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Highlights

• A simple meta-ecosystem model is proposed to represent mixed farming

system

• Optimization of livestock-induced nutrient transfer from rangeland to

cropland improves crop production

• Control theory provides tools that take into account the variability over

time of agricultural practices

• Time-varying livestock management can lead to higher crop production
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Maximization of fertility transfers from rangeland to

cropland: the contribution of control theory.
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aUMR MISTEA, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
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Montpellier, France

Abstract

In traditional mixed farming systems, soil fertility in cropland relies on the

transfer of fertility from rangeland through the transfer of manure produced

by livestock that grazes in rangeland. In this work, we introduce a simple

meta-ecosystem model in which the mixed farming system is represented by a

cropland sub-system connected to a rangeland sub-system by nutrient fluxes.

The livestock plays the role of nutrient-pump from the rangeland sub-system

to the cropland sub-system. We use this model to study how spatial organi-

zation and practices of livestock management such as the control of grazing

pressure and night corralling can help optimize both nutrient transfers and

crop production.

We argue that addressing the optimization of crop production requires

different methods, depending on whether the agricultural practice in focus is

constant or variable over time. We first used classical optimization methods

at equilibrium to address optimization when the grazing pressure was as-
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sumed to be constant over time. Second, we address optimization for a more

realistic configuration of our model, where grazing pressure was assumed to

vary over the course of a year. In this case, we used methods developed in

the field of the control theory. Classical methods showed the existence of

an optimal level of constant grazing pressure that maximizes the transfers

from rangeland to cropland, leading to the maximization of crop production.

Control methods showed that by varying the grazing pressure adequately an

additional gain of production is possible, with higher crop production and

lower nutrient transfer from rangeland to cropland. This additional gain

arises from the fact that the requirement of nutrient by crops is variable

along the year. Consequently, a constant adjustment of the grazing pressure

allows a better match between nutrient transfer and nutrient requirement

over time, leading to a substantial gain of crop biomass. Our results pro-

vide new insights for a “smarter” management of fertility transfers leading

to higher crop production with less rangeland surface.

Keywords: meta-ecosystem, fertility transfer, crop production, control

theory

1. Introduction1

In the context of demographic growth and economic changes, modern2

agriculture is facing an increasing demand in crop production. The crop pro-3

duction strongly relies on soil fertility which is usually maintained by addi-4

tion of nutrient from external sources. In intensive high-yield agriculture, soil5

fertility relies on addition of synthetic fertilizers (Tilman et al., 2002). In tra-6

ditional mixed farming systems, exploited by most smallholders in developing7
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countries (Food and Agriculture Organization of the United Nations., 2011),8

the addition of fertilizers from external sources is usually too costly (Dugué9

et al., 2011) and soil fertility relies on the addition of organic matter from10

animal manure (Powell et al., 1996, Manlay et al., 2004). Therefore, increas-11

ing crop production relies mostly on the optimization of these agricultural12

practices, which are the driving forces of the agro-ecosystem functioning.13

Indeed, the current practice is to use livestock as a “nutrient pump”,14

displacing nutrient from rangeland to cropland. The terminology “biological15

pump” comes from Longhurst and Glen Harrison (1989) which defines the16

transfer of carbon and nitrogen from the euphotic zone through the downward17

flow of various organic matters (see also the terminology “whale pump” of18

Roman and McCarthy (2010) and “nutrient pump” of Bisson et al.,in review).19

Livestock is herded in rangeland during the day where it feeds and ingests20

nutrient that it partly transfers to cropland by excreting manure during night21

corralling. Many agricultural practices affect the transfer of nutrient. We22

focused on three key practices, namely, the rangeland to cropland surface23

ratio, the grazing pressure, and the fraction of nutrient consumed by livestock24

in rangeland that is effectively transferred to cropland. The first one may25

be referred to as an “organizational” practice since it transforms the spatial26

organization of the landscape. It has strong implications for the balance27

of nutrient at landscapes scale. The two later practices may be referred to28

as “interconnection” practices because they directly determine the fluxes of29

nutrient between rangeland and cropland.30

Here we propose to study these key practices through the use of a math-31

ematical model, a classical approach in theoretical ecology (DeAngelis, 1992,32
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Loreau, 2010). Several dynamical systems have already been proposed to33

help optimize the grazing in agro-ecosystems (e.g. Noy-Meir (1975), Wood-34

ward et al. (1993). In the vein of these works, some recent studies suggest35

that theoretical ecology provides some valuable theoretical tools to address36

agronomic questions (Dieguez Cameroni and Fort, 2017, Fort et al., 2017).37

To take into account the patchiness of the landscape with regard to nu-38

trient, and more specifically the source-sink dynamics between rangeland39

and cropland, we based our approach on the meta-ecosystem theory (Loreau40

et al., 2003). We define sources and sinks according to Loreau et al. (2013)41

where a source (sink) sub-system is an exporter (importer) of nutrient within42

the whole agro-ecosystem. By construction, our model shows sources-sink43

properties. Sources-sink dynamics simply result from the nutrient transfer44

by livestock from rangeland to cropland. This theory provides a convenient45

framework to address source-sink dynamics and its consequences for primary46

production in natural landscapes (Loreau et al., 2013). It has been proved47

recently to be applicable to agro-ecosystems (Bisson et al., in review). We48

built a simple meta-ecosystem model with two sub-systems (rangeland and49

cropland) to assess the optimization of crop production through the three50

agricultural practices introduced earlier.51

We looked for configurations and management strategies that maximized52

crop production. Depending on whether the practices are of the “organiza-53

tional” or “interconnection” types, the optimization of crop production with54

respect to these practices require different methods. Therefore, for “organi-55

zational” practices, that do not change over time (at least over one year), the56

optimization can be addressed through the use of “classical” methods, such57
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as sensitivity analysis, numerical exploration or minimization of an objective58

function. However, such methods are not well-adapted to study practices of59

livestock management that may change over a year. For “interconnection”60

practices, we advocate for the use of methods of control theory. Control the-61

ory is a mathematical framework dedicated to the control of systems (Astrom62

and Murray, 2008, Levine, 2010, Corriou, 2004). It has already been used for63

agronomic and environmental issues such as the reduction of the soil sodicity64

(Mau and Porporato, 2016), the optimization of cutting frequency of grass-65

land (Chen, 1986, Chen and Wang, 1988), or robust management of natural66

resource (Anderies et al., 2007). Its objective is to propose some mathemat-67

ical expressions for the inputs of a system that makes the controlled system68

behave as desired. The input values adapt over time according to the system69

state and to the constraints on the parameters values, creating a feedback70

loop. In this paper, we first address the optimization of crop production71

by using a classical method of optimization at equilibrium. Second, we no72

longer study the values at equilibrium but take advantage of the transient73

dynamics to lead the system at a given state: we address optimization of74

crop production when grazing pressure can vary over the course of the year75

with the use of methods developed in the control theory.76

2. Ecological model of the agro-ecosystem77

We model the agro-ecosystem as a simple meta-ecosystem composed of78

a cropland sub-system of surface sc and a rangeland sub-system of surface79

sr (figure C.1). Each sub-system (z), with z = c for cropland and z = r80

for rangeland is composed of two compartments: plants (Pz) and inorganic81
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nutrient (Nz). Both Pz and Nz compartment represent stocks of nutrient. For82

the sake of simplicity and genericity, only one limiting nutrient (for instance83

nitrogen, phosphorus or potassium) of primary production is represented in84

this model. We are aware that considering multiple nutrients instead of85

a single, and considering specificities of nutrient biogeochemical cycles (for86

instance, the symbiotic fixation for nitrogen) would carry out more outcomes.87

However, it would also bring complexity that would prevent the detection of88

generic mechanisms.89

[Figure 1 about here.]90

We used a classic formalism in ecology (DeAngelis, 1992, Loreau, 2010).91

The equations of the meta-ecosystem model are:92





Ṗr = urPrNr(1− Pr
Kr

)−mrPr − drPr
Ṅr = −urPrNr(1− Pr

Kr
)− erNr + ir +mrPr + αdrPr

Ṗc = ucPcNc(1− Pc
Kc

)−mcPc

Ṅc = −ucPcNc(1− Pc
Kc

)− ecNc + ic +mcPc + (1− α)drPr︸ ︷︷ ︸
T

sr
sc

(1)

The units and definition of the model parameters are summarized in ta-93

ble C.1. In each sub-system (z), plants take-up nutrient from the inorganic94

nutrient compartment Nz following a modified logistic growth with a max-95

imal growth rate uz and a carrying capacity Kz. Nutrient is recycled back96

to the Nz compartment at a constant rate mz through plant mortality and97

mineralization. Nutrient input in each sub-system is a constant flux of inor-98

ganic nutrient iz. Losses of inorganic nutrient Nz are mainly due to erosion,99

leaching and are modelled by a linear term with a constant rate ez.100
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In this model, we only consider livestock as a vector of nutrient from the101

rangeland sub-system to the cropland sub-system, therefore livestock is not102

explicitly represented. The rate of grazing pressure dr (in d−1) is proportional103

to the amount of plants Pr. We can consider the grazing pressure dr as an104

aggregated parameter of livestock biomass (in kgN ha−1) multiplied by the105

consumption coefficient of grass biomass by livestock (in ha kgN−1 d−1).106

The flux of nutrient from compartment Pr carried by livestock from the107

rangeland sub-system is split in two parts: a fraction α is recycled directly108

in the inorganic compartment of the rangeland sub-system (Nr), the other109

part (1 − α) is transferred to the inorganic compartment of the cropland110

sub-system (Nc). The term T = (1− α)drPr is the one which connects both111

sub-systems.112

In the cropland sub-system, harvest is not modelled as a continuous pro-113

cess along the year but as a punctual event; it consists in the removal of a114

percentage h of the plant compartment in the cropland sub-system every 365115

days.116

[Table 1 about here.]117

The meta-ecosystem model has a particular structure hereafter named118

“cascade structure” (Seibert and Suarez, 1990). Indeed, the rangeland sub-119

system (r), composed of the equations of Pr and Nr, does not depend on the120

dynamics of the cropland sub-system (c), that is composed of the equations121

of Pc and Nc. This cascade structure enables to study independently the two122

sub-systems. Moreover, the two sub-systems have the same organization and123
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both can be written under the following form:124





Ṗ = uPN(1− P/K)−mP − dP
Ṅ = −uPN(1− P/K)− eN + i+mP + βdP

(2)

• with P = Pr and N = Nr for the state variables and u = ur, K =125

Kr, m = mr, e = er, i = ir, β = α and d = dr for the parameters of126

the rangeland sub-system,127

• with P = Pc and N = Nc for the state variables and u = uc, K =128

Kc, m = mc, e = ec, i = ic + T sr
sc
, β = 0 and d = 0 for the parameters129

of the cropland sub-system.130

2.1. Equilibrium points of the generic sub-system model and their stability131

Let us study the generic sub-system (2). For biological relevance, both132

plant biomass and inorganic nutrient stocks have to be positive (P,N ≥ 0).133

Furthermore the model is built such that plant biomass cannot exceed the134

carrying capacity K. We therefore only look at the equilibrium points that135

are inside the set [0, K] × R+: it represents the set of (P,N) values of the136

dynamical system (2) that are biologically acceptable.137

We show that the system (2) always admits one and only one stable138

equilibrium point whose value depends on the parameters. By definition,139

the equilibrium points (P ∗, N∗) of the system (2) are the solutions of the140

following equations:141





uPN(1− P/K)−mP − dP = 0

−uPN(1− P/K)− eN + i+mP + βdP = 0
(3)

The trivial equilibrium point E0 corresponds to the case where there is142

no plant in the sub-system. E0 exists whatever the parameter values and is143

9
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given by:144

E0 :=

(
P ∗ = 0, N∗ =

i

e

)
(4)

The equilibrium point E0 is locally stable if and only if i
e
< m+d

u
(see Ap-145

pendix A.1) that is if the inputs of nutrient and the growth rate are not high146

enough to balance inorganic losses and plant mortality.147

Let us now consider the case where P 6= 0. In this case, if (β − 1)d < 0,148

then the system (3) can be written:149





P = K uN−c−d
uN

=: F1(N)

P = eN−i
(β−1)d

=: F2(N)
(5)

Finding the solution of (5) amounts to find the intersection points of the150

curves F1 and F2, which is done graphically in the sequel. The two functions151

F1 and F2 are differentiable on R+\{0} and we have, ∀N ∈ R+\{0}:152

F ′1(N) =
K(m+ d)

uN2
> 0 and F ′2(N) =

e

(β − 1)d
< 0 (6)

We deduce from (6) that F1 is strictly increasing whereas F2 is decreasing on153

R+\{0}. Moreover we have: limN→0+ F1(N) = −∞, limN→+∞ F1(N) = K,154

F2(0) = − i
(β−1)d

> 0 and limN→0+ F2(N) = −∞.155

F1 and F2 have therefore one and only one intersection point on R+\{0}.156

Let us now find the conditions for which this intersection point is biologically157

acceptable. We have: F1(N) = 0⇔ N = m+d
u

and F2(N) = 0⇔ N = i
e
.158

The relative position of m+d
u

and i
e

of the N-axis determines if the in-159

tersection point is above or below the N-axis. Indeed, as we can see on160

the figure C.2, if i
e
> m+d

u
then the intersection point of F1 and F2 is161

above the N-axis: it is therefore a biologically acceptable equilibrium point162

10
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E1 := (P ∗1 , N
∗
1 ) ∈ R+ × [0, K]. On the contrary, if i

e
< m+d

u
then the inter-163

section of F1 and F2 is below the N-axis and it does not exist any positive164

equilibrium point on [0, K]×R+. Note that in this case the trivial equilibrium165

point E0 is stable.166

[Figure 2 about here.]167

The analytic expression of the positive equilibrium point E1 can be ob-168

tained by solving the equation F1(N) = F2(N) which leads to a second169

degree polynomial equation (see Appendix A.1). The positive equilibrium170

point E1 := (P ∗1 , N
∗
1 ) is finally given by:171

E1 :=
(
P ∗ = 1

2
(K − a i

e
+ a

√
∆
u

), N∗ = 1
2

(
i
e

+ K
a

+
√

∆
u

))
(7)

for (β− 1)d 6= 0 with a = e
(β−1)d

and ∆ = u2( i
e

+ K
a

)2− 4uK
a

(m+ d) and only172

exists if i
e
> m+d

u
. The analysis of its stability shows that when it exists, E1173

is always locally stable (see Appendix A.1).174

In the particular case where (β − 1)d = 0, F2(N) is a vertical line with a175

x coordinate N = i
e
. The equilibrium point E1 becomes:176

E1 :=
(
P ∗ = K

(
1− e(m+d)

ui

)
, N∗ = i

e

)
(8)

Finally, there are two cases: the case where i
e
> m+d

u
, for which only E1177

is stable and for which living conditions are met for plants to settle and the178

case where i
e
< m+d

u
, for which only E0 is stable and for which plants cannot179

survive.180

11
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3. Methods: optimization of the system at equilibrium and contri-181

bution of control theory182

In this section, we detail the optimization methods used to maximize the183

flux of crop production. This flux is represented by the term:184

C = scPc,th , (9)

where sc is the surface of the cropland sub-system and Pc,th the crop biomass185

in the cropland sub-system at the end of the year, at harvest time th.186

In this paper, we will first apply a classical approach used in ecology,187

which consists in finding the constant values of parameters that optimize188

one or several quantities at equilibrium. We hereafter refer to the classical189

method of optimization at equilibrium with constant parameters simply as190

the optimization at equilibrium. The values of the optimal parameters will191

be obtained analytically if possible or numerically in other cases. To use192

this approach we have to assume that the biomass of plant has reached an193

equilibrium when the harvest occurs.194

The optimization at equilibrium is well adapted to “organizational” prac-195

tices which are constant over time or at least fixed for a whole year, as it196

is the case for the rangeland to cropland surface ratio. These practices can197

be mathematically represented by setting constant values to parameters. On198

the other hand, this optimization at equilibrium is not adapted to study “in-199

terconnection” practices that may change over a year as it is the case for200

herbivory pressure. It is the very purpose of the control theory to take into201

account the fact that some input variables can vary over time. Secondly,202

we will thus study how performances of the agro-ecosystem may change if203

12
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grazing pressure change over the year by applying some methods developed204

in control theory.205

3.1. Optimization at equilibrium method (constant parameters)206

The cropland sub-system dynamics directly (and so the value of Pc and Nc207

at equilibrium) depends on the rangeland sub-system management through208

the inputs term i = ic + T sr
sc

where T = (1 − α)drPr. Regarding the “in-209

terconnection” practices, we will focus on livestock management, which is a210

driver of the amount of nutrient per unit of surface that is transferred each211

day by livestock from the rangeland to the cropland sub-system:212

T = (1− α)drPr (10)

Two parameters of the rangeland sub-system, the grazing pressure dr and the213

recycled fraction α are under farmer influence and may be used as driving214

forces to optimize the transfer T (and maximize the crop production). Both215

dr and α influence crop production C through the term T . Thanks to the216

cascade structure of the meta-ecosystem model, we can study this indirect217

impact in three steps. First we will study the variation of crop production218

C with T . Second, we will focus on the variation of T with α and dr.219

Finally we will also study the variation of crop production C with respect to220

the “organizational” practice in focus: the ratio between the surfaces of the221

cropland sub-system and the rangeland sub-system sr and sc. This ratio has222

an impact on both the crop biomass in cropland sub-system (in kgN ha−1)223

and the crop production at the scale of the agro-ecosystem (in kgN).224

13
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3.2. Control method (varying herbivory pressure)225

The aim is to propose a mathematical expression of the grazing pressure226

dr that makes the controlled system behave as desired. We want the crop227

production C to reach a given value C̃, which corresponds to a value P̃c = C̃
sc

228

of the crop biomass at harvest time. The mathematical expression of dr229

will depend on the current state of the system and will take into account230

the constraints on the parameters values: in our case, dr is positive and231

α ∈ [0, 1]. Contrary to the previous optimization at equilibrium (section232

3.1), we do not assume that crop biomass has reached equilibrium when233

the harvest occurs. Following the cascade structure of the system, we use a234

control strategy composed of two feedback control loops (see figure C.3): a235

first loop controlling Pc with T , the amount of nutrient transferred from the236

rangeland to the cropland sub-system, and a second one controlling T with237

the grazing pressure dr. We use feedback linearizing control laws (Isidori,238

1995) for the two loops and we choose some control parameters values that239

fulfill the constraints on the inputs.240

[Figure 3 about here.]241

3.2.1. First loop: controlling Pc with T242

Let first design the feedback control law of the first loop. Remind that243

P̃c is the value of Pc that we expect Pc to reach at the end of the year: it244

is the set-point. Assume that T can be modified by the farmer all over the245

year: T is the control input.246

14
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Consider the functions G1 and G2 defined by:247

G1(Pc, Nc) = ucPcNc(1− Pc/Kc)−mcPc, (11)

G2(Pc, Nc) = −ucPcNc(1− Pc/Kc)− ecNc + ic +mcPc, (12)

that are such that system (23) can be written:248





Ṗc = G1(Pc, Nc)

Ṅc = G2(Pc, Nc) + T sr
sc

(13)

The equation of Pc has a relative degree equal to 2 with respect to the249

control input T : it means that we need to derivate two times Pc to make250

appear explicitly the control input T in the equation of Pc. We thus get:251

P̈c = G1∂1G1 +

(
G2 + T

sr
sc

)
∂2G1. (14)

To obtain a second order dynamics for Pc, that is, an equation of the form252

P̈c+2ξωṖc+ω2Pc = ω2P̃c where ω is the cutoff frequency and ξ the damping253

factor, we have to consider the following expression of T :254

T =
u−G1δ1G1 −G2δ2F

sr
sc
δ2G1

(15)

with u = −2ξωṖc + ω2(P̃c − Pc). The expression (15) of T is called a “lin-255

earizing control law” as it enables to get a linear dynamics of the closed loop256

system. To be biologically acceptable, the value of T has to be positive; we257

so define the quantity T̃ by:258

T̃ = max

(
0,
−2ξωG1 + ω2(P̃c − Pc)−G1δ1G1 −G2δ2F

sr
sc
δ2G1

)
(16)

15
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3.2.2. Second loop: controlling T with the grazing pressure dr259

Contrary to what was assumed in the previous paragraph, T can not be260

directly modified by the farmer. T̃ has to be viewed as a set-point for T ,261

that is a value that we expect T to be close of at any time. Note that, unlike262

the first loop, the value of the set-point T̃ varies over the time.263

There are 2 driving forces in the agro-ecosystem which may control the value264

of T : dr and α. In the sequel, we assume that α is fixed and we consider265

dr as the control input. The objective of the second control loop is therefore266

to control T with dr. The quantity T is given by T = (1 − α)drP
∗
r . After267

derivation, we get:268

Ṫ = (1− α)ḋrPr + (1− α)drṖr (17)

The equation of T is therefore of relative degree equal to 1 with respect to269

the control input dr. To obtain a first order dynamics for T in closed loop,270

that is, an equation of the form Ṫ = k(T̃ − T ) = k(T̃ − (1− α)drPr) with k271

a control parameter, we have to use the following control law for dr:272

ḋr =
k(T̃ − (1− α)drPr)− (1− α)drṖr

(1− α)Pr
. (18)

In practice, we add a saturation to this control law in order to ensure273

that the applied value of dr is realistic, that is non negative. The applied274

control law is so:275

dr = max(0, d) with ḋ =
k(T̃ − (1− α)dPr)− (1− α)dṖr

(1− α)Pr
. (19)

3.2.3. Choice of the control parameters values276

The values of the control parameters (ω, ξ and k) are chosen to make the277

system stabilize after about 365 days. To ensure that, we consider the tow278

loops independently.279
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The first loop is the slowest one: it will impose its stabilization time to280

the whole system. The closed loop equation of Pc is a second order one,281

with parameters ξ and ω. For such systems, an approximation of the 1%282

settling time, that is the time necessary for the response to reach and remain283

in the interval
[
0.99P̃c, 1.01P̃c

]
(with P̃c the set-point), is given by Goodwin284

and Sin (1984) 4.6
ξω

. The value of ξ will also determine whether the output285

will oscillate before stabilizing or not. For values of ξ greater than 0.7, the286

response is very damped, there is almost no oscillations. For this reason, we287

chose to take a value of ξ equal to 0.9. To get a 1% settling time smaller288

than 365 days, we have to consider a value of ω that is such that:289

4.6

ξω
< 365⇔ ω >

4.6

365ξ
' 0.014 (with ξ = 0.9) (20)

We chose to take a value of ω equal to 0.015 that is a little bit greater290

than 0.014: it ensures that the system will have reached the set-point at the291

harvest time. For ω = 0.015 and for ξ = 0.9, we indeed have 4.6
ξω
' 341 days.292

The second loop, which is the internal loop, has to be faster than the first293

one in order to ensure the stability of the first loop. In general, we try to294

have a settling time at least 1000 times faster in the internal loop, which in295

our case corresponds to a maximum value of 0.34 days. The equation of T is296

a first order system with time constant 1
k
. For such systems, the 1% settling297

time is about 5
k

(Corriou, 2004). We therefore have:298

5

k
< 0.34⇔ k >

5

0.34
' 14.7 (21)

We chose to take a value of k equal to 20 that is a little bit greater than 14.7.299

So finally, the values of the control parameters used for the control strat-300
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egy are the following ones:301

ω = 0.015, ξ = 0.9 and k = 20. (22)

4. Results302

4.1. Cropland sub-system as a sink: the greater the transfers, the greater the303

crop production304

We first focus on the sub-system (c) that corresponds to cropland and305

look at the variation of the crop production with respect to the nutrient306

transfer T .307

Remind that the equations of the cropland sub-system are of the form308

(2) with P = Pc and N = Nc for the state variables and u = uc, K =309

Kc, m = mc, e = ec, i = ic + T sr
sc
, β = 0 and d = 0 for the parameters (with310

T = (1− α)drPr):311





Ṗc = ucPcNc(1− Pc/Kc)−mcPc

Ṅc = −ucPcNc(1− Pc/Kc)− ecNc + ic +mcPc + T sr
sc

(23)

From section 2.1, the cropland sub-system always admits one stable equi-312

librium point which depends on the parameter values and on the value P ∗r313

reached by Pr at equilibrium. If
ic+T ∗ sr

sc

ec
≤ mc

uc
, this equilibrium point is given314

by:315

E0,c :=

(
P ∗c = 0, N∗c =

ic + T ∗ sr
sc

e

)
(24)

and if
ic+T ∗ sr

sc

ec
> mc

uc
, it is given by:316

E1,c :=

(
P ∗c = Kc

(
1− mc

uc

ec
ic + (1− α)drP ∗r

sr
sc

)
, N∗c =

ic + T ∗ sr
sc

ec

)
(25)
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As explained in section 3, the parameters dr and α impact on the crop317

production C through the quantity T ∗ = (1 − α)drP
∗
r . We therefore study318

the variation of C with respect to T ∗ in order to determine the value of T ∗319

that maximizes C.320

[Figure 4 about here.]321

From section 2.1, we know that, when
ic+T ∗ sr

sc

ec
> mc

uc
, P ∗c is given by the322

intersection point between the curve of F1 : Nc 7→ Kc
ucNc−mc
ucNc

and the vertical323

line of equation Nc =
ic+T ∗ sr

sc

ec
. When T ∗ increases, the curve of F1 stays at324

the same place whereas the vertical line is shifted to the right (figure C.4).325

Consequently the equilibrium point moves to the right on the curve of F1.326

As F1 increases, P ∗c increases.327

This can also be shown analytically because we have:328

dP ∗1,c
dT ∗

=
d

dT ∗

(
Kc

(
1− mc

uc

ec
ic + T ∗ sr

sc

))
=
Kcmc

uc

sr
sc

ec
(ic + T ∗ sr

sc
)2
> 0. (26)

Finally, as dC
dT ∗ = sc

dP ∗
1,c

dT ∗ , we show that the crop production C is increasing329

with T ∗ and therefore reaches its maximal value for the maximal value T ∗max330

that T ∗ can take in
[
max(0, sr

sc
( ecuc
uc
− ic)),+∞

)
. However, it is important331

to notice that the relationship between C := scP
∗
1,c and T ∗ is nonlinear. The332

closer P ∗1,c is to Kc, the less profitable is the increase of T ∗. For example, as333

we can see on the figure C.4, for a same increase of T ∗ between T ∗2 and T ∗3334

and between T ∗1 and T ∗2 (i.e T ∗3 −T ∗2 = T ∗2 −T ∗1 ), the increase of crop biomass335

P ∗,3c − P ∗,2c is inferior to P ∗,2c − P ∗,1c . This non-linearity in the efficiency of336

the inputs impacts the optimization of the cropland sub-system to rangeland337

sub-system surfaces ratio (see 4.3).338
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4.2. Rangeland sub-system as a source: maximizing the transfers without339

jeopardizing plant biomass340

After studying the variation of crop production with T ∗, we now look at341

the variation of T ∗ with the two driving forces α and dr; we search for the342

values of α and dr that maximize the amount T ∗ = (1−α)drP
∗
r of transferred343

nutrient.344

For that, we now focus on the rangeland sub-system (r) only. Remind345

that the equations of this sub-system are written under the form (2) with346

P = Pr and N = Nr for the state variables and u = ur, K = Kr, m =347

mr, e = er, i = ir, β = α and d = dr for the parameters:348





Ṗr = urPrNr(1− Pr/Kr)−mrPr − drPr
Ṅr = −urPrNr(1− Pr/Kr)− erNr + ir +mrPr + αdrPr

(27)

From the section 2.1 and similarly to the cropland sub-system, the range-349

land sub-system always admits one stable equilibrium, which depends on the350

parameter values. If ir
er
≤ mr+dr

ur
, this equilibrium point without plant is given351

by352

E0,r =

(
P ∗r = 0, N∗r =

ir
er

)
(28)

and if ir
er
> mr+dr

ur
, it is given by:353

E1,r =
{ (

P ∗r = 1
2

(
Kr − ir

er
a+

√
∆
ur
a
)
, N∗r = 1

2

(
ir
er

+ Kr
a

+
√

∆
ur

))
(29)

with ∆ = u2
r(
ir
er

+ Kr
a

)2−4ur
Kr
a

(mr+dr) and a = er
(α−1)dr

< 0 if (α−1)dr 6= 0.354

The case (α−1)dr = 0 corresponds to an absence of grazing pressure or a355

case where all the uptake by livestock is recycled in the rangeland sub-system.356
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In this case, the equilibrium point E1,r becomes:357

E1,r =
{ (

P ∗r = Kr

(
1− er(mr+dr)

urir

)
, N∗r = ir

er

)
(30)

Let’s now look at how the nutrient transfer T ∗ = (1−α)drP
∗
r varies with358

α and dr.359

4.2.1. Minimizing the recycled fraction (α) to increase the transferred amount360

(T ∗)361

The first driving force that we consider is the parameter α, which repre-362

sents the percentage of the grazed part of Pr which, after transformation by363

livestock, is recycled to the inorganic nutrient compartment Nr. The other364

fraction (1 − α) is exported to the cropland sub-system. α can vary from 0365

(all nutrient is transferred to the cropland sub-system) to 1 (all nutrient is366

recycled within the rangeland sub-system). We are looking for the value of367

α that maximizes the amount T ∗ of nutrient transferred.368

When ir
er
≤ mr+dr

ur
, there is no positive equilibrium point whatever the369

value of α: P ∗r = 0 for all α ∈ [0, 1]. If we consider the case where ir
er
> mr+dr

ur
,370

as depicted in figure C.5, P ∗1,r and N∗1,r increase with α. Indeed when α371

increases from 0 to 1, the curve of F1 does not move but the slope of F2 goes372

from − er
dr

to −∞ by rotating around the point ( ir
er
, 0) clockwise (see figure373

C.5a). The intersection point between F1 and F2 moves therefore to the right374

on the curve of F1: thus P ∗1,r and N∗1,r increase with α. The mathematical375

proof is given in Appendix B.1376

[Figure 5 about here.]377

Let us consider the function α ∈ [0, 1] 7→ T ∗ = (1 − α)drP
∗
r and let us378

denote T ∗max the maximal value taken by T ∗ on [0, 1].379
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If ir
er
≤ mr+dr

ur
, then P ∗r = 0 for all α ∈ [0, 1]. The function α ∈ [0, 1] 7→380

T ∗ = (1− α)drP
∗
r is therefore null on [0, 1] and T ∗max = 0.381

Let us now consider the case where ir
er

> mr+dr
ur

. We showed earlier382

that the quantity of biomass produced in the rangeland sub-system (P ∗1,r)383

increases with α. The less we transfer, the higher this biomass is. However,384

we can wonder how the quantity T ∗ = (1 − α)drP
∗
1,r varies with α. Indeed,385

whereas P ∗1,r increases with α, the quantity 1− α decreases. This could lead386

to a trade-off between the biomass produced P ∗1,r and the fraction (1− α) of387

nutrient transferred to the cropland sub-system.388

From (27), we can show that the amount of transferred nutrient T is389

written:390

T ∗ = (1− α)drP
∗
1,r = ir − erN∗1,r (31)

From this equation (31), we deduce that T ∗ is maximal for the minimal391

value of N∗1,r. Yet, we saw that both N∗1,r and P ∗1,r increase with α. As a392

consequence, the quantity T ∗ is maximal for α = 0: it corresponds to the393

case where all nutrient is transferred to the cropland sub-system. So there is394

no trade-off and we have395

T ∗max = T (α = 0) = drP
∗
1,r (32)

Finally, we showed that it is necessary to minimize the recycled fraction α396

of livestock uptake into rangeland sub-system to maximize the total amount397

of nutrient transferred to the cropland sub-system.398
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4.2.2. Maximizing the transferred amount T ∗ with an intermediate grazing399

pressure dr400

The second driving force that we can consider in this system is the graz-401

ing pressure dr, a parameter which takes into account the size of the herd402

multiplied by the time spent by the herd on the rangeland sub-system. The-403

oretically dr can vary from 0 (no livestock) to ∞. In practice, there exists a404

bound for dr which corresponds to the maximal herd size that can graze on405

the rangeland sub-system multiplied by the maximum of time that the herd406

can spend in the rangeland sub-system. The grazing pressure is also bounded407

by the capacity of rangeland to produce enough biomass to feed the livestock,408

and by the resistance of rangeland to overgrazing. In the model, the con-409

ditions of existence of the positive equilibrium E1,r that lead to a non-zero410

value of the transfer T ∗ require that dr must be smaller than urir
er
−mr. If411

dr ≥ urir
er
−mr, there is not enough nutrient left in the rangeland sub-system412

to maintain the plant biomass: in that case of overgrazing, the rangeland413

sub-system goes to the equilibrium point E0,r.414

[Figure 6 about here.]415

We are looking for the value of dr in (0, urir
er
− mr) that maximizes the416

transferred amount T ∗. We set α to 0, since it is the value of α for which417

T ∗ is maximal whatever the value of dr. However, we obtain similar results418

for a non-zero value of α. As in section 4.2.1, we deduce from the expression419

(31) of T that T ∗ is maximal for the minimal value of N∗r . Moreover, we420

know that T ∗ = 0 for dr = 0 and for dr = urir
er
− mr (case of overgrazing421

that implies P ∗r = 0). As T ∗ is a continuous and positive function of dr on422
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(0, urir
er
− mr), we deduce that the amount of nutrient transferred depends423

on a trade-off between the grazing pressure and the plant biomass in the424

rangeland sub-system .425

Therefore, there exists a value doptr ∈ (0, urir
er
−mr) of dr for which T ∗ is426

maximal on (0, urir
er
− mr). It also means that T ∗ and N∗r are not strictly427

monotonic on (0, urir
er
−mr). Figure C.6 shows the variation of P ∗r , N∗r and T ∗428

with dr ∈ (0, urir
er
−mr) for α = 0. We see that on the interval (0, urir

er
−mr), P

∗
r429

decreases with dr. Indeed, when dr increases from 0 to urir
er
−mr, the curve of430

F1 moves to the right and the slope of F2 goes from−∞ to e2r
(α−1)(urir−mrer) < 0431

by rotating anticlockwise around the point ( ir
er
, 0) (see figure C.5b). The432

intersection point between F1 and F2 moves therefore to the left on the curve433

of F1: so P ∗1,r decreases with dr. However, as the curve of F1 is shifted to the434

right when dr increases, the variation of N∗1,r is not easily noticeable. We see435

on Figure C.6 and C.5 that N∗r first decreases and then increases with dr: it436

therefore admits a global minimum on doptr ∈ (0, urir
er
−mr).437

As we deduced earlier from equation (31), we also observe that the value438

doptr ∈ (0, urir
er
−mr) of dr which minimizes N∗r is the same as the one which439

maximizes the transfer T ∗ = (1− α)drP
∗
r from the rangeland sub-system to440

the cropland sub-system.441

Among the set of grazing pressure values that do not compromise the442

plant production in the rangeland sub-system, there is a value that optimizes443

the amount of nutrient transferred to the cropland sub-system. Moreover,444

we observe that this value doptr is a low value among the set of possible values445

of grazing pressure (0,dmaxr ).446
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4.3. Surface ratio of cropland:rangeland sub-systems affects the trade-off be-447

tween plan biomass in cropland sub-system and production at the scale448

of the agro-ecosystem449

We now look at the variation of the crop production with respect to the450

respective surfaces of cropland and rangeland sub-systems (sc for cropland451

sub-system and sr for rangeland subsystem). At the agro-ecosystem scale,452

the maximization of crop production C does not depend on the absolute value453

of the surface of the subsystems but depends on the relative surface area of454

each subsystem in relation to the total surface area of the agro-ecosystem.455

When the surface of cropland sub-system sc increases (at the expense of456

the rangeland sub-system), a positive effect comes from the increase of the457

surface devoted to crop production (equation 9) whereas a negative effect458

comes from the dilution effect on the amount of transferred nutrient (T ∗ sr
sc

).459

Let γ = sc
sr+sc

be the fraction of the agro-ecosystem surface S := sr + sc460

occupied by the cropland sub-system and 1−γ = sr
sr+sc

the fraction occupied461

by the rangeland sub-system. The fraction occupied by cropland/rangeland462

impacts the crop production directly as C := scP
∗
c = γSP ∗c and indirectly463

through the quantity T ∗ sr
sc

= T ∗ 1−γ
γ

on which depends the value P ∗c .464

We are looking for the value of γ in (0, 1] that maximizes the crop pro-465

duction C. We can show (see Appendix B.2 for mathematical proofs) that466

there exist two different situations depending on if the inputs ic are greater467

or smaller than a threshold value i+ defined as:468

i+ =
ecmc +

√
ecmc (ecmc + 4ucT )

2uc
> 0. (33)

If ic > i+, then the inputs ic are high enough to ensure a good production469

in the cropland sub-system without any transfer. In that case, the transfer470
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is no more interesting for crop production, and it becomes more profitable to471

cultivate the maximum available surface (γ = 1). The maximal value Cmax472

of C is then given by:473

Cmax = SP ∗1,c(γ = 1) = SKc

(
1− mcec

ucic

)
. (34)

If ic < i+, then the inputs ic are not high enough and there exists an474

optimal value γopt of γ for which the crop production C is maximal. In475

that case, the optimal value γopt depends on the trade-off between the crop476

biomass and the surface of the cropland sub-system (see figure C.7).477

[Figure 7 about here.]478

γopt is given by:479

γopt =
T

P opt + ecN opt + T − ic
with N opt =

Kcmc

uc(Kc − P opt)
(35)

where P opt, the value of P ∗c for which the crop production C is maximal, is480

expressed:481

P opt = Kc

[
1− −ecmc +

√
ecmc [ecmc + uc(T − ic)]
uc(T − ic)

]
∈ [0, Kc]. (36)

The maximal value Cmax of C is then given by:482

Cmax = γoptSP opt. (37)

When atmospheric depositions and other inputs independent of livestock483

are not sufficiently high in the cropland sub-system compared to the capacity484

of transfer of the rangeland sub-system, it is adequate to keep both rangeland485

and cropland surfaces in the agro-ecosystem to optimize crop production.486
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4.4. Changing functioning of the agro-ecosystem by changing grazing pressure487

over the year488

In this section, we give the results obtained with the control strategy de-489

scribed in section 3.2, that corresponds to the case where the grazing pressure490

can vary over the year.491

4.4.1. A same production with less transfer, a higher production with as492

much?493

[Figure 8 about here.]494

We first look at the maximal crop production value that the system can495

reach with the control strategy. Figures C.8a, C.8b and C.8c represent the496

average stock of plant in rangeland over a year ( 1
th

∫ th
0
Pr(t)dt), the stock of497

plant in cropland at harvest time (Pc,th) and the total amount of nutrient498

transferred over a year (
∫ th

0
T (t)dt) with respect of the value of the set-point499

P̃c. The values obtained with the optimization at equilibrium (that is with500

a constant value dr = doptr ) are represented by the horizontal straight lines.501

The black and gray vertical straight lines mark the values of P opt
c and of the502

maximal crop production value reached with the control strategy respectively.503

The set-point P̃c is reached in all the cases until P̃c = 1.085×P opt. Above this504

point the feedback control fails to make Pc reach the set-point: the cropland505

sub-system “collapses” and we get Pc = 0. As the value of the set-point506

P̃c increases from 0 to 1.085 × P opt, the average stock of plant in rangeland507

( 1
th

∫ th
0
Pr(t)dt) decreases and the total amount of nutrient transferred over a508

year (
∫ th

0
T (t)dt) increases. By simulations, we observe that the total amount509

of nutrient transferred over a year obtained for the highest crop production510
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value (P̃c = 1.085 × P opt) with the control strategy is equal to the total511

amount of nutrient transferred over a year (th × T ∗max) obtained with the512

optimization at equilibrium (that is for a constant value of dr = doptr ).513

4.4.2. Comparison of scenarios514

Let us now compare the different optimization strategies, through the515

simulated trajectories of 3 different scenarios.516

The first scenario (1) consists in the application of the optimal values517

of dr, α and γ that have been calculated with the classical approach of518

optimization at equilibrium as constant values. We set α = 0 (see section519

4.2.1) and get the optimal value of doptr by simulation (see section 4.2.2). From520

the so-obtained value of T ∗, we compute the optimal value γopt (see equation521

35) of γ that determines the surfaces sr and sc for which C is maximal (see522

equation 34). This scenario is our “control sample” to be compared with523

two other scenarios (2) and (3) obtained with the control theory for different524

values of the set point P̃c. For scenario (2), P̃c is defined as the optimal value525

of crop biomass obtained with the optimization at equilibrium (P̃c = P opt)526

and for scenario (3), P̃c is defined as the maximal value reached numerically527

with the feedback control (see C.8). P̃c is equal to 1.085 times the optimal528

value obtained with the optimization at equilibrium (P̃c = 1.085P opt). There529

is no difference in the parametrization of the scenarios (1), (2) and (3) except530

for the expression of the grazing pressure dr.531

Figures C.9a, C.9b, C.9c and C.9d represent the dynamics of plant and532

inorganic nutrient in the cropland sub-system and the rangeland sub-system533

over five years for the 3 scenarios. Scenarios (1), (2) and (3) are plotted in534

black lines, dotted black lines and grey lines respectively.535
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In the scenario (1), only the stocks of the cropland sub-system change536

over the year and the equilibrium point is reached each year. These changes537

are due to the harvest event that occurs at the end of each year. In this538

scenario, both scenarios 2 and 3 reach their set-point P̃c. We observe that539

the growth of plants is slower with feedback than without feedback (figure540

C.9b). Note that in scenario (2) and (3), we are no longer looking for the541

solution at equilibrium but instead we used the transient dynamics to reach542

the set-point at the time of the harvest.543

With the feedback control, the dynamics of nutrient in the rangeland sub-544

system becomes dependent of the state of the cropland sub-system and varies545

over time following the dynamics of dr. In both scenarios, levels of plant and546

inorganic nutrient in the rangeland sub-system are always higher than for547

scenario 1. Considering that the end of the year matches with the harvest548

event, we observe in scenarios (2) and (3) that the value of dr is minimal in the549

middle of the year (figure C.9e). The low value of dr promotes the increase550

of plant biomass in the rangeland sub-system Pr and as a consequence, the551

increase of the inorganic nutrient level Nr (figure C.9b,d). Note that in the552

scenario (3), the value of dr is a bit higher that doptr but much lower than the553

value above which there is overgrazing (urir
er
−mr)554

These higher values of Pr and Nr allow a higher transfer of nutrient for555

the growth of cropland plants during the second part of the year. Indeed, as556

depicted in figure C.9f the amount of nutrient transferred over time decreases557

slightly at the beginning of the year and then increases to be maximal at the558

end of the year. The calculation of the total amount of nutrient transferred559

during a year gives 237.3 kgN y-1 for scenario (1), and respectively 216.1 and560
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234.7 kgN y-1 for scenarios (2) and (3).561

In scenario (2) and (3), losses are lower in the rangeland sub-system and562

higher in the cropland sub-system compared to scenario (1). At the scale563

of the agro-ecosystem the lowest losses are obtained for scenario (2) (249.1564

kgN y-1). Losses are a bit higher in scenario (3) (254.1 kgN y-1) than in565

scenario (1) (253.7 kgN y-1). In scenario (3), higher losses associated with a566

larger biomass at the end of the year are due to the fact that loss rates are567

much lower in the rangeland sub-system than in the cropland sub-system,568

and that the average biomass (over a year) in the cropland sub-system is569

lower in scenario (3) than in scenario (1).570

[Figure 9 about here.]571

Hence, by constantly adjusting the grazing pressure over a year, one can572

promote a higher crop production, thanks to the transient dynamics. Indeed,573

as we showed, bringing nutrient to crops at the right time when they require574

it for growth maximizes the overall crop production over a year.575

5. Discussion576

We addressed the optimization of crop production in a mixed farming577

system, using a simple meta-ecosystem model. Our purpose was to find the578

optimal values of three quantities of interest to maximize crop production,579

namely, the fraction of the agro-ecosystem occupied by the cropland sub-580

system γ, the grazing pressure in rangeland dr and the fraction of nutrient581

transferred to cropland by livestock (1 − α). We first used the classical582

method of optimization at equilibrium to maximize the production when583
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these quantities are constant over time. Second, we used methods from the584

control theory to optimize crop production when the grazing pressure dr can585

be constantly adjusted, α and γ being kept constant.586

With the optimization at equilibrium, our results suggest that maximizing587

crop production is obtained by maximizing the flux of nutrient transferred by588

livestock from rangeland to cropland. To maximize this flux, the following589

conditions must be met:590

1. the fraction α of nutrient ingested by livestock and recycled within the591

rangeland must be minimal, the best strategy being to transfer all the592

nutrient ingested by livestock to cropland.593

2. the grazing pressure dr cannot be higher than a threshold value that594

leads to the overgrazing of the rangeland, with the extirpation of plants595

at steady-state. Hence, there is a trade-off between exporting as much596

nutrient as possible from cropland and avoiding overgrazing.597

3. Once the driving forces dr and α related to livestock are optimized, it598

is possible to determine the optimal value of the rangeland to cropland599

surface ratio γ/(1− γ). This ratio strongly depends on the quantity of600

inputs independent from livestock in the cropland sub-system ic com-601

pared to the capacity of transfer of the rangeland sub-system T .602

The control theory allows a further gain of optimization, based on a better fit603

of the driving forces to the transient dynamics of the system. By constantly604

adjusting the grazing pressure over time, we showed that it is possible to ob-605

tain the same yearly crop production with a lower yearly amount of nutrient606

transferred by livestock. We even show that it is possible to reach higher607

values of crop biomass.608
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Our model allows a better understanding of the mechanisms that lead609

to optimization. First, we note that the maximal flux of nutrient trans-610

ferred corresponds to the case where the stock of inorganic nutrient in the611

rangeland is minimal, a result similar to what has been shown in previous612

models (Boudsocq et al., 2009, Loreau, 1998). Indeed, these studies showed613

that primary productivity was maximized when the inorganic resource was614

minimized. Since T ∗ is proportional to the primary productivity obtained615

in rangeland, our result is consistent with these other nutrient cycling mod-616

els. This arises from the fact that the inputs of nutrient in the rangeland617

sub-system are independent on plant biomass. Second, note that there are618

two output fluxes of nutrient from the rangeland sub-system: one in organic619

form, through the grazing of plant biomass followed by an exportation to620

cropland, and one in inorganic form through erosion and leaching of the621

inorganic stock. Therefore, maximizing the flux of nutrient transferred by622

livestock consists in minimizing the inorganic losses in favors of the organic623

output.624

With our model, when the grazing pressure is adjusted over time, we ob-625

serve that to maximize the crop biomass at the moment of harvest, one must626

boost the growth of crops during the second part of the year. This unex-627

pected result comes from the fact that both the plant growth function and628

the mortality rate stay constant all along the year. In reality, the deposition629

of manure on the one hand, and the growth of plants, on the other hand,630

are decoupled over the year. For instance, in West Africa, manure deposi-631

tion occurs during the dry season, when the livestock is corralled at night in632

the cropland, whereas growth occurs during the wet season. During the dry633
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season, the livestock is kept in rangeland to protect the crops (Manlay et al.,634

2004, Guerin and Roose, 2015).635

With the control method, we obtain a grazing pressure curve (figure C.9e)636

and a plant biomass curve in the rangeland sub-system (figure C.9b) whose637

shapes are similar to the ones obtained by Chen and Wang (1988). In their638

work, these authors used optimal control theory to determine the maximal639

potential productivity of grassland under grazing over a year. In our study,640

we showed that maximizing the integral of the transfers over a year does641

not guarantee to get the maximal crop production at harvest time. Indeed,642

for the same yearly average, a time-varying transfer can lead to greater crop643

production than a constant one. Note that using time-varying inputs to644

improve the performance of a system is a well-known practice (see for example645

(Ruan and Chen, 1996) in the case of a fermentation process).646

Thanks to the control method which allows to implement a time-varying647

grazing pressure and with the set of parameters used in our simulation, we648

succeeded to reach a crop production (set-point P̃c) 1.085 times higher (8.5%649

increase) than the optimal crop production obtained with optimization at650

equilibrium. Above this value, the grazing pressure calculated by the feed-651

back linearizing control law (equation 19) does not allow plants to subsist in652

the rangeland sub-system (overgrazing) and the dynamical system does not653

reach the desired crop production. In both the “classical” scenario (1) and654

the scenario where time-varying grazing pressure is applied and the optimal655

crop production value is reached (3), the total annual amount of transferred656

nutrient was almost the same. It suggests that the control on dr has almost657

no effect on the transfer capacity of the rangeland sub-system.658
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In this study, we only applied the control theory to the grazing pressure dr.659

Yet, we could have applied it as well to the fraction of nutrient recycled in the660

rangeland sub-system over a year α. In this case, as suggested by simulations661

(not shown), we would observe similar dynamics but with a lower maximal662

value of crop production. This result is partly due to the constraints on the663

value of the fraction of recycled nutrient that is bounded between 0 and 1,664

but it also arises from the fact that to maximize nutrient transfer, it is more665

profitable to minimize α than to maximize dr.666

We could as well apply the control theory on both dr and α. In this667

case, possibilities of control are numerous, and some of them might allow a668

higher crop production P̃c than the one obtained with only one parameter669

as control input. However, in the simulations we performed, the recycled670

fraction always went to 0 after a few years (simulations not shown), which671

finally amounts to control the system with the grazing pressure as the only672

control input.673

In the paper, we assume that farmers have the full control on the three674

driving forces in focus. We know however that depending on the context,675

some constraints may restrict this control. Initially, our model was built to676

represent traditional mixed farming systems. In these systems, α is not really677

a driving-force: it depends on the time passed (day/night) in the rangeland678

by livestock and on its metabolism. However the model is generic enough to679

be used for other systems or at different scales. For instance in areas where680

the crop production and the livestock production are decoupled at the scale681

of the farms (cattle fattening), our model can be used to couple them at682

the scale of the landscape. In that case, the rangeland sub-system is in fact683
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a field in which fodder is cultivated and used to feed the livestock: α can684

therefore be considered as a full leverage.685

The model presented in this paper is rather simple, which serves our capa-686

bility to extract the basic mechanisms underlying the optimization process,687

but which bears some limitations. For instance, we assumed that the input688

of nutrient to the rangeland is independent on plant biomass. This may be689

relevant for phosphorus but not for nitrogen, which is often subject to sym-690

biotic fixation by legumes, plants that are present in most rangeland. The691

quantity of nitrogen fixed depends on the biomass of legumes, which relieves692

the assumption of independence between nitrogen inputs and plant biomass.693

Without this assumption, some of the results presented earlier may not hold.694

Overall, we are fully aware of the theoretical nature of our results. The695

results obtained by the study of our model are qualitative more than quanti-696

tative. These results are not meant to be straightforward recommendations697

to farmers but rather, to allow a better understanding of the different possi-698

bilities that exist to optimize crop production. These results also show the699

relevance of both the meta-ecosystem and the control theory to address opti-700

mization in agricultural systems. Indeed, agricultural systems are by essence701

highly dynamics, and are usually very patchy in terms of biogeochemistry,702

with source-sink dynamics. Our results suggest that both the patchiness and703

the dynamics provide a set of unexplored ways to optimize the production704

of crops, meat, or other goods.705
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Appendix A. Model710

Appendix A.1. Equilibrium points of generic model (2) and their stability711

• Equilibrium points712

Consider the case where (β − 1)d 6= 0 and let us solve the equation713

F1(N) = F2(N) with F1(N) = K uN−m−d
uN

, F2(N) = a(N − i
e
) and a = e

(β−1)d
.714

We have, for all N ∈ R+\{0}:715

F1(N) = F2(N) ⇔ P(N) = 0 (A.1)

with P(N) = uN2−uN( i
e
+K

a
)+K

a
(m+d). The discriminant of P is written:716

∆ = u2

(
i

e
+
K

a

)2

− 4u
K

a
(m+ d); (A.2)

in the case where i
e
> m+d

u
and as a < 0 we have ∆ > 0. Therefore, there717

exists two roots that are given by:718

N∗ =
1

2

(
i

e
+
K

a

)
±
√

∆

2u
(A.3)

the corresponding value of P ∗ = s(N∗ − i
e
) being:719

P ∗ =
K

2
− ia

2e
± a
√

∆

2u
. (A.4)
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Among these two points, only one is positive in the sense (P ∗, N∗) ∈ (R+)2;720

it is given by:721

E1 =

(
1

2

(
K − ia

e
+ a

√
∆

u

)
,
1

2

(
i

e
+
K

a
+

√
∆

u

))
(A.5)

In the case where (β−1)d = 0, system (3) leads to N = i
e

and uP i
e
(1− P

K
)−722

mP − dP = 0⇔ P = 0 or P = K
(

1− e(m+d)
ui

)
.723

• Stability of the equilibrium points:724

The Jacobian matrix of the system (2) at the point E0 is given by:725

J(E0) = J

(
0,
i

e

)
=


 u i

e
−m− d 0

−u i
e

+m+ βd −e


 (A.6)

This matrix has two eigenvalues that are u i
e
− m − d and −e < 0. As a726

consequence, E0 is stable is and only if u i
e
−m− d < 0⇔ m+d

u
> i

e
.727

The equilibrium point E1 exists when i
e
> m+d

u
; it is such that:728

uN∗1

(
1− P ∗1

K

)
= m+ d and uP ∗1N

∗
1

(
1− P ∗1

K

)
= i+mP ∗1 + βdP ∗1 − eN∗1 .

(A.7)

By using these relationships, we get the following expression of the Jacobian729

matrix of system (2) at the point E1:730

J(E1) =




−uP
∗
1N

∗
1

K
uP ∗1

(
1− P ∗1

K

)

uP ∗1N
∗
i

K
+ (β − 1)d −uP ∗1

(
1− P ∗1

K

)
− e


 (A.8)

The real part of the eigenvalues of a 2× 2 matrix are strictly negative if and731

only if the trace of the matrix is strictly negative and the determinant of the732

matrix is strictly positive. Here we have:733

Tr(J(E1)) = −uP
∗
1N

∗
1

K
− uP ∗1

(
1− P ∗1

K

)
− e (A.9)
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which is always strictly negative, because N∗1 > 0 and 0 < P ∗1 < K. More-734

over, after simple calculations, we have:735

det(J(E1)) =
uP ∗1
K

(
i+

e

a
(2P ∗1 −K)

)
(A.10)

The equilibrium point E1 is therefore stable if and only if:736

det(J(E1)) > 0⇔ i+
e

a
(2P ∗1 −K) > 0⇔ P ∗1 <

1

2

(
K − ia

e

)
( as a < 0),

(A.11)

which is always true as P ∗1 := 1
2
(K − ia

e
+ a

√
∆
u

) and a < 0. When it exists,737

the equilibrium point E1 is therefore always stable.738

Appendix B. Results739

Appendix B.1. Impact of α on P ∗1,r and N∗1,r740

N∗1,r is solution of the equation F1(N) = F2(N,α) where F1 : N 7→741

Kr
urN−mr−dr

urN
is a strictly increasing concave function defined on R+\{0},742

and F2(N,α) = a(α)(N − ir
er

) with a(α) = er
(α−1)dr

< 0. It only exists if743

ir
er
> mr+dr

ur
, so we only consider this case. We then have:744

d

dα

(
F1(N∗1,r)

)
=

d

dα

(
F2(N∗1,r, α)

)
⇔ dN∗1,r

dα
F ′1(N∗1,r) =

dN∗1,r
dα

∂F2

∂N
(N∗1,r, α)+

∂F2

∂α
(N∗1,r, α).

(B.1)

As ∂F2

∂N
= a(α) and ∂F2

∂α
= a′(α)(N − ir

er
) with a′(α) = −er

(α−1)2dr
< 0, we get:745

dN∗1,r
dα

=
a′(α)(N∗1,r − ir

er
)

F ′1(N∗1,r)− a(α)
(B.2)

As a(α) < 0 and a′(α) < 0, we know that N∗1,r <
ir
er

, so a′(α)(N∗1,r − ir
er

) > 0.746

Moreover, F ′1(N∗1,r) =
Kr(mr + dr)

ur(N∗1,r)
2

> 0 and a(α) < 0, so F ′1(N∗1,r)−a(α) > 0.747

We so have
dN∗

1,r

dα
> 0.748
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The derivative of P ∗1,r with respect to α can then be deduced; we indeed749

have P ∗1,r = F1(N∗1,r) which leads to:750

dP ∗1,r
dα

=
dN∗1,r
dα

F ′1(N∗1,r)︸ ︷︷ ︸
>0

> 0. (B.3)

Appendix B.2. Impact of γ on C751

Impact of γ on P ∗1,c752

The equilibrium point E1,c = (P ∗1,c, N
∗
1,c) exists if and only if

ic+T
1−γ
γ

ec
> mc

uc
753

and for γ ∈ (0, 1]. We have:754

ic + T 1−γ
γ

ec
>
mc

uc
⇔





γ < T
mcec
uc
−ic+T if mcec

uc
− ic + T > 0

γ > T
mcec
uc
−ic+T if mcec

uc
− ic + T < 0

(B.4)

If mcec
uc
− ic + T > 0, then T

mcec
uc
−ic+T > 0 and T

mcec
uc
−ic+T ≤ 1⇔ mcec

uc
− ic ≥ 0.755

If mcec
uc
− ic + T < 0⇒ mcec

uc
− ic < −T < 0, then T

mcec
uc
−ic+T < 0.756

So P ∗1,c only exists for values of γ included in a domain Ωγ given by:757

• Ωγ =
(

0, T
ec
uc
mc−ic+T

]
⊂ [0, 1] if ic

ec
≤ mc

uc
;758

• Ωγ = (0, 1] if ic
ec
> mc

uc
.759

It is given by P ∗1,c = Kc

(
1− mc

uc
ec

ic+T
1−γ
γ

)
. We so have, for all γ ∈ Ωγ:760

dP ∗1,c
dγ

= −Kc
mcecT

ucγ2

1

(ic + T 1−γ
γ

)2
< 0. (B.5)

The function γ 7→ P ∗1,c is therefore strictly decreasing on Ωγ.761

Impact of γ on C762

The crop production defined by C = γSP ∗c is positive only when P ∗c = P ∗1,c,763
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that is when P ∗1,c exists, i.e ∀γ ∈ Ωγ. After simple computations, we can764

show from (3) that C is given on Ωγ by:765

C := γSP ∗1,c =
T

ecN∗1,c + T − ic
SP ∗1,c (B.6)

with766

N∗1,c =
mc

uc

Kc

Kc − P ∗1,c
. (B.7)

We then get:767

∀γ ∈ Ωγ,
dC

dγ
= S

dP ∗1,c
dγ

T

(ecN∗1,c + T − ic)2

ρ(Kc − P ∗1,c)
uc(Kc − P ∗1,c)2

(B.8)

where ρ(x) = a2x
2 + a1x + a0 with a2 = uc(T − ic), a1 = 2ecKcmc > 0768

and a0 = −ecK2
cmc < 0. The discriminant of polynomial ρ is given by769

a2
1− 4a2a0 = 4ecK

2
cmc [ecmc + uc(T − ic)] which leads to the following cases:770

• if ecmc
uc

+ T < ic, then ρ(x) < 0, ∀x ∈ R and
dP ∗

1,c

dγ
< 0 for γ ∈ [0, 1] so771

dC
dγ
> 0 for all γ ∈ [0, 1] and C is therefore maximal for γ = 1.772

• if ecmc
uc

+ T > ic, then the polynomial ρ has two roots. After sim-773

ple computations (not detailed here for simplicity), we can show that,774

whatever the value of a2 is, among these two roots only the root given775

by x+ =
−a1+
√
a21−4a2a0

2a2
corresponds to a value P opt = Kc − x+ of776

P ∗1,c that belongs to [0, Kc]. We also easily show that for all P ∗1,c(γ) ∈777

(0, P opt), dC
dγ

< 0 and for all P ∗1,c(γ) ∈ (P opt, Kc),
dC
dγ

> 0. By denot-778

ing γ0 = T
ecmc
uc
−ic+T the value of γ such that P1,c(γ0) = 0, and because779

dP ∗
1,c

dγ
< 0 for γ ∈

[
0,min

(
T

ec
uc
mc−ic+T , 1

)]
, we can finally deduce the780

variations table of the function γ ∈ (0, γ0] 7→ C that is given in figure781

C.10.782

783
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[Figure 10 about here.]784

We then have to consider two cases. If γ0 > 1 and P ∗1,c(γ = 1) > P opt,785

then the maximal value of C on (0, 1] is reached for γ = 1. If γ0 < 1 or786

if γ0 > 1 and P ∗1,c(γ = 1) < P opt, then the maximal value of C on (0, 1]787

is reached for the value γopt of γ such that P ∗1,c(γ = γopt) = P opt. From788

(B.6) and (B.7), γopt is given by:789

γopt =
T

ec
Kcmc

uc(Kc − P opt)
+ T − ic

(B.9)

with:790

P opt = Kc−
−a1 +

√
a2

1 − 4a2a0

2a2

= Kc

[
1− ecmc

ecmc +
√
ecmc [ecmc + uc(T − ic)]

]

(B.10)

We finally get two cases: C is maximal either for γ = 1, or for γ = γopt.791

Let us now express the different conditions that lead to these cases in terms792

of values of ic.793

Case 1: C is maximal for γ = 1 if ecmc
uc

+ T < ic OR if ecmc
uc

+ T > ic, γ0 > 1794

and P ∗1,c(γ = 1) > P opt. We first have γ0 > 1 ⇔ T
ecmc
uc
−ic+T > 1 ⇔ T >795

ecmc
uc
− ic+T ⇔ ecmc

uc
< ic. For the condition P ∗1,c(γ = 1) > P opt, we can show796

that:797

P ∗1,c(γ = 1) > P opt ⇔ 0 < uci
2
c − ecmcic − ecmcT︸ ︷︷ ︸

P(ic)

. (B.11)

The polynomial P has two roots, one negative and one positive:798

i− =
ecmc −

√
ecmc (ecmc + 4ucT )

2uc
< 0 and i+ =

ecmc +
√
ecmc (ecmc + 4ucT )

2uc
> 0,

(B.12)
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which leads to P(ic) > 0⇔ ic > i+ or ic < i−. As we only consider positive799

values of ic, the condition P ∗1,c(γ = 1) > P opt is simply rewritten ic > i+.800

After computations, we can show that:801

ecmc

uc
< i+ <

ecmc

uc
+ T. (B.13)

The conditions for which C is maximal at γ = 1 can be therefore reduced to802

ic > i+.803

Case 2: C is maximal for γ = γopt if ecmc + uc(T − ic) > 0 and γ0 < 1 OR804

if ecmc + uc(T − ic) > 0, γ0 > 1 and P ∗1,c(γ = 1) < P opt. In the same way as805

for case 1, we can show that these conditions reduced to ic < i+.806
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Figures967

Figure C.1: Model of the main limiting nutrient cycle in a simplify agro-ecosystem. Rep-
resentation of all stocks and fluxes presents in the model. See the table C.1 for the
parameters description and units.
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Figure C.2: Graphical determination of the equilibrium points for the generic sub-system
model.
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Figure C.3: Scheme of the two loops control strategy.
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0
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Figure C.4: Graphical determination of the equilibrium points in the cropland sub-system
for 4 different values of T . The quantity T0 is not high enough to compensate losses, the
positive equilibrium Ec,1 does not exist. Pc increase with T until the carrying capacity K
is reached, in a non-linear way.
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Figure C.5: (left) Evolution of F2(N) = eN−i
(α−1)dr

when α goes from 0 to 1. (right) Evolution

of F2(N) = eN−i
(α−1)dr

when dr goes from 0 to +∞. Graphical method of determination of

equilibrium points for 3 values of dr with d1r ≤ d2r ≤ d3r. P
∗
1,r decreases with dr but the

variation of N∗
1,r is not monotonous.

54



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure C.6: Variation of P ∗ and N∗ (left) and T (right) with dr (and for αmax = 0)
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Figure C.7: Variation of crop biomass P ∗
c and the production C∗ of the cropland sub-

system with the fraction of the agro-ecosystem surface occupied by the cropland sub-
system (γ)
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Figure C.8: Yearly averaged stock of plants in rangeland (in kgN h−1), stock of plants
in cropland at harvest time (value of Pc,th , in kgN ha−1) and total amount of nutrient

transferred from rangeland to cropland over a year (
∫ th
0
T (t)dt) with respect of the value

of the set-point P̃c. The set of parameters used is ur = 0.08, uc = 0.01, Kr = 80, Kc =
40, er = 0.08, ec = 0.4, ir = 0.8, ic = 0.05, mr = 0.08, mc = 0.05, h = 90%. We moreover
define α = 0 and γ = γopt = 0.131 from the optimization at equilibrium with doptr = 0.036.
The black horizontal straight lines represent the values obtained with the optimization at
equilibrium such as P optc = 21.7 (black vertical straight line). The gray vertical straight
line represents the maximal value of P̃c reached with the control strategies.
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Figure C.9: Dynamic over time of stocks of plants (a) and (b) and inorganic nutrient (c)
and (d) in the cropland sub-system and the rangeland sub-system respectively. Dynamic
of grazing pressure dr (e) and transfer of inorganic nutrient T (f). The optimal scenario
obtained with the optimization at equilibrium (scenarios 1), and the scenario obtained
with the control theory (scenario (2), P̃c = P opt and scenario (3), P̃c > P opt) are plotted
in black lines, dotted black lines and grey lines respectively. In the subfigure (a), black
and gray dashed lines respectively represent the value of the set point P̃c = P opt and
P̃c > P opt The set of parameters used is ur = 0.08, uc = 0.01, Kr = 80, Kc = 40, er =
0.08, ec = 0.4, ir = 0.8, ic = 0.05, mr = 0.08, mc = 0.05, h = 90%. We moreover
define α = 0, γopt = 0.131, doptr = 0.036 (value of dr for scenario (1) only) and get dmaxr =
0.72, Tmax = 0.65.
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Figure C.10: Variations table of the function γ 7→ C in the case when ecmc

uc
+ T − ic > 0.
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List of Tables968

C.1 Nomenclature of model parameters. The subscript z stands for969

either r or c depending on the sub-system considered (range-970

land or cropland). . . . . . . . . . . . . . . . . . . . . . . . . . 60971
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Tables972

variable dimensions description
Pz kgN ha−1 Stock of nutrient in the plant compartment
Nz kgN ha−1 Stock of nutrient in the inorganic nutrient compartment

parameter dimensions description
uz ha kgN−1 d−1 nutrient uptake rate of plants
Kz kgN ha−1 carrying capacity of plant
mz d−1 mortality rate of plants
ez d−1 losses (ex: leaching) of inorganic nutrient
iz kgN ha−1 d−1 inputs of inorganic nutrient (ex: atmospheric deposition)
sz ha surface of the sub-system
γ fraction of agro-ecosystem occupied by cropland
dr d−1 grazing pressure in rangeland
α fraction of uptake by livestock recycled into rangeland

1− α fraction of uptake by livestock transferred to cropland
h % harvest in cropland in the end of each year
T kgN ha−1 d−1 nutrient transferred from rangeland to cropland

T = (1− α)drPr, (see equation 10)

Table C.1: Nomenclature of model parameters. The subscript z stands for either r or c
depending on the sub-system considered (rangeland or cropland).
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