(s) + U(t, s)

d x(s)

ds
= −A(s)U(t, s)x(s) + U(t, s)A(s)x(s)

+
N∑
j=0

U(t, s)Aj(s)x([t+ s]) + U(t, s)f(s, x([s]))

=

N∑
j=0

U(t, s)Aj(s)x([t+ s]) + U(t, s)f(s, x([s]))

.

dg(s)

ds
=

N∑
j=0

Aj(s)x([t+ s]) + U(t, s)f(s, x([s])). (2)

The function x([s]) is a step function. Therefore
∑N

j=0 U(t, s)Aj(s)x([t +

s]) is integrable on [0, t[. By (H1), f(s, x([s])) is piecewise continuous.
Therefore f(s, x([s])) is integrable on [0, t] where t ∈ R+. Integrating (2) on
[0, t] we obtain that

x(t)− U(t, 0)c0 =

N∑
j=0

∫ t

0
U(t, s)Aj(s)x([s+ j])ds+

∫ t

0
U(t, s)f(s, x([s]))ds.

Therefore, we define
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Definition 4.2. We assume (H1) is satisfied and that A(t) generates an
evolutionary process (U(t, s))t≥s in X. The continuous function x given by

x(t) = U(t, 0)c0 +

N∑
j=0

∫ t

0
U(t, s)Aj(s)x([s+ j])ds+

∫ t

0
U(t, s)f(s, x([s]))ds

is called the mild solution of equation (1).

Now we make the following hypothesis.

(H2): A(t) generates an exponentially stable evolutionnary process (U(t, s))t≥s
in X, that is, a two-parameter family of bounded linear operators that sat-
isfies the following conditions:

1. U(t, t) = I for all t ≥ 0 where I is the identity operator.
2. U(t, s)U(s, r) = U(t, r) for all t ≥ s ≥ r.
3. The map (t, s) 7→ U(t, s)x is continuous for every fixed x ∈ X.
4. U(t+ ω, s+ ω) = U(t, s) for all t ≥ s (ω-periodicity).

5. There exist K > 0 and a > 0 such that ||U(t, s)|| ≤ Ke−a(t−s) for
t ≥ s.

Theorem 4.1. We assume that (H2) is satisfied and that f ∈ SpAPω(R+,X).
Then

(∧f)(t) =

∫ t

0
U(t, s)f(s)ds ∈ APω(R+,X), t ∈ R+.

Proof. Let u(t) =
∫ t
0 U(t, s)f(s)ds.

For n ≤ t ≤ n+ 1, n ∈ N, we observe

||u(t)|| ≤
∫ t

0
||U(t, s)f(s)|| ds

≤
∫ n

0
||U(t, s)f(s)|| ds+

∫ t

n
||U(t, s)f(s)|| ds

≤
∫ n

0
Me−a(t−s)||f(s)|| ds+

∫ t

n
Me−a(t−s)||f(s)|| ds

≤
∫ n

0
Me−a(n−s)||f(s)|| ds+

∫ t

n
M ||f(s)|| ds

≤
n−1∑
k=0

∫ k+1

k
Me−a(n−s)||f(s)|| ds+

∫ t

n
M ||f(s)|| ds
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≤
n−1∑
k=0

∫ k+1

k
Me−a(n−k−1)||f(s)|| ds+

∫ n+1

n
M ||f(s)|| ds

≤
n−1∑
k=0

Me−a(n−k−1)
∫ k+1

k
||f(s)|| ds+M

∫ n+1

n
||f(s)|| ds

≤
n−1∑
k=0

Me−a(n−k−1)
(∫ k+1

k
||f(s)||p ds

) 1
p

+M
(∫ n+1

n
||f(s)||p ds

) 1
p

≤
n−1∑
k=0

Me−a(n−k−1) ||f ||Sp +M ||f ||Sp

≤ M
(
e−a(n−1) + e−a(n−2) + ...+ e−a + 1

)
||f ||Sp +M ||f ||Sp

≤ M
(
e−a(n−1) + e−a(n−2) + ...+ e−a

)
||f ||Sp + 2M ||f ||Sp

≤ M

∫ n−1

0
e−atdt ||f ||Sp + 2M ||f ||Sp

≤ M

∫ +∞

0
e−atdt ||f ||Sp + 2M ||f ||Sp

≤ M

a
||f ||Sp + 2M ||f ||Sp .

Therefore u is bounded. It is clear that u is continuous for each t ∈ R+.
Therefore u ∈ BC(R+,X). We observe that

u(t+ nω) =

∫ t+nω

0
U(t+ nω, s)f(s)ds

=

∫ t

−nω
U(t+ nω, s+ nω)f(s+ nω)ds

=

∫ t

−nω
U(t, s)f(s+ nω)ds

=

∫ 0

−nω
U(t, s)f(s+ nω)ds+

∫ t

0
U(t, s)f(s+ nω)ds

= I1(t, n) + I2(t, n).
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Next we will prove that I1(t, n) is a cauchy sequence in X for each t ∈ R+.
Let ε > 0. For any p ∈ N, n ∈ N, we observe that

I1(t, n+ p)− I1(t, n) =

∫ 0

−(n+p)ω
U(t, s)f(s+ (n+ p)ω)ds−

∫ 0

−nω
U(t, s)f(s+ nω)ds

=

∫ −nω
−(n+p)ω

U(t, s)f(s+ (n+ p)ω)ds

+

∫ 0

−nω
U(t, s)

(
f(s+ (n+ p)ω)− f(s+ nω)

)
ds

= I3(t, n, p) + I4(t, n, p)

Now we estimate the term I3(t, n, p).

||I3(t, n, p)|| ≤
∫ −nω
−(n+p)ω

||U(t, s)|| ||f(s+ (n+ p)ω)||ds

≤
∫ −nω
−(n+p)ω

Me−a(t−s) ||f(s+ (n+ p)ω)||ds

≤
∫ pω

0
Me−a(t+s+nω) ||f(pω − s)||ds

=

p−1∑
k=0

∫ (k+1)ω

kω
Me−a(t+s+nω) ||f(pω − s)||ds

≤
p−1∑
k=0

Me−a(t+kω+nω)
∫ (k+1)ω

kω
||f(pω − s)||ds.

By Lemma 2.3, we deduce so that

||I3(t, n, p)|| ≤ M(n0 + 1)||f ||Sp

p−1∑
k=0

e−a(t+kω+nω)

≤ M(n0 + 1)||f ||Sp

(
e−a(t+nω) + e−a(t+(n+1)ω) + ...+ e−a(t+(n+p−1)ω)

)
≤ M(n0 + 1)||f ||Sp

∫ t+(n+p−1)ω

t+(n−1)ω
e−asds

≤ M(n0 + 1)||f ||Sp

∫ ∞
t+(n−1)ω

e−asds

≤ M(n0 + 1)||f ||Sp e−a(t+(n−1)ω)

a

≤ M(n0 + 1)||f ||Sp e−a(n−1)ω

a
.

Hence, we deduce that there exists N1 ∈ N such that ||I3(t, n, p)|| < ε when
n ≥ N1 uniformly for t ∈ R+.
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For n ≥ N1 , we observe that

I4(t, n, p) =

∫ 0

−N1ω
U(t, s)

(
f(s+ (n+ p)ω)− f(s+ nω)

)
ds

+

∫ −N1ω

−nω
U(t, s)

(
f(s+ (n+ p)ω)− f(s+ nω)

)
ds

= I5(t, n, p) + I6(t, n, p)

Then we have

||I5(t, n, p)|| ≤
∫ 0

−N1ω
||U(t, s)|| ||f(s+ (n+ p)ω)− f(s+ nω)||ds

≤
∫ 0

−N1ω
Me−a(t−s) ||f(s+ (n+ p)ω)− f(s+ nω)||ds

≤
∫ N1ω

0
Me−a(t+s) ||f((n+ p)ω − s)− f(nω − s)||ds

≤ M

N1−1∑
k=0

∫ (k+1)ω

kω
||f((n+ p)ω − s)− f(nω − s)||ds

Since f ∈ SpAPω(R+,X), it can be expressed as f = g + h, where g ∈
SpPω(R+,X), and h ∈ BSp0(R+,X). Then we can write

||I5(t, n, p)|| ≤ M

N1−1∑
k=0

[ ∫ (k+1)ω

kω
||g((n+ p)ω − s)− g(nω − s)||ds

+

∫ (k+1)ω

kω
||h((n+ p)ω − s)||ds+

∫ (k+1)ω

kω
h(nω − s)||ds

]
≤ M

N1−1∑
k=0

[ ∫ nω−kω

nω−(k+1)ω
||g(pω + s)− g(s)||ds

+

∫ ω

0
||h(s+ ((n+ p)− (k + 1))ω)||ds+

∫ ω

0
h(s+ (n− (k + 1)ω)||ds

]
.

By Lemma 2.3(2), we get

||I5(t, n, p)|| ≤ M

N1−1∑
k=0

[ ∫ ω

0
||h(s+ ((n+ p)− (k + 1))ω)||ds

+

∫ ω

0
h(s+ (n− (k + 1)ω)||ds

]
.
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By Lemma 2.3(3), we can choose N2 ∈ N such that N2 ≥ N1 and

M

N1−1∑
k=0

[ ∫ ω

0
||h(s+((n+p)−(k+1))ω)||ds+

∫ ω

0
h(s+(n−(k+1)ω)||ds

]
< ε

when n ≥ N2. Therefore ||I5(t, n, p)|| < ε (n ≥ N2) uniformly for t ∈ R+.

Now we estimate the term I6(t, n, p):

||I6(t, n, p)|| ≤
∫ −N1ω

−nω
||U(t, s)|| ||f(s+ (n+ p)ω)− f(s+ nω)||ds

≤
∫ −N1ω

−nω
Me−a(t−s) ||f(s+ (n+ p)ω)− f(s+ nω)||ds

≤
∫ nω

N1ω
Me−a(t+s) ||f((n+ p)ω − s)− f(nω − s)||ds

≤
n−1∑
k=N1

∫ (k+1)ω

kω
Me−a(t+s) ||f((n+ p)ω − s)− f(nω − s)||ds

≤
n−1∑
k=N1

Me−a(t+kω)
∫ (k+1)ω

kω
||f((n+ p)ω − s)− f(nω − s)||ds

≤
n−1∑
k=N1

Me−a(t+kω)
[ ∫ (k+1)ω

kω
||f((n+ p)ω − s)||ds+

∫ (k+1)ω

kω
||f(nω − s)||ds

]
.

By Lemma 2.3(1), we obtain

||I6(t, n, p|| ≤ 2M(n0 + 1)||f ||Sp

n−1∑
k=N1

e−a(t+kω)

≤ 2M(n0 + 1)||f ||Sp(e−a(t+N1ω) + e−a(t+(N1+1)ω) + ...+ e−a(t+(n−1)ω))

≤ 2M(n0 + 1)||f ||Sp

∫ t+(n−1)ω

t+(N1−1) ω
e−asds

≤ 2M(n0 + 1)||f ||Sp

∫ ∞
t+(N1−1) ω

e−asds

≤ 2M(n0 + 1)||f ||Sp
e−a(t+(N1−1)ω)

a
≤ 2ε

uniformly for t ∈ R+.
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Thus ||I1(t, n+ p)− I1(t, n)|| ≤ ||I3(t, n, p)||+ ||I5(t, n, p)||+ ||I6(t, n, p)|| <
4ε when n ≥ N2. Therefore I1(t, n) is a cauchy sequence and we de-
note limn→∞ I1(t, n) by F (t) for each t ∈ R+. We also have that h(t) =
limn→∞ I1(t, n) uniformly for t ∈ R+.

Now we consider the term I2(t, n). Since f ∈ SpAPω(R+,X), f = g + h,
where g ∈ SpPω(R+,X) and h ∈ BSp0(R+,X), by Theorem 2.2(2), we have

lim
n→∞

(∫ t+1

t
||f(s+ nω)− g(s)||pds

) 1
p

= 0

uniformly for t ∈ R+. We also have I2(t, n),
∫ t
0 U(t, s)g(s)ds ∈ BC(R+,X),

wich is like the case of u. For m ≤ t < m+ 1, m ∈ N, we have

||I2(t, n)−
∫ t

0
U(t, s)g(s)ds|| ≤

∫ t

0
||U(t, s)|| ||f(s+ nω)− g(s)||ds

≤
∫ t

0
Me−a(t−s) ||f(s+ nω)− g(s)||ds

≤
∫ m

0
Me−a(t−s) ||f(s+ nω)− g(s)||ds

+

∫ t

m
Me−a(t−s) ||f(s+ nω)− g(s)||ds

≤
m−1∑
k=0

∫ k+1

k
Me−a(t−s) ||f(s+ nω)− g(s)||ds

+ M

∫ t

m
||f(s+ nω)− g(s)||ds

≤
m−1∑
k=0

Me−a(t−(k+1))

∫ k+1

k
||f(s+ nω)− g(s)||ds

+ M

∫ t

m
||f(s+ nω)− g(s)||ds

≤
m−1∑
k=0

Me−a(t−(k+1))

∫ k+1

k
||f(s+ nω)− g(s)||ds

+ M

∫ m+1

m
||f(s+ nω)− g(s)||ds.
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By the Holder inequality, we obtain

||I2(t, n)−
∫ t

0
U(t, s)g(s)ds|| ≤

m−1∑
k=0

Me−a(t−(k+1))
(∫ k+1

k
||f(s+ nω)− g(s)||pds

) 1
p

+M
(∫ m+1

m
||f(s+ nω)− g(s)||pds

) 1
p

≤ M
(
e−a(t−1) + e−a(t−2) + ...+ e−a(t−m) + 1

)
× sup
t∈R+

(∫ t+1

t
||f(s+ nω)− g(s)||pds

) 1
p

≤ M
( ∫ t−1

t−2
e−asds+

∫ t−2

t−3
e−asds+ ...+

∫ t−(m−1)

t−m
e−asds

+

∫ t−m

0
e−asds+ 1

)
sup
t∈R+

(∫ t+1

t
||f(s+ nω)− g(s)||pds

) 1
p

≤ M
( ∫ t−1

t−m
e−asds+ 2

)
sup
t∈R+

(∫ t+1

t
||f(s+ nω)− g(s)||pds

) 1
p

≤ M
( ∫ ∞

0
e−asds+ 2

)
sup
t∈R+

(∫ t+1

t
||f(s+ nω)− g(s)||pds

) 1
p

≤ M
(1

a
+ 2
)

sup
t∈R+

(∫ t+1

t
||f(s+ nω)− g(s)||pds

) 1
p

Therefore, it follows that

lim
n→∞

I2(t, n) =

∫ t

0
U(t, s)d(s)ds

uniformly for t ∈ R+.

We deduce so that

lim
n→∞

u(t+ nω) = lim
n→∞

I1(t, n) + lim
n→∞

I2(t, n) = F (t) +

∫ t

0
U(t, s)g(s)ds

uniformly for t ∈ R+. By Theorem 2.1, we have u ∈ APω(R+,X). �

Theorem 4.2. Let ω ∈ N∗. We assume that (H2) is satisfied and that Aj
is an asymptotically ω-periodic operator. Then

(∧j φ)(t) =

∫ t

0
U(t, s)Aj(s)x([s+ j])ds

maps APω(R+,X) into itself.

Proof. Since Aj ∈ APω(R+,X), we can write Aj = uj + hj where uj ∈
Pω(R+,X) and h ∈ C0(R+,X). Similarly, since φ ∈ APω(R+,X), we can
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write φ([t+ j]) = v([t+ j]) + l([t+ j]), where v([t+ j + ω]) = v([t+ j]) for
all t ≥ 0 and limt→∞ l([t+ j]) = 0. We observe that

Aj(t)φ([t+ j]) = uj(t)v([t+ j]) + L(t)

where
L(t) = uj(t)l([t+ j]) + v([t+ j]hj(t) + hj(t)l([t+ j]).

Since t → uj(t)v([t + j]) is not continuous, this function can’t belong to
Pω(R+,X). However, this piecewise continuous function satisfy

uj(t+ ω)v([t+ ω + j]) = uj(t)v([t+ j]).

Therefore t→ uj(t)v([t+j]) is ω-periodic in the Stepanov sense. We observe
also that lim

t→∞
L(t) = 0 because

||uj(t)l([t+ j]) + v([t+ j]hj(t) + hj(t)l([t+ j])||
≤ ||uj ||∞ ||l([t+ j])||+ ||hj(t)|| ||v||∞ + ||hj ||∞||l([t+ j])||.

We deduce so that we deduce so that t → L(t) ∈ BSp0(R+,X)\C0(R+,X).
Therefore the function t → Aj(t)φ([t + j]) is asymptotically ω-periodic in
the stepanov sense but is not asymptotically ω-periodic. According to the
Theorem 4.1 the operator ∧j maps APω(R+,X) into itself. �

Theorem 4.3. Let ω ∈ N∗. We assume that the hypothesis (H1) and (H2)
are satisfied. Then (1) has a unique Asymptotically ω-periodic mild solution
provided

Θ :=
M
(∑N

j=0 ||Aj ||∞ + L
)

a
< 1.

Proof. We define the nonlinear operator Γ by the expression

(Γφ)(t) = U(t, 0)c0 +
N∑
j=0

∫ t

0
U(t, s)Aj(s)φ([s+ j])ds+

∫ t

0
U(t, s)f(s, φ([s]))ds

= U(t, 0)c0 +

N∑
j=0

(∧j φ)(t) + (∧∗φ)(t)

where

(∧j φ)(t) =

∫ t

0
U(t, s)Aj(s)φ([s+ j])ds

and

(∧∗φ)(t) =

∫ t

0
U(t, s)f(s, φ([s])).

According to the hypothesis (H.2), we have

||U(t, 0)|| ≤Me−at

Therefore lim
t→∞
||U(t, 0)|| = 0.

According to the Lemma 3.3 the function t→ f(t, u(
[
t
]
)) belongs to SpAPω(R+,X).

According to the Theorem 4.1 the operator ∧∗ maps APω(R+,X) into itself.
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According to the Theorem 4.2 the operators ∧j maps APω(R+,X) into itself.
Therefore the operator Γ maps APω(R+,X) into itself.
We have

||(Γφ)(t)− Γψ)(t)|| =

∣∣∣∣∣∣
∣∣∣∣∣∣
N∑
j=0

∫ t

0
U(t, s)Aj(s)

(
φ([s+ j])− ψ([s+ j])

)
ds

∣∣∣∣∣∣
∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∫ t

0
U(t, s)

(
f(s, φ([s]))− f(s, ψ([s]))

)
ds

∣∣∣∣∣∣∣∣
≤

N∑
j=0

∫ t

0
||U(t, s)|| ||Aj(s)|| ||φ([s+ j])− ψ([s+ j])||ds

+

∫ t

0
||U(t, s)|| ||f(s, φ([s]))− f(s, ψ([s]))||ds

≤
N∑
j=0

∫ t

0
||U(t, s)|| ||Aj ||∞ ||φ([s+ j])− ψ([s+ j])||ds

+ L

∫ t

0
||U(t, s)|| ||φ([s])− ψ([s])||ds

≤
N∑
j=0

||Aj ||∞M
∫ t

0
e−a(t−s) ||φ([s+ j])− ψ([s+ j])||ds

+ LM

∫ t

0
e−a(t−s) ||φ([s])− ψ([s])||ds

≤
N∑
j=0

||Aj ||∞M
∫ t

0
e−a(t−s) ||φ− ψ||∞ds

+ LM

∫ t

0
e−a(t−s) ||φ− ψ||∞ds

≤
N∑
j=0

||Aj ||∞M
1− e−at

a
||φ− ψ||∞ + LM

1− e−at

a
||φ− ψ||∞

≤
M
(∑N

j=0 ||Aj ||∞ + L
)

a
||φ− ψ||∞.

Hence we have :

||Γφ− Γψ||∞ ≤
M
(∑N

j=0 ||Aj ||∞ + L
)

a
||φ− ψ||∞

which proves that Γ is a contraction and we conclude that Γ has a unique
fixed point in SAPω. The proof is complete.

�
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Example 4.1. Consider the following heat equation with Dirichlet condi-
tions:

∂u(t,x)
∂t = ∂2u(t,x)

∂x2
+ q(t, x)u(t, x) + αu([t], x) + f(t, u([t], x)),

u(t, 0) = u(t, π) = 0, t ∈ R+,
u(0, x) = c0,

(3)

where c0 ∈ L2[0, π], q ∈ C(R+× [0, π],R), q(t+ω, x) = q(t, x) for ω ∈ N, and
there exists γ0 > 0 such that q(t, x) ≤ −γ0. The function f ∈ SpAPω(R+ ×
X,X) and satisfies a Lipschitz condition in X uniformly in t ∈ R+:

||f(t, x)− f(t, y)|| ≤ L||x− y||
for all x, y ∈ X and t ∈ R+, where L is a positive constant.
Let X = L2[0, π] be endowed with it’s natural topology. Define

D(A) = {u ∈ L2[0, π] such that u′′ ∈ L2[0, π]

andu(0) = u(π) = 0}
Au = u′′ for all u ∈ D(A).

Let φn(t) =
√

2
π sin(nt) for all n ∈ N. φn are eigenfunctions of the operator

(A,D(A)) with eigenvalues λn = −n2. A is the infinitesimal generator of a
semi-group T (t) of the form

T (t)φ =

∞∑
n=1

e−n
2t〈φ, φn〉φn, ∀φ ∈ L2[0, π],

and
||T (t)|| ≤ e−t, for t ≥ 0,

(see [10],[18]).
Now define A(t) by: {

D(A(t)) = D(A)
A(t) = A+ q(t, x).

Note that A(t) generates an evolutionnary process U(t, s) of the form

U(t, s) = T (t− s)e
∫ t
s q(t,x)dx.

Since q(t, x) ≤ −γ0, we have

||U(t, s)|| ≤ e−(1+γ0)(t−s).
Since q(t + ω, x) = q(t, x), we conclude that U(t, s) is a ω-periodic evolu-
tionnary process exponentially stable.
The equation (3) is of the form{

x′(t) = A(t)x(t) +A0(t)x([t]) + f(t, x([t])),
x(0) = c0.

By Theorem 4.3, we claim that

Theorem 4.4. If L + |α| < 1 + γ0 then the equation (3) admits a unique
mild solution u(t) ∈ APω(R+,X).
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