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Anti-windup Input-Output linearization strategy for the 
control of a Multi-Stage Continuous Fermenter with 
Input constraints

Céline Casenave, Marc Perez, Denis Dochain, Jérôme Harmand, Alain Rapaport and Jean-Marie Sablayrolles

Abstract—The present paper deals with the control of a Multi-Stage Continuous 
Fermenter (MSCF) used for the study of wine fermentation. The control design is 
facing three main difficulties: (1) system nonlin-earity; (2) lack of on-line 
measurement of the controlled variable (sugar concentration); (3) positive 
constraints on the control inputs (inlet flow rates of each tank) coming from the 
cascade structure of the system. A control strategy has been proposed that 
accounts for these specificities. It is based on an input-output linearization control 
law coupled with an anti-windup technique and a state observer (Kalman filter). The 
strategy has been tested and validated first on numerical simulations and has 
then been applied to the real process. The experiments gave satisfactory results 
that open up new perspectives on the use of the MSCF.

Index Terms—wine fermentation, cascade of reactors, control design, varying 
input constraints, anti-windup, input-output linearization

I. INTRODUCTION

In this paper, we consider the problem of the control of a
Multi-Stage Continuous Fermenter (MSCF) used for the study of
wine fermentation. The experimental setup is a set of four reactors
connected in series (see Fig. 1). The objective is to control the sugar
concentration in each reactor, by considering the input flow rates of
the reactors as control inputs. The cascade structure of the system
implies a constraint on the values of each control input. Indeed,
the inlet flow rate of each reactor has to be lower than that of the
preceding reactor (i.e. Qi+1 6 Qi). This constraint as well as the 
process nonlinearity make the control design complex and not trivial.
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Fig. 1. Scheme of the Multi Stage Continuous Fermenter (MSCF).

The control of continuous bioreactors has been widely studied in
the automatic control literature [1] with numerous applications on
bioengineering processes (e.g. [2]). In comparison, only few papers
deal with the issue of the control of a cascade of bioreactors (see
[3], [4]) whereas such kind of devices is often used in industrial
engineering processes (e.g. [5]). Moreover, only a scalar variable is
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generally controlled in these papers. In [3] for example, the authors
indeed design a controller for the glucose concentration in the process
outlet. And in [4], the objective is to maximize the biogas flow rate
of the first reactor in a two-stage anaerobic bioreactor, the second
reactor being not controlled.

Constraints on the values of control inputs are often encountered
in practice. One classical constraint is the saturation constraint with
lower and upper limits on the control input u: um 6 u(t) 6 uM .
The control of system subject to saturation is the subject of numerous
studies, in the case of both linear and nonlinear systems. There are
generally two ways to deal with such issue: (1) either we first design
a controller without taking the constraints into account and then we
try to compensate the effect of the saturation (this is the case of the
anti-windup techniques [6]); (2) or we include the saturation from the
beginning of the design process as it is the case with set invariance
control design [7] or techniques based on the polytopic representation
of the saturation [8], [9]. However, these techniques are only suitable
for constraints of saturation type with constant bounds. For more
general forms of constraints, it is sometimes possible to make a
change of variable for the control input, so that the constraint on
the new input variable is a saturation. For example, the constraint
0 6 Q2 6 Q1 6 Qmax can be replaced by 0 6 Q1 6 Qmax
and 0 6 α 6 1 where α is such that Q2 = αQ1. However, when
doing so, the structure of the system is modified and is often no more
adapted to classical control techniques that are dedicated to particular
form of systems such as control-affine systems.

Finally, it is not obvious to find control design techniques that are
adapted to nonlinear systems with general positive input constraints.
In [10], the author proposes to combine two techniques: the feedback
linearizing control for nonlinear systems [11], and an anti-windup
technique [12] for linear systems which has the advantage to handle
the case of saturations with time-varying bounds. In the present paper,
this control strategy has been coupled with a state observer and then
applied to the MSCF. The closed loop system behaves appropriately
and stabilizes faster than or at least at the same speed as when a
constant input is applied. The control strategy has been validated
both in numerical simulation, and on the experimental process. A
first version of this strategy and the results obtained during a first set
of experiments were presented at the IFAC World Congress [13]1.

The paper is organized as follows. In Section II the experimental
setup is described. The model used for the design of the control law
is presented and analysed in Section III. In Section IV, the model
parameters are identified and the numerical simulations are compared
with experimental data for validation. Then, Section V deals with the
design of the control strategy. Finally in Section VI, the control results
obtained in simulation and on the experimental process are presented.

II. PROCESS DESCRIPTION

In [14] the use of a Multi-Stage Continuous Fermentor (MSCF) has
been proposed to study the fermentation process. An experimental
set-up has been developed by the research unit SPO (Sciences for
Oenology) of INRA (Montpellier). It is composed of 4 reactors

1The paper did receive the congress Application Paper Prize.



connected in series (see Fig. 1). The volumes Vi, i = 1 : 4 of 
the reactors are kept constant. This implies that the outlet flow rate 
of each reactor is equal to its inlet flow r ate. T he fi rst re actor is 
fed with a synthetic medium which simulates a grape juice. The 
other reactors are fed by a fraction of the outlet medium of the 
preceding reactor. The inlet flow r ates Q i, i  =  1  :  4  o f t he reactors 
are controlled independently by a pump, the only constraint (coming 
from the cascade structure of the device) being that the inlet flow 
rate Qi of the ith reactor has to be lower than the outlet flow rate
Qi−1 of the (i − 1)th reactor:

0 6 Q4 6 Q3 6 Q2 6 Q1 6 Qmax, (1)

with Qmax the maximal flow rate which can be applied.
The temperature of the medium in each reactor is controlled at 28◦C.
Only the CO2 production rate (in each of the 4 reactors) is measured
on-line. A schematic view of the MSCF is given in Fig. 1.

III. MODEL DESCRIPTION AND ANALYSIS

The model of the MSCF considered in this paper is the one
described in [13]. It is obtained from the model of the batch fermen-
tation given in [15] by addition of terms related to the interconnection
between the reactors. It is written:

ξ̇ = f(ξ, u) with ξ = (ξᵀ1 , ξ
ᵀ
2 , ξ

ᵀ
3 , ξ

ᵀ
4 )ᵀ (2)

and ξi = (Xi, Ni, Ei, Si)
ᵀ, u = (D1, D2, D3, D4)ᵀ, f(ξ, u) =

(f1(ξ, u)ᵀ, f2(ξ, u)ᵀ, f3(ξ, u)ᵀ, f4(ξ, u)ᵀ)ᵀ and ∀i = 1 : 4:

fi(ξ, u) :=


µ1(Ni)Xi +Di(Xi−1−Xi)
−k1µ1(Ni)Xi +Di(Ni−1−Ni)
µ2(Ei, Si)Xi +Di(Ei−1−Ei)
−k2µ2(Ei, Si)Xi +Di(Si−1−Si)

 (3)

where Xi, Ni, Ei and Si are the concentrations (in g.L−1) of
yeast, nitrogen, ethanol and sugar of the ith reactor, respectively;
Di = Qi

Vi
is the dilution rate of the ith reactor; (X0, N0, E0, S0) =

(0, N in, 0, Sin) with N in, Sin > 0 are the concentrations of yeast,
nitrogen, ethanol and sugar in the inlet medium; and k1 and k2 are
the yield coefficients. The functions µ1 and µ2 are given by:

µ1(N) =
µmax1 N

KN +N
, µ2(E,S) =

µmax2 S

KS + S

KE

KE + E
, (4)

with µmax1 , µmax2 , KS , KN and KE the maximum specific growth
rates of the two reactions, the half-saturation constants of the Monod
laws, and the inhibition constant respectively. To complete the model,
the following initial conditions are considered: ∀i = 1 : 4,

Xi(0) = Xin, Ni(0) = N in, Ei(0) = 0, Si(0) = Sin. (5)

We also denote Ci the CO2 production rate of the ith reactor:

Ci(ξ) := µ2(Ei, Si)Xi. (6)

Let us now give a few analysis results about the MSCF model (2).
The goal is only to show that the model is consistent with some
biological laws and experimental observations. The proofs of the
results, long but only technical, are not given in this paper.
By simple computations, we can first show that the set Ω defined by:

Ω :=

ξ ∈ R16 such that


0 6 Xi 6

Nin−Ni
k1

0 6 Ni 6 N in

0 6 Ei 6
Sin−Si
k2

0 6 Si 6 Sin

 ⊂ R16
+ (7)

(with R16
+ = [0,+∞[16), is a positive invariant set of system (2),

which proves its consistency with the mass balance conservation law.

One can also easily show that, if Q1
V1

< µ1(N in), then the system
(2) admits a unique positive and locally exponentially stable steady
state ξ∗ ∈ Ω; moreover this steady state is such that:

0 < S∗i < S∗i−1 and X∗i > X∗i−1, ∀i = 1 : 4 (8)

with S∗0 = Sin and X∗0 = Xin. It means that, providing that
Qmax < V1µ1(N in), all inlet flow rate values (Q1, Q2, Q3, Q4)
that meet the constraint (1) will make the system stabilize at a
positive equilibrium point without any washout in all the reactors
(X∗i 6= 0, ∀i).

However, given (S̄1, S̄2, S̄3, S̄4) ∈
[
0, Sin

]4 with S̄1 >
S̄2 > S̄3 > S̄4, it does not necessarily exist some values
(Q1, Q2, Q3, Q4) ∈ [0, V1µ1(N in)]4 with Q4 6 Q3 6 Q2 6 Q1

such that the equilibrium point ξ∗ of system (2) verifies S∗i =
S̄i, ∀i = 1 : 4. An example of set of reachable values of sugar
concentrations is given in Fig. 2.

Fig. 2. Example of set of reachable values of sugar concentrations at
equilibrium in the MSCF.

IV. MODEL IDENTIFICATION

Let us first focus on the estimation of the value of the initial sugar
concentration Sin that plays a key role. In the model of the batch
fermentation (model (2) with Di = 0), it is assumed that the yield
coefficient k2 is constant during the fermentation. However, it is well-
known in the field of Oenology that k2 varies: in particular, it is
smaller at the beginning of the fermentation (see table I). Fortunately

TABLE I
ESTIMATED VALUES OF THE YIELD COEFFICIENT k2 = E

Sin−S
from measured values of E and S during a batch fermentation. k(1)2 is

obtained with Sin = 200 g.L−1 and k(2)2 with Sin = 195.8 g.L−1.

t [h] 16.4 20.9 24.0 26.1 40.5 45.7 49.4 65.4 74.9

k
(1)
2 0.339 0.432 0.434 0.437 0.464 0.457 0.461 0.463 0.463
k
(2)
2 0.449 0.494 0.472 0.468 0.480 0.470 0.473 0.474 0.473

this variation of k2 can be artificially attenuated by a modification
of the value of Sin in the model. Indeed at the beginning of the
fermentation the quantity Sin−S, which represents the concentration
of sugar that has been consumed, is small. A slight decrease of the
value of Sin will then lead to an increase of the value of k2 = E

Sin−S
larger than the increase obtained at the end of the fermentation where
the value of Sin − S is large (close to Sin). By decreasing slightly
the value of Sin in the model, we can therefore keep a constant value
of k2 without degrading too much the accuracy of the model.

In the case of the batch fermentation data set considered in table
I, the value of Sin that enables to attenuate at best the variation of
k2 is equal to 195.8 g.L−1, which is 4.2 g.L−1 smaller than the real
value of 200 g.L−1. This value, denoted S̄in in the sequel, has been



obtained by simple linear regression between S and E (R2 = 0.999)
based on the relationship S = Sin − k2E.

For the parameter identification we used a data set collected by the 
unit SPO [14]. Each experiment consisted in the application of a set 
of constant inlet flow r ates Q i, i  =  1  :  4  t hat f ullfill th e constraint 
(1); after stabilization, the equilibribum values of the concentrations 
of yeast, sugar, ethanol and nitrogen were measured.

The value of parameter k2 was considered as known as it is a 
stoichiometric coefficient o f a  w ell-known c hemical r eaction; we 
used the value given in [15]. The other parameters of model (2) 
were identified f rom t he e xperimental d ata: a  s implex m ethod was 
used to minimize the sum of the squares of the distances between 
the experimental measurements at equilibrium in the 4 stages of the 
MSCF and the values obtained by numerical simulation of the model. 
Because the equations of the nitrogen and yeast concentrations are 
independent of the other ones, the identification w as p erformed in 
two steps: (1) first t he coefficients kn , k1  and µ1

max were identified 
from the measurements of the yeast concentrations; (2) then the 
coefficients ks, k e and µ 2

max were identified from the measurements 
of the sugar concentrations. The values of the identified parameters 
are given hereafter2:

k1 = 0.068, k2 = 2.17, µmax1 = 0.75 [h−1], µmax2 = 1.746 [h−1]

kn = 0.714 [g.L−1], ks = 0.884 [g.L−1], ke = 13.8 [g.L−1] (9)

The comparison between the experimental data used for the iden-
tification process, and the values obtained by simulation with the
parameter values (9) is given in Fig. 3 (top). For the cross validation,
we compared simulated trajectories of a batch fermentation with
experimental data (Fig. 3 (bottom)). In both cases, the simulation
give results close to the measured values.
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Fig. 3. Comparison between experimental data and simulations of the
models of fermentation (batch and MSCF). Top: sugar concentration
values at equilibrium in the MSCF. The experimental data are the ones
used for the identification process. Bottom: yeast, nitrogen, ethanol and
sugar concentrations of a batch fermentation (cross validation).

2k1 and k2 are dimensionless parameters.

V. DESIGN OF THE CONTROL LAW

Recall that the objective is to control the sugar concentration in
each stage of the MSCF, the control inputs being the inlet flow rates
Qi, i = 1 : 4, of the 4 reactors. In the sequel, we denote S∗i the
value of the sugar concentration setpoint in the ith reactor (for i =
1 : 4). We only consider setpoint values such that there exist constant
input control values (Q∗1, Q

∗
2, Q

∗
3, Q

∗
4) ∈ [0, Qmax]4 verifying the

constraint (1) and which, when applied to system (2), stabilize the
sugar concentrations in the 4 reactors at the values S∗i , i = 1 : 4.
This implies that Sin > S∗1 > S∗2 > S∗3 > S∗4 > 0 and Qmax <
V1µ1(N in) (see section III). Thus, after stabilization, it is possible
to switch to constant input flow rates in order to maintain the system
in the same state without applying the closed loop control law.

The control design is facing two main difficulties: on one hand,
no on-line measurement of the sugar concentration is available, and
on the other hand the control inputs Qi have to verify the constraint
(1). The proposed control strategy is based on a linearizing control
law, coupled with an anti-windup component and a state observer. A
scheme of the control strategy is given in Fig. 4b.

A. Linearizing control law

To account for the system nonlinearities, a linearizing control law
is considered. The equation of Si has a relative degree equal to 1
with respect to Qi; the control law is therefore written3:

Qi = Vi
k2Ci + vi
Si−1 − Si

:= Ψi(vi, S, C), (10)

where C = (C1, C2, C3, C4)ᵀ, S = (S1, S2, S3, S4)ᵀ and vi is
the expression of the desired closed loop dynamics of Si. Here we
consider a simple proportional-integral linear dynamics:

vi = ai,1(S∗i − Si) + ai,2

∫ t

0

(S∗i − Si(τ)) dτ, (11)

with ai,1 and ai,2 some positive constants. The integral term is
introduced to compensate modeling and measurement errors. Note
that the control law (10) is independent of the function µ2 because
the quantity Ci is measured on-line.

B. Saturation

Consider the saturation operator defined by:

sat(u;um, uM ) :=


uM if u > uM
u if um < u < uM
um if u 6 um.

(12)

Compared to problems often considered in the literature, the con-
straints on the control inputs of our system are coupled and time-
varying. We chose to apply the saturation operator (12) to one control
input after the other. The choice of the saturation order of the 4
control inputs Qi is not obvious: it can lead to very different control
performances, depending on the setpoints, the initial conditions, and
the experimental conditions. The 14 possible saturation orders are
given in Table II, ni = j meaning that Qi will be the j th control
input to be saturated.

For example, the order n◦8 has to be understood as follows:

1. n3 = 1 =⇒ Q̃3 = sat(Q3; 0, Qmax)

2. n1 = n4 = 2 =⇒
{

Q̃1 =

Q̃4 =

sat(Q1; Q̃3, Qmax)

sat(Q4; 0, Q̃3)

3. n2 = 3 =⇒ Q̃2 = sat(Q2; Q̃3, Q̃1)

This saturation strategy can be written as follows:

3Note that this control law can not be applied if Si = Si−1, case that never
happens except at the very beginning of the experiments when the reactors
are filled with the must and then connected to each other.
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noise

+ y

-

• Classical feedback controller

K2

r + + u ũ +
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TABLE II
THE 14 POSSIBLE SATURATION ORDERS.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
n1 1 1 1 1 1 2 2 2 3 2 2 3 4 3
n2 2 2 3 3 4 1 1 3 2 3 4 2 3 4
n3 3 4 2 4 3 2 3 1 1 4 3 3 2 2
n4 4 3 3 2 2 3 2 2 2 1 1 1 1 1

Q̃i = sat (Qi;Qi,m, Qi,M ) , (13)

where Qi,m = max
j>i,nj<ni

Q̃j and Qi,M = min
j<i,nj<ni

Q̃j , with Q̃5 =

0, Q̃0 = Qmax and n0 = n5 = 0.

C. Anti-windup

Enforcing input control constraints by application of a saturation
operator can result in poor closed-loop performances and overshoot-
ing of the integral term. To minimize the performance loss, some anti-
windup control schemes have been developed. However, the problems
studied in the literature are most of the time linear. An interesting
solution for nonlinear systems was proposed in [10]. It is based on
the combination of two techniques: the feedback linearizing control
for nonlinear systems [11], and the anti-windup technique developed
by Zheng et al [12], which has the advantage to handle the case
of saturations with time-variable bounds. The combined scheme is
explained here after.
• Anti-windup technique of Zheng et al [12] for linear systems
Consider a linear and stable square system of transfer function P

that is subject to input saturation constraint4:

y = Pũ with ũ = sat(u;um, uM ) (14)

where y, u and ũ are the output, input and saturated input of the
system respectively. Let K be a feedback controller designed on the
unconstrained system (see Fig. 4a), r the setpoint and F a diagonal
filter such that FP is bi-proper (that is a rational function with the
same numerator and denominator degrees). The input ũ that fullfills
the saturation constraint and which is such that at each time t:

ũ(t) = argmin
ṽ(t)

∣∣[FP (I +KP )−1Kr
]

(t)− [FP ṽ] (t)
∣∣
1

(15)

is given by (see Fig. 4a):

ũ = sat(K1(r − y)−K2ũ;um, uM ) (16)

with K1 = FP (I +KP )−1K and K2 = FP − I −K1P . At each
time instant, this saturated control input minimizes the difference

4In the sequel, by abuse of notation and for simplicity, the Laplace transform
of a function f will be denoted itself by f when there is no ambiguity.

between the output of the closed loop system without saturation and
the output of the system obtained with the saturated input.

To guarantee the internal stability of the closed loop system and
the implementability of controller, the following assumptions have to
be verified:

1) (I +KP )−1K is bi-proper, minimum phase and stable,
2) FP|s=∞ is a diagonal nonsingular matrix with finite elements,
3) K1 is minimum phase and stable,
4) K1P +K2 is strictly proper.
• Adaptation to nonlinear systems by Doyle [10]
Let now consider affine nonlinear SISO systems of the form:

dx

dt
= f(x) + g(x)u; y = h(x), (17)

subject to input saturation: um 6 u 6 uM .
The first step of the control strategy is an Input-Output linearization

that consists in a change of input variable of the form:

u = f1(x) + f2(x)v, (18)

where f1 and f2 are chosen in such a way that the system with input
v and output y is linear: y = Pv with P a rational transfer function.

Then the initial constraint on u is transformed in a constraint on
v in the following way:

um 6 u := f1(x) + f2(x)v 6 uM

⇔ um − f1(x)

f2(x)
6 v 6

uM − f1(x)

f2(x)
. (19)

Finally the antiwindup scheme proposed by Zheng et al in [12]
is applied to the linear system y = Pv with the time-varying input
constraint (19).
• Application to the MSCF
The input-output linearization, already presented in section V-A,

is obtained with the change of variables (10) that is of the form
(18) with f1(x) = Vi

k2Ci
Si−1−Si

and f2(x) = Vi
Si−1−Si

. The resulting
transfer function between vi and Si is P (s) = 1

s
.

The constraint on Qi is then transformed into a constraint on vi:

Qi,m <Qi < Qi,M

⇔ Si−1 − Si
Vi

Qi,m − k2Ci︸ ︷︷ ︸
vi,m

<vi <
Si−1 − Si

Vi
Qi,M − k2Ci︸ ︷︷ ︸
vi,M

. (20)

To apply the anti-windup scheme of Zheng et al [12] to the linear
system of transfer function P (s) = 1

s
with the input saturation

constraint (20), we first have to consider a feedback controller for
the unconstrained problem. The controller we have chosen is the one
expressed in (11) which is written in the frequency domain:

vi = K(S∗i − Si) with K(s) =
ai,1s+ ai,2

s
. (21)



Several controllers for the constrained problem can then be proposed, 
following the method of Zheng et al [12]. The choice of F (s) =

ai,1
s2+ai,1s+ai,2
ai,1s+ai,2

leads to the following controllers:

K1 = FP (I +KP )−1K = ai,1 (22)

K2 = FP − I −K1P = − ai,2
ai,1s+ ai,2

, (23)

which check all the assumptions required provided that ai,1, ai,2 > 0.
By applying the same saturation order as for the Qi values (i =

1 : 4), we then finally have:

ṽi = sat (vi; vi,m, vi,M ) with vi = K1(S∗i − Si)−K2ṽi. (24)

D. Observer

The anti-windup control scheme presented in the previous para-
graphs assumes a full knowledge of both the sugar concentrations Si
and the CO2 production rate Ci in each reactor. However, only the
CO2 production rate is measured on-line. To get an on-line estimate
of the sugar concentration, we need to use a state observer. Several
observation strategies (among which the asymptotic observer [13]
and the extended Kalman Filter) have been tested numerically, which
all give similar results. They also all have the same drawback: the
convergence rate is always limited by the value of Di.

Finally, we chose to use a Continuous-Discrete Extended Kalman
Filter (see [16] pp.664), as it seemed to handle better uncertainties
on the observer initial condition. This approach is dedicated to
continuous time model of the form (2), with an additional discrete-
time measurement output equation of the form:

Cmk = C(ξ(tk)) + ηk, (25)

where, in our case, C(ξ) = (C1(ξ), C2(ξ), C3(ξ), C4(ξ))ᵀ, and ηk is
a Gaussian measurement noise of zero mean and covariance matrix
Rk assumed to be equal to Rk = σI4 with σ > 0 (I4 being the
identity matrix of size 4 × 4). No noise was added in the model
equations. At each time instant tk, the Kalman Filter computes an
estimation of the state ξ̂+k and of the error covariance matrix P+

k

in two steps: a first step of prediction based on the model and the
previous estimated values, and a second step of correction based on
the measurement.

For the initial value of the state estimate ξ̂+0 , we took advantage
of the fact that, at the observer initialization time tk = 0, the system
is assumed to be at equilibrium. Indeed, in practice, the control law
will be used to go from one equilibrium point to another. Under this
assumption, we get from (2) the following estimation ξ̂+0 of ξ(0):

ξ̂+0 = (ξ̂ᵀ1,0, ξ̂
ᵀ
2,0, ξ̂

ᵀ
3,0, ξ̂

ᵀ
4,0)ᵀ with ξ̂i,0 = (X̂0

i , N̂
0
i , Ê

0
i , Ŝ

0
i )ᵀ, (26)

and ∀i = 1 : 4,

Ŝ0
i = −k2 C

m
i (0)

Di(0)
+ Ŝ0

i−1, Ê
0
i =

Cm
i (0)

Di(0)
+ Ê0

i−1, (27)

X̂0
i =

Cm
i (0)

µ2(Ê
0
i ,Ŝ

0
i )
, N̂0

i =
KNDi(0)(X̂

0
i−X̂

0
i−1)

µmax
1 X̂0

i−Di(0)(X̂
0
i−X̂

0
i−1)

, (28)

where Cmi (0) is the measurement of Ci(0) and Ŝ0
0 = Sin, Ê0

0 = 0
and X̂0

0 = 0. The initial value P+
0 has then been classically chosen

equal to ε × P 2
0 with ε > 0 and P0 the 16 × 16 diagonal matrix

whose diagonal vector is ξ+0 .
In practice, some off-line measurements of the sugar concentration are 

available during the experiment. The information given by these 
measurements, even if they are available only a few hours after the 
sampling, can be used to adjust the estimation of the observer. It can 
be very useful, especially to correct the error made on the initial conditions 
of the observer. In the experiments presented in section VI, three off-line 
measurements of the sugar concentrations are performed

at different times. For an other example, the reader can refer to the 
conference paper [13] where the adjustment of the observer (which is not 
a Kalman Filter) is more visible.

E. Complete control strategy scheme

Finally, the complete control strategy is written (Fig. 4b) :

Ŝi given by the Extended Kalman Filter) (29)

vi = K1(S∗i − Ŝi)−K2ṽi, (30)

ṽi = sat (vi; vi,m, vi,M ) , (31)

Qi = Ψi(ṽi, Ŝ, C
m), (32)

Q̃i = sat (Qi;Qi,m, Qi,M ) . (33)

It takes less than 4 milliseconds to compute the value of the control
input from the new online measurements of the CO2 production rate.

VI. NUMERICAL AND EXPERIMENTAL VALIDATIONS

The control strategy was validated in numerical simulations and
applied to the experimental setup. The results are given hereafter.

A. Design of the experiments

The considered MSCF has 4 reactors of respective volumes:

(V1, V2, V3, V4) = (1, 0.8, 0.55, 0.7) [L]. (34)

The maximal value of inlet flow rate that can be applied is Qmax =
0.24 L.h−1. The synthetic media contains Sin = 202 g.L−1 of
glucose (quantity measured at the beginning of the experiments) and
Nin = 0.425 g.L−1 of assimilable nitrogen. At the beginning of the
experiment, the yeasts are inoculated in each reactor, with an initial
concentration Xin of 106 cell/mL which corresponds to 0.04 g.L−1

for the yeast strain used (commercial strain EC1118, Lallemand SA).
The setpoint we consider for the experiments is the following one:

(S∗1 , S
∗
2 , S

∗
3 , S

∗
4 ) = (170, 140, 110, 70) [g.L−1]; (35)

its reachability has been verified in simulation (see next paragraph).
To avoid the case where Qi+1 = Qi for which we have observed a

significant difference between the inlet flow rate values to be applied,
and the real measured inlet flow rates, the constraint (1) was replaced
by the stronger following one:

Q1 < Qmax and ∀i = 2 : 4, 0 < Qi < 0.9Qi−1. (36)

The saturation strategy (section V-B) was modified consequently.
We assume that, when the control law is applied, the MSCF is at

equilibrium, the constant dilution rates being equal to:

(D0
1, D

0
2, D

0
3, D

0
4) = (0.24, 0.26, 0.32, 0.05) [h−1]. (37)

It corresponds to the following values of inlet flow rates:

(Q0
1, Q

0
2, Q

0
3, Q

0
4) = (0.24, 0.208, 0.176, 0.035) [L.h−1] (38)

that fullfill the constraint (36).

B. On-line measurements of the CO2 production rate

The control strategy relies on the availability of an on-line mea-
surement of the CO2 production rate C in each stage of the MSCF. In
our experiments, we measured the CO2 present in the gas released
in the air by the fermentation process and we deduced from this
measurement an estimation of the CO2 gaseous outflow rate (quantity
of CO2 released by unit of time); a new measurement is available
every 20 minutes. We then assumed that at each time t, the CO2

gaseous outflow rate is equal to the CO2 production rate. However, it
is well-known that a part of the CO2 produced by the degradation of



sugar during the fermentation process is dissolved in the grape juice: 
this quantity can therefore not be measured from the produced gas 
that only contains the released CO2. This bias on the measurement 
of the CO2 induces an error on the estimation of the CO2 production 
rate at the beginning of the fermentation, when the medium is not 
saturated in CO2. After this period, the CO2 gaseous outflow rate 
gives a good estimation of the CO2 production rate. We will see in 
the sequel how to compensate this error in the model.

The model of the batch fermentation (model (2) with Di = 0), and 
the associated control strategy, rely on a strong relationship between 
the sugar concentration S and the CO2; we indeed have:

∀t > 0,
dS

dt
= −k2 dCO2

dt
⇔ S(t) = S̄in − k2CO2(t). (39)

Thus, a measurement error made on CO2(t) directly impacts the
estimation of S(t). Let denote by cd the quantity of CO2 dissolved
in the medium (in g.L−1) and COm2 (t) the measured value of CO2

at time t; then we have: CO2(t) = COm2 (t) + cd which leads to:

S(t) = S̃in − k2COm2 (t) with S̃in = S̄in − k2cd. (40)

By removing from S̄in the quantity of sugar corresponding to
the quantity of dissolved CO2, we can therefore compensate the
measurement error on CO2 providing that we know the value of cd.

To obtain an order of magnitude of cd, we can perform a
linear regression between E and COm2 , based on the relationship
E = CO2 = COm2 (t) + cd. Indeed the measurement of the ethanol
concentration is not biased on the contrary of the measurement of
CO2. The least squares regression performed on the batch fermen-
tation data set of Fig. 3 leads to the value of cd = 3.99 g.L−1 with
R2 = 0.9985, which corresponds to a sugar concentration value
k2cd = 8.7 g.L−1. To compensate the measurement bias on CO2 in
the model, we can therefore decrease the value of S̄in of 8.7 g.L−1.
Recall that S̄in was obtained from Sin by subtraction of 4.2 g.L−1

to attenuate the variability of k2 (see section IV). So the quantity
S̃in can be seen as a corrected value of Sin that takes into account
two corrections: a first one to attenuate the variability of k2 and a
second one to compensate the measurement bias on CO2.

As the MSCF behaves slighty differently from the batch fermen-
tation process, a new value of S̄in has been computed from the data
set obtained with the MSCF. In Fig. 5, the measured CO2 gaseous
outflow rate is plotted versus the fermentation progress 1 − S/Sin
where Sin = 202 g.L−1. The value of S was either measured or
estimated. The measurements of S were mainly made at equilibrium
in the different reactors of the MSCF, except for one measurement
performed at the end of the growth phase during a batch fermentation.
The estimated values of S during a batch fermentation were deduced
from COm2 by the formula S = S̃in − k2CO

m
2 for two values

of S̃in: 202 g.L−1 and 182 g.L−1. As we can see, the estimated
values of S obtained with S̃in = 182 g.L−1 give much better results
than the other ones. The value of S̃in can obviously be adjusted
more precisely either by an off-line estimation or even by an on-line
estimation (with a Kalman Filter for example). In the experiments
presented in section VI-D the value of 182 g.L−1 was used, which
improved greatly the results compared to the one presented in [13].

In the sequel we will no more distinguish the CO2 gaseous outflow
rate from the CO2 production rate for simplicity.

C. Numerical tests
For the numerical experiments, we used different parameter sets for 

the control law and for the simulation of the MSCF to which we apply the 
control law, in order to test the robustness to parameter uncertainty of 
the control strategy. The parameter set used for the
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Fig. 5. Plot of the measured CO2 gaseous outflow rate versus the fermen-
tation progress 1− S

Sin with S = S̃in−k2CO2 for Sin = 202 g.L−1 and
for different values of S̃in during some batch fermentations. Comparison
with some sugar measurement data.

control law is the one given in (9). The one used for the simulation
of the MSCF is given by:

k1 = 0.0606, k2 = 2.17, µmax1 = 1.34 [h−1], µmax2 = 1.45 [h−1]

kn = 1.57 [g.L−1], ks = 0.0154 [g.L−1], ke = 14.1 [g.L−1] (41)

As shown on Fig. 3 in [13] the trajectories simulated with this
parameter set fit well the experimental data of the batch fermentation.

For the control law and the Kalman Filter, we used the following
parameter values: ∀i = 1 : 4,

ai,1 = 1.2 [h−1], ai,2 = 0.25 [h−2], σ = 0.2 and ε = 0.64. (42)

For the set of parameters (41), the constant inlet flow values
QOLi , i = 1 : 4, which lead at equilibrium to the setpoint (35) have
been computed and are given by:

(QOL1 , QOL2 , QOL3 , QOL4 )=(0.2016, 0.1541, 0.0983, 0.0755). (43)

These inlet flow values fullfill the constraint (36), which makes the
setpoint (35) reachable.

The impact of the saturation order on the stabilization time has
been evaluated through numerical simulations, in the noise-free
case (see table III). The quickest stabilization time is obtained for

TABLE III
STABILIZATION TIME AT 2% AND 5% FOR THE DIFFERENT SATURATION

ORDERS IN CLOSED LOOP AND FOR THE OPEN LOOP CONTROL LAW.

Saturation order in closed loop Open
{10, 11, 12, 13, 14} {4, 5} {2, 7} {1, 3, 6, 8, 9} loop

2% 8.0 8.2 8.6 15.9 43.8
5% 6.6 6.7 6.9 14.0 30.6

the saturation orders n◦10 to 14. The Anti-windup Input-Output Linearization 
control law gives better results than the open-loop control law in terms of 
stabilization time. However the difference between closed loop and open loop 
varies depending on the chosen setpoint, the closed loop control law being 
always at least as fast as the open-loop control law5.

For the experiments, the order n◦14 has therefore been chosen.

5The minimal time synthesis for the control of the yeast biomass (and not the 
one of the sugar) in a MSCF with only two reactors has been studied in [17]. It 
presents presents bang-bang and singular arcs which makes it sensitive to error 
measurements and therefore difficult to implement in practice.



TABLE IV
SUGAR CONCENTRATIONS MEASUREMENT DATA.

Measurement Sugar concentrations [g.L−1]
time [h] S1 S2 S3 S4

0 185.8 161.5 140.4 58.6
23.0 174.56 140.69 108.19 69.1
38.7 174.77 140.10 106.32 66.9

TABLE V
SUGAR CONCENTRATION SETPOINTS AND FINAL MEASUREMENTS,

VOLUMES AND INITIAL DILUTION RATES OF THE EXPERIMENT.

Reactor Sugar concentration [g.L−1] with S0 = S∗0 = 202 g.L−1

number δ∗i := δi :=

i S∗i Si Si−S∗i S∗i −S∗i−1 Si−Si−1 δi − δ∗i
1 170 174.77 4.77 32 27.23 −4.77
2 140 140.10 0.1 30 34.67 4.67

3 110 106.32 −3.68 30 33.78 3.78

4 70 66.9 −3.1 40 39.42 −0.58

Some simulations obtained with this saturation order are shown in Fig. 6. 
For these simulations, we considered noisy measurements of the CO2 
production rates, the measurement noise having a zero-mean normal 
distribution with standard deviation σ = 0.1.

In Fig. 6 (top), the sugar concentration obtained with the Anti-windup 
Input-Output linearization control law is compared to the one obtained 
with the constant input flow rates QOL. We see that the MSCF is 
stabilizing at the setpoint with both the closed loop and open loop control 
laws, but that the stabilization time is smaller with the closed-loop strategy 
as it was already shown in table III. In Fig. 6 (middle), the values of the 
control input are plotted: we can verify that the constraint (1) is fullfilled 
all along the simulation. Finally, the noisy measurement values of the CO2 
production rate are shown in Fig. 6 (bottom).

In these simulations, the parameter sets used for the simulation of the 
MSCF and for the control law are different and the measurements of the 
CO2 production rate are noisy. It shows that the Anti-windup Input-Output 
Linearization control law is robust to both parameter uncertainties and 
measurement noise.

D. Experimental results
The same experiment as the one tested in simulation has been 

performed on the real process. The sugar concentration in each 
reactor has been measured before applying the control law: the 
measurement values (given in table IV, time 0) have been used for the 
initialization of the Kalman filter. During the experiment, two other off-line 
measurements of the sugar concentration have been made at 23.0 h and 
38.7 h respectively (see table IV).

The experimental results are presented in Fig. 7. The estimated 
sugar concentrations given by the observer are first plotted in Fig. 7 (top). 
In Fig. 7 (middle and bottom) are given the computed control input values 
Qi and the on-line measurement of the CO2 production rates Ci.

The measurements of the final sugar concentrations are given in Table V 
for comparison with the setpoint values. As we can see, the qualitative 
behaviour of the control law is good and similar to the one obtained in 
numerical simulation. However, without any on-line sugar concentration 
measurement, it is not possible to completely cancel the control error, which 
is even though smaller than 4.77 g.L−1 in all the reactors. The uncertainty on 
sugar measurements being 3%, the control error that is equal to 2.8%, 
0.07%, 3.5% and 4.4% in the 4 reactors is reasonable.

E. Importance of the value of Sin for the control error
Because of the cascade structure of the system, the control strategy 

proposed in this paper does not really control the sugar concentration in each 
reactor, but rather the differences of sugar concentration between 2 
consecutive reactors. The comparison between the values of the difference 
between consecutive setpoints and measurements are given in Table V. We 
can see that the control errors are different if we look at the sugar 
concentration values or at the difference of sugar concentration values 
between 2 consecutive reactors. For the second reactor for example, the 
control error on the sugar concentration is only 0.1 g.L−1 whereas the control 
error on the difference of sugar concentration with the first reactor is equal to 
4.67 g.L−1.

In fact, as the sugar concentration is not directly controlled, it 
implies that the control error on the sugar concentration in the ith reactor 
will depend on the control error of the preceding reactor (the
(i − 1)th reactor). To illustrate that, we can have a look at an other experiment 
performed on the MSCF that we have presented in the
conference paper [13]. In this experiment (see Table 2 of [13]), the control 
error on the sugar concentration was larger than 6 g.L−1 for all the reactors, 
whereas the control error on the difference of sugar concentration was 
smaller than 2.1 g.L−1 for all the reactors except for the first one for which the 
error was equal to 6.1 g.L−1. In that case, the control error on the sugar 
concentration of the first reactor was clearly impacting the errors made on the 
other reactors.

As we suspected, the large control error obtained for the first reactor in this 
experiment was the consequence of both the variation of the yield coefficient 
k2 during the fermentation (see section IV) and the underestimation of the 
quantity of CO2 that is dissolved in the medium (see section VI-B). Indeed for 
this experiment we only decreased the value of Sin of 3 g.L−1 whereas in the 
experiments presented in section VI-D, 10 g.L−1 was subtracted.

VII. CONCLUSION

In the present paper, the control of the sugar concentration in a 
Multi-Stage Continuous Fermenter (MSCF) has been studied. The 
cascade structure of the system induces a constraint on the control 
inputs that are the input flow rates of each reactor: the inlet flow rate of 
one reactor is indeed necessarily lower than that of the preceding reactor. 
To solve this problem, a linearizing control law coupled with an 
observer (Kalman Filter) and an anti-windup mechanism was applied to 
the real process. The obtained results are convincing. However, because 
of the lack of on-line measurement of the sugar concentration, we 
noticed the sensitivity of the results to the value of the initial sugar 
concentration. This value is not always well-known and moreover it has to 
be corrected in order to take into account that a part of the produced CO2 
is dissolved in the medium. In order to make the control law more robust 
to this uncertainty, an adaptive control law could be proposed that would 
adjust on line the value of the initial sugar concentration. An other 
interesting perspective would be to test and compare other control strategies 
that have been recently proposed in [18], [19]. Finally, the next objective 
for the control of the MSCF will be to control both the sugar 
concentration and the CO2 production rate in each of the reactor.
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