
HAL Id: hal-02066904
https://hal.science/hal-02066904

Submitted on 13 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

PFed: Recommending Plausible Federated Queries
Sara El Hassad, Hala Skaf-Molli, Pascal Molli, Florian Hacques

To cite this version:
Sara El Hassad, Hala Skaf-Molli, Pascal Molli, Florian Hacques. PFed: Recommending Plausible
Federated Queries. [Research Report] LS2N, Université de Nantes. 2019. �hal-02066904�

https://hal.science/hal-02066904
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


PFed: Recommending Plausible Federated
Queries

Sara EL Hassad1, Hala Skaf-Molli1, Pascal Molli1, Florian Hacques2

LS2N, University of Nantes, Nantes, France
(1){Sara.elhassad,Hala.Skaf,Pascal.Molli}@univ-nantes.fr,

(2)Florian.Hacques@etu.univ-nantes.fr

Abstract. Federated SPARQL query processing allows to query multi-
ple interlinked datasets hosted by remote SPARQL endpoints. However,
finding pertinent federated queries over a growing number of datasets is
challenging. In this paper, we propose PFed, an approach to recommend
plausible federated queries based on query logs of different datasets. The
problem is not to find similar federated queries, but plausible comple-
mentary queries over different datasets. Starting with a real SPARQL
query log, PFed stretches the query with real queries from different
logs. A generated federated query Q is plausible if an external observer
cannot deny that queries in the original logs could be subqueries of Q.
PFed relies on data summaries and real SPARQL query logs to generate
plausible federated queries. It starts by pruning the queries logs by se-
lecting only queries with joinable predicates. Experimental results with
real logs of DBpedia and SWDF demonstrate that PFed is able to prune
drastically the logs and recommend realistic federated queries.

Keywords: Semantic Web, Consuming Linked Open Data, SPARQL
query, Federated SPARQL Query, Plausible, Joinable.

1 Introduction

Following the Linked Open Data cloud (LOD) principles many datasets have
been published. Federated SPARQL query engines [15,1] have been developed to
query multiple interlinked datasets hosted by remote SPARQL endpoints. They
allow to consume LOD data in a decentralized way without the need to copy
the data. However, finding pertinent federated queries over a growing number of
datasets is challenging. This requires to fully understand the datasets and find
potential joins among them. In this paper, we propose PFed, an approach to
recommend federated queries for end-users. More precisely, PFed recommends
plausible federated queries using the query logs of different SPARQL endpoints.
This is not a classical recommendation problem. In recommender systems [2],
the problem is to recommend resources (or items) for users based on similar ones
already seen by the users. In PFed, we start with a SPARQL query from a query
log and we stretch this query with real queries from other existing query logs for
generating a plausible federated query Q. The generated federated query Q is



2 Hala Skaf-Molli et al.

called plausible if an external observer of PFed cannot deny that queries in the
original logs could be subqueries of Q. To illustrate, Figure 1 presents extracted
queries from real query logs 1 of SWDF and DBpedia. More precisely, Figure 1a
presents SPARQL queries from the log of SWDF 2012 and Figure 1b present
SPARQL queries from the log of DBpedia 3.5.1 2.

Q1S : SELECT ∗ WHERE {
? ob j r d f : t ype f o a f : O r g a n i z a t i o n .
? ob j f o a f : based_near ? p l a c e

}

Q3S : SELECT ∗ WHERE {
{? paper swrc : au tho r ? autho r }
UNION {? paper f o a f : maker ? autho r }
OPTIONAL {? paper swrc : a b s t r a c t ? a b s t r a c t }

}

(a) SWDF query log

Q1D: SELECT ∗ WHERE {
? co u n t r y r d f s : l a b e l ? l a b e l .
? co u n t r y dbped ia2 : c a p i t a l ? c a p i t a l .
? c a p i t a l geo : l a t ? l a t .
? c a p i t a l geo : l ong ? l ong

}

Q3D: SELECT ∗ WHERE {
{ dbped ia : P a r i s ? p r o p e r t y ? hasVa lue }

UNION
{? i s V a l u e O f ? p r o p e r t y dbped ia : P a r i s }}

(b) DBpedia query log

Fig. 1: SPARQL queries from the logs of SWDF 2012 and DBpedia 3.5.1

Consider the Q1S from the log of SWDF, this query can be extended with
the query Q1D from the log of DBpedia. The result is the SPARQL 1.1 federated
Query Q1S1D given in Figure 2a. Q1S1D is generated by joining the variable
?place of the query Q1S, i.e., the object of the predicate foaf:based_near with the
variable ?country of the query Q1D, i.e. the subject of the predicates rdfs:label
and dbpedia2:capital. The joined variable ?country has been renamed by ?place,
in the generated query Q1S1D. The execution of this query over a federation of
SWDF and DBpedia produces 1056 results.

The generated query Q1S1D can be recommended as a plausible federated
query because for an external observer Q1S and Q1D are subqueries of Q1S1D,
if we ignore the renaming of variables. In the same way, we can generate a more
complex federated query such as the query Q2S2D shown in Figure 2b. Q2S2D
is obtained by extending the query Q2S from the log of SWDF with the query
Q2D from the log of DBpedia. The joining variable ?sameAs is renamed as
?person in Q2S2D. The objective of this paper is to show how we can generated
plausible generated queries automatically. Currently, we cannot find a federated
query log. This is normal, because a federated engine like FedX [15], for example,
decomposes a federated query into sub-queries, and evaluates these sub-queries
against relevant SPARQL endpoints. Therefore, a query log of a SPARQL end-
point does not know the federated query, it is only aware of a fragment of the
federated query.

1 https://github.com/dice-group/feasible
2 Common prefixes are used and swc:<http://data.semanticweb.org/ns/swc/ontology#>,
swrc:<http://swrc.ontoware.org/ontology#>,dbpedia:<http://dbpedia.org/resource/>,
dbpedia2:<http://dbpedia.org/property/> and dbo:<http://dbpedia.org/ontology/>

https://github.com/dice-group/feasible


Recommending Plausible Federated Queries 3

SELECT ∗ WHERE {
SERVICE <http :// swdf −2012>

{ ? ob j r d f : t ype f o a f : O r g a n i z a t i o n .
? ob j f o a f : based_near ? p l a c e

SERVICE <http :// dbpedia −3.5.1>
{ ? p l a c e r d f s : l a b e l " Un i ted Kingdom "@en .

? p l a c e dbped ia2 : c a p i t a l ? c a p i t a l .
? c a p i t a l geo : l a t ? l a t .
? c a p i t a l geo : l ong ? l ong }}}

#r e s u l t s = 1 056

(a) Q1S 1 Q1D

SELECT ∗ WHERE {
SERVICE <http :// swdf −2012> {
swc : tim−f i n i n r d f : t ype f o a f : Person

{swc : tim−f i n i n f o a f : name ?name1}
UNION

{swc : tim−f i n i n r d f s : l a b e l ?name1}
OPTIONAL

{swc : tim−f i n i n f o a f : mbox_sha1sum ?mbox_sha1sum}
OPTIONAL

{swc : tim−f i n i n f o a f : homepage ?homepage}
OPTIONAL

{swc : tim−f i n i n f o a f : page ? page }
OPTIONAL

{swc : tim−f i n i n owl : sameAs ? pe r son
SERVICE <http :// dbpedia −3.5.1> {

? pe r son skos : s u b j e c t ? s u b j e c t .
? pe r son dbo : b i r t h D a t e ? b i r t h .
? pe r son f o a f : name ?name2 .
? pe r son r d f s : comment ? d e s c r i p t i o n
FILTER ( l a n g (? d e s c r i p t i o n ) = " en ")}}

OPTIONAL
{swc : tim−f i n i n r d f s : s e e A l s o ? s e e A l s o }

}}
#r e s u l t s = 178

(b) Q2S 1 Q2D

Fig. 2: Plausible federated queries generated from logs of SWDF 2012 and DB-
pedia 3.5.1 in Figure 1

We believe generating plausible federated queries over real datasets allows
to leverage the full power of the LOD. Recommending real federated queries
is challenging. This requires to explore a large number of queries to find joins
among datasets. In addition, not all combinations of joinable queries generate
a federated query that is semantically correct [10,5]. We propose PFed, a new
approach to generate plausible and correct federated queries. PFed starts by
pruning the queries logs by selecting only queries with joinable predicates reduc-
ing the search space. The contributions of the paper are:
– We define a new semantic summary for pruning query logs.
– We define an algorithm to exclude non joinable queries from logs.
– We propose an approach to generate plausible and correct federated queries

using the pruned logs.
– We validate our approach using queries of SWDF 2012 and DBpedia 3.5.1.
This paper is organized as follows. Section 2 summarizes related works. Sec-

tion 3 details PFed, an automatic generator of plausible federated queries. Sec-
tion 4 presents our experimental results. Finally, conclusions and future work
are outlined in Section 5.

2 Related Work

Feta [8] is a federated query tracker that computes Basic Graph Patterns from
a federated log. It supposes the existence of a federated query log. In this work,
we want to recommend federated queries rather than analyzing federated query
logs.

Many efforts have been done to automatically generate SPARQL queries,
either for individual dataset [4,12] or multiple datasets as Splodge [7] and Fed-
Bench [14]. Federated queries benchmarks have been proposed for evaluating



4 Hala Skaf-Molli et al.

the performance of federated query engine. Existing benchmark rely either on
hand-crafted queries or on automatically generated ones.

FedBench [14] rely on hand-crafted queries. The datasets of FedBench are
real datasets preselected from the Linked Data Cloud, e.g. Life Science, Cross
domain. FedBench is commonly used for the evaluation of federated query en-
gines. FedBench is not designed to recommend plausible federated queries over
a federation of SPARQL endpoints. LargeRDFBench [11] attempts to generate
more realistic federated queries. The benchmark comprises a total of 32 queries
for SPARQL endpoint federation. Queries are ranging from simple queries ex-
tracted from FedBench queries and large data queries created by the authors with
the help of the expert domain. As FedBench, LargeRDFBench are designed for
preselected datasets and queries are designed for specific domains and cannot be
used for automatic generation of realistic federated queries.

Splodge [7] proposes heuristics for automatic query generation. Splodge gen-
erates only conjunctive queries of triple patterns, i.e., Basic Graph Patterns
(BGP) with bound predicate, unbound subject and unbound object. Other
SPARQL operators such as FILTER, OPTIONAL are not considered. How-
ever, recent analytical study of large SPARQL query logs [6] shows that 74.83%
of studied queries have JOIN, FILTER and OPTIONAL and only 7.49% have
JOIN alone (conjunctive queries). Consequently, the queries of Splodge cannot
reflect the reality.

Existing approaches of automatic generation of federated queries do not re-
flect reality and hand-crafted federated queries are designed for specific datasets
with the purpose to stress the performance of a federated query engine. Bench-
marks are not designed for recommending plausible federated queries.

3 Generation of Plausible Federated Queries

Intuitively, for generating a plausible federated query over n datasets, we start
by combing (joining) the query logs log1 and log2 of two datasets d1 and d2,
each dataset is hosted by a SPARQL endpoint. We can distinguish different type
of join combinations: subject-subject or object-subject leading to different query
structures star-shaped, path-shaped, or hybrid queries [14]. Then, we generate
new federated queries by joining the resulting queries and the log log3 of the
dataset d3. We repeat the same process iteratively until processing the n query
logs.

Processing the whole logs to generate federated queries means that any query
from one log could be combined with at least a query from the another log.
However, this not always the case, for instance, in our experimentation for some
join combinations only approximately 25% of query log of SWDF can be joined
with the log of DBpedia. Therefore, we need to prune the logs to keep only
joinable queries, i.e., queries contain at least one joinable predicate.

The problem is given two logs log1 and log2, for a query Q1 ∈ log1 checks if
it exists a query Q2 ∈ log2 where Q1 is joinable with Q2.



Recommending Plausible Federated Queries 5

3.1 Finding joinable queries

To find joinable predicates, one can rely on the Vocabulary Of Interlinked
Datasets VoID [3]. This vocabulary describes metadata about RDF datasets
and the linkset. A linkset is a collection of RDF links between two datasets 3.
An RDF link is an RDF triple whose subject and object are described in different
datasets. This corresponds to the joinable predicates in the example of the Fig-
ure 2. However, we cannot use VoID to detect joinable predicates because a large
number of RDF datasets do not provide VoID [16], only 13.65% of datasets 4

(77/564) present a VoID description.
Another solution is to use the capabilities of data sources as defined in Hibis-

cus [13] to check the possible existence of matching. According to [13], the data
summary of a source d ∈ D is the set CA(d) of all capabilities of that source.

Definition 1 (Capability). Given a source d, a capability is a triple (p, SA(d, p),
OA(d, p)), which contains (1) a predicate p in d, (2) the set SA(d, p) of all dis-
tinct subject authorities of p in d and (3) the set OA(d, p) of all distinct object
authorities of p in d.

The total number of capabilities of a source is equal to the number of distinct
predicates in it. The definition of the authorities of a subject or an object relies
on the analysis of the Unified Resource Identifier (URI) syntax. The URI syntax
consists of a hierarchical sequence of components referred to as the scheme,
authority, path, query, and fragment5. For example, the uri <http://dbpedia.
org/ontology/Plant> contains a schema "http", an authority "dbpedia.org"
and a path "ontology/Plant". To compute the set of capabilities for a source,
the first two components (path, authority) are combined as the authority of the
URI. Figure 3 presents a sample of the summary of SWDF 2012 and DBpedia
3.5.1. For instance, in Figure 3a, the first capability of SWDF data source is the
predicate foaf:based_near, its subject authority is <http://data.semanticweb.
org> and its object authorities are <http://dbpedia.org>, <http://www.w3.
org>, <http://sws.geonames.org>, and <http://data.semanticweb.org>.

Hibiscus data summary allows to prune the query logs only if many predicates
have different subjects or objects authority. However, this not always the case,
especially for the subject authority. For instance, the majority of subjects of
DBpedia have the authority <http://dbpedia.org>, only six predicates out
of 39672 predicates of DBpedia 3.5.1 do not have <http://dbpedia.org> as a
subject authority. Therefore, if a query Q1 in SWDF query log is joinable with
a query Q2 in DBpedia query log on the subject authority <http://dbpedia.
org>, then Q1 will be joinable with a large number queries in the log of DBpedia.
Therefore, for query logs of SWDF and DBpedia, Hibiscus will prune mostly
queries with unbounded predicates.

We need to use the semantic of subjects and objects for finding joinable pred-
icates. Intuitively, a subject or an object from one dataset could be joinable with
3 https://www.w3.org/TR/void
4 http://sparqles.ai.wu.ac.at/
5 URI Syntax Components: https://tools.ietf.org/pdf/rfc3986.pdf

<http://dbpedia.org/ontology/Plant>
<http://dbpedia.org/ontology/Plant>
"http"
"dbpedia.org"
"ontology/Plant"
<http://data.semanticweb.org>
<http://data.semanticweb.org>
<http://dbpedia.org>
<http://www.w3.org>
<http://www.w3.org>
<http://sws.geonames.org>
<http://data.semanticweb.org>
<http://dbpedia.org>
<http://dbpedia.org>
<http://dbpedia.org>
<http://dbpedia.org>
https://www.w3.org/TR/void
http://sparqles.ai.wu.ac.at/


6 Hala Skaf-Molli et al.

[] a ds:Service ;
ds:url <http://swdf-2012> ;
ds:capability [

ds:predicate foaf:based_near ;
ds:sbjAuthority <http://data.semanticweb.org> ;
ds:objAuthority <http://dbpedia.org>,
<http://www.w3.org>, <http://sws.geonames.org>,
<http://data.semanticweb.org> ; ] ;

ds:capability [
ds:predicate owl:sameAs ;
ds:sbjAuthority <http://data.semanticweb.org> ;
ds:objAuthority <http://dbpedia.org>, ...] ;

ds:capability [
ds:predicate swc:hasLocation ;
ds:sbjAuthority <http://data.semanticweb.org>;
ds:objAuthority <http://data.semanticweb.org>,
<http://dbpedia.org> ; ] ;

ds:capability [
ds:predicate swrc:author ;
ds:sbjAuthority <http://data.semanticweb.org> ;
ds:objAuthority <http://data.semanticweb.org> ; ] ;

ds:capability [
ds:predicate foaf:maker ;
ds:sbjAuthority <http://data.semanticweb.org> ;
ds:objAuthority <http://data.semanticweb.org> ; ] ;

ds:capability [
ds:predicate swrc:abstract ;
ds:sbjAuthority <http://data.semanticweb.org> ; ] ;

ds:capability [
ds:predicate skos:prefLabel ;
ds:sbjAuthority <http://dbpedia.org>, ...] ;

(a) SWDF data summary

[] a ds:Service ;
ds:url <http://dbpedia-3.5.1> ;
ds:capability [

ds:predicate dbpedia2:capital ;
ds:sbjAuthority <http://dbpedia.org> ;
ds:objAuthority <http://dbpedia.org> ; ] ;

ds:capability [
ds:predicate dbo:birthDate ;
ds:sbjAuthority <http://dbpedia.org> ; ] ;

ds:capability [
ds:predicate rdfs:comment ;
ds:sbjAuthority <http://dbpedia.org> ; ] ;

ds:capability [
ds:predicate foaf:name ;
ds:sbjAuthority <http://dbpedia.org> ; ] ;

ds:capability [
ds:predicate dbo:abstract ;
ds:sbjAuthority <http://dbpedia.org> ; ] ;

ds:capability [
ds:predicate dbo:thumbnail ;
ds:sbjAuthority <http://dbpedia.org> ;
ds:objAuthority <http://upload.wikimedia.org> ; ] ;

ds:capability [
ds:predicate foaf:depiction ;
ds:sbjAuthority <http://dbpedia.org> ;
ds:objAuthority <http://upload.wikimedia.org> ; ] ;

ds:capability [
ds:predicate dbpedia2:party ;
ds:sbjAuthority <http://dbpedia.org> ;
ds:objAuthority <http://dbpedia.org>,
<http://www.xat.org> ; ] ;

(b) DBpedia data summary

[] a ds:Service ;
ds:url <http://swdf-2012> ;
ds:capability [

predicate: foaf:based_near ;
objClasses: dbo:City, dbo:Place,
dbo:PopulatedPlace, ...] ;

ds:capability [
ds:predicate: owl:sameAs ;
objClasses: dbo:Person, dbo:Artist,
dbo:Politician, dbo:Scientist, ...] ;

ds:capability [
ds:predicate: skos:prefLabel ;
SbjClasses: foaf:Organization, foaf:Person,
skos:Concept, swc:WorkshopEvent ; ] ;

(c) SWDF classes summary

[] a ds:Service ;
ds:url <http://dbpedia-3.5.1> ;
ds:capability [

ds:predicate: dbpedia2:capital ;
objClasses: dbo:City, dbo:Place,
dbo:PopulatedPlace, ...] ;

ds:capability [
ds:predicate: dbo:birthDate ;
objClasses: dbo:Person, dbo:Organisation,
dbo:University, ...] ;

ds:capability [
ds:predicate: dbo:thumbnail ;
subjClasses: dbo:Organisation, dbo:Film,
dbo:MusicalArtist, dbo:Place, ...] ;

(d) DBpedia classes summary

Fig. 3: Sample of Hibiscus Summaries and Classes Summaries of logs of SWDF
2012 and DBpedia 3.5.1



Recommending Plausible Federated Queries 7

?s ?o1 ?o3

?o2

p1 p3

p2

(a) p1, p2 ∈ Q1, Q1 ∈ log1 and p3 ∈ Q2,
Q2 ∈ log2

?s ?o1 ?o3

?o2

p1 p3

p2

(b) p1 ∈ Q1, Q1 ∈ log1 and p2, p3 ∈ Q2,
Q2 ∈ log2

Fig. 4: Possible structures for hybrid federated queries

a subject or object from another dataset, if they share some common types. More
precisely, we define a new summary called Class summary. A class summary is a
set of capabilities where a capability consists of a predicate, the set SC(d, p) of
classes of its subject and the set OC(d, p) of classes of its object. The classes are
computed using SPARQL queries. For instance, to compute the object classes
of the predicate foaf:based_near, we execute the following SPARQL federated
query:
SELECT DISTINCT ? type WHERE {

SERVICE <http :// swdf −2012> {
? con f f o a f : based_near ? x .

SERVICE <http :// dbpedia −3.5.1>
{? x r d f : t ype ? type }}

}

If we want to find joinable predicates for path query from SWDF to DBPedia,
we look for the type of the object of the predicate in DBPedia dataset. Figures
3c and 3d present Classes summary for SWDF and DBpedia, respectively.

We use only the direct classes of subjects and objects to find common classes.
We do not use inferences to find common classes because schemas information
are not always available [9].

3.2 Pruning query logs

Based on data summaries and classes summaries, we can prune the logs of cor-
responding datasets by retaining only joinable queries. The pruning depends on
the structure of generated federated queries. Let D be a set of distinct data
sources, d1, d2 ∈ D. Let S1, SC1, S2, SC2 be the summaries of d1 and d2, log1
and log2 are the query log of d1 and d2, respectively. For two queries Q1 ∈ log1
and Q2 ∈ log2 with tp1 = (s1, p1, o1) ∈ Q1 and tp2 = (s2, p2, o2) ∈ Q2, we say
that Q1 and Q2 are joinable if p1 and p2 are joinable path or joinable star.

Definition 2 (Joinable Path). joinablePath(p1, p2) = true, if OA(d1, p1) ∩
SA(d2, p2) 6= ∅ and OC(d1, p1) ∩ SC(d2, p2) 6= ∅.

Definition 3 (Joinable Star). joinableStar(p1, p2) = true, if SA(d1, p1) ∩
SA(d2, p2) 6= ∅ and SC(d1, p1) ∩ SC(d2, p2) 6= ∅.



8 Hala Skaf-Molli et al.

Algorithm 1: Algorithm for Excluding non PATH Joinable queries be-
tween log1 and log2

Input: log1, log2, S1, S2, SC1, SC2 . query logs and summaries
Output: P Jlog1, P Jlog2 . Joinable Path Queries of log1 and log2

1 Function PJDetection(F ):
2 P Jlog1 ←− ∅;
3 P Jlog2 ←− ∅;
4 foreach Q1 ∈ log1 do
5 foreach Q2 ∈ log2 do
6 let OA1 = S1.OAuth.P redicate(Q1)
7 let SA2 = S2.SAuth.P redicate(Q2)
8 if OA1 ∩ SA2 6= ∅ then
9 let OC1 = SC1.OClasses.P redicate(Q1)

10 let SC2 = SC2.SClasses.P redicate(Q2)
11 if OC1 ∩ SC2 6= ∅ then
12 P Jlog1 ←− P Jlog1 ∪Q1
13 P Jlog2 ←− P Jlog2 ∪Q2

14 end
15 end
16 end
17 end
18 return P Jlog1, P Jlog2;
19 End Function

The hybrid join pattern is built as a mix of a path join pattern and a star join
pattern. Figure 4 presents possible structures of hybrid federated queries. The
query generated in Figure 4a is built from the path query of p1 ∈ Q1, Q1 ∈ log1
and p3 ∈ Q2, Q2 ∈ log2. The query generated in Figure 4b built from the star
query of p1 ∈ Q1, Q1 ∈ log1 and p2 ∈ Q2, Q2 ∈ log2.

The algorithm 1 presents how to prune query logs to construct path-shaped
federated queries. To illustrate, consider a sample of query logs of SWDF 2012
and dbpedia-3.5.1 in figures 1a and 1b, respectively.

After the execution of the algorithm, only Q1S, Q2S of SWDF and Q1D and
Q2D of DBpedia will be preserved, because the intersection between the object
authorities of based_near ∈ Q1S and the subject authority of dbpedia2:capital
∈ Q1D is not empty since they have the authority <http://dbpedia.org>
and the type dbo:city in common. As well, the object authorities of owl:sameAs
∈ Q2S and the subject authority of dbo:birthDate ∈ Q2D have the authority
<http://dbpedia.org> and the type dbp:Person in common. We exclude Q3S
because it cannot be joined with any query from dbpedia, i.e. no predicate in
dbpedia has <http://data.semanticweb.org> as subject authority. We also
eliminate Q3D because the capability of unbound predicate is undefined.

For star-shaped federated queries (subject-subject), we have to modify the
condition in line 8 of algorithm 1 by (SA1 ∩ SA2 6= ∅) and the condition in
line 11 by (SC1 ∩ SC2 6= ∅). In this case, we keep queries Q4S and Q4D.

<http://dbpedia.org>
<http://data.semanticweb.org>


Recommending Plausible Federated Queries 9

The subject authorities of skos:prefLabel ∈ Q4S and of dbo:thumbnail ∈ Q4D
have the authority <http://dbpedia.org> and the type foaf:Organization in
common.

SELECT ∗ WHERE {
SERVICE <http :// swdf −2012>

{? ob j f o a f : based_near ? p l a c e .
SERVICE <http :// dbpedia −3.5.1>

{? p l a c e dbped ia2 : c a p i t a l ? c a p i t a l }}}

(a) Path query by joining a triple pat-
tern from Q1S and a triple pattern
from Q1D

SELECT ∗ WHERE {
SERVICE <http :// swdf −2012>

{? x r d f s : p r e f L a b e l ?o1 .
SERVICE <http :// dbpedia −3.5.1>

{? x dbo : thumbna i l ?o2 }}}
(b) Star query by joining a triple from
QS4 and a triple pattern from Q4D

Fig. 5: Minimal federated queries generated from pruned logs of SWDF and
DBpedia in Figure 3

3.3 Building plausible federated queries

The construction of plausible federated queries follows the following process:
– Use pruned logs to build minimal federated queries.
– Use minimal federated queries to build plausible federated queries.
We start by generating minimal federated queries PFedmin. A minimal fed-

erated contains one triple from log1 and one triple from log2.

Minimal federated queries PFedmin is a basic federated query, it is com-
posed of two triples patterns and defined as follows.

Definition 4 (PFedmin). Let log1, log2 be two pruned logs of queries of datasets
d1 and d2, respectively. p1 ∈ log1 and p2 ∈ log2 are two predicates.

PFedmin = { ?s, p1, ?x . ?x, p2, ?o | joinablePath(p1, p2) = true}
or {?s, p1, ?o1 . ?s, p2, ?o2 | joinableStar(p1, p2) = true }

In order to construct a path (start) join, we substitute the object (subject)
of p1 and the subject of p2 by the same value as given in the table 1.

tp1 object tp2 subject substitution value
?x ?y ?x
?x a a
a ?x a
a b null

Table 1: All substitution values possible to create path join. ?x, ?y are variables
and a, b are constants (URIs or literals)

<http://dbpedia.org>


10 Hala Skaf-Molli et al.

Figure 5a presents a minimal path-shaped federated query between foaf:based_near
∈ Q1S and dbpedia2:capital ∈ Q1D in Figure 3. Figure 5b presents a minimal
star-shaped federated query between skos:prefLabel ∈ Q4S and dbo:thumbnail
∈ Q4D.

We keep only PFedmin queries that produce results to generate plausible
federated queries.

SELECT ∗ WHERE {
? s1 p1 ?o1 .
? s1 p2 ?o2 }

(a) Q1 from log
endpoint1

SELECT ∗ WHERE {
? s3 p3 ?o3
OPTIONAL { ?o2 p4 ?o3 }}

(b) Q2 from log endpoint2

SELECT ∗ WHERE {
SERVICE <endpo int1 >
{ ? s1 p1 ?o1 .

? s1 p2 ?o2
SERVICE <endpo int2 > : P ’
{ ? s3 p3 ?o3 : P1

OPTIONAL { ?o2 p4 ?o3 }}}} : P2

(c) Q1 1 Q2

Fig. 6: A non well designed federated query

Plausible Federated queries PFed The construction of QPFed is tricky, if
the original queries contain OPTIONAL operator. We have to construct only
correct plausible federated query. A plausible federated query is correct if it is
well designed [10] and service-safeness [5].

Definition 5 (Well designed[10]). A graph pattern P is well designed if for
every occurrence of a sub-pattern P’ = (P1 OPT P2) of P and for every variable
?X occurring in P, the following condition holds:

if ?X occurs both inside P2 and outside P’, then it also occurs in P1.

The federated query in Figure 6c is not well designed because the variable
?o2 occurs in P2 and outside the P’ (i.e. clause SERVICE <dataset2>), but it
not occurs in P1.

The service-safeness provides condition that ensures that a SPARQL query
containing SERVICE operator can be safely evaluated. Our generated queries
ensure service-safeness because each SERVICE clause has only bounded service,
i.e., during the construction the URI of the SPARQL endpoints are known.

The main issue is to build well designed queries. A correct plausible federated
query is constructed as follows. Let log1, log2 be two pruned query logs, Q1 ∈
log1, Q2 ∈ log2, Q1 and Q2 contribute to the construction of a minimal query,
then:



Recommending Plausible Federated Queries 11

– If Q1 and Q2 are conjunctive queries (a.k.a BGPs) then QPFed = Q1 1
Q2, QPFed is a simple concatenation of queries (Q1 . Q2), as in figure 2a,
Q1S1D = Q1S 1 Q1D.

– If Q1 contains binary operators like UNION or OPTIONAL, we distinct two
cases:
• If a joinable predicate is outside binary clauses of Q1, we add Q2 in the
BGP part of Q1.

• If a joinable predicate of Q1 is inside the UNION or OPTIONAL clauses,
we append Q2 inside this clause after the substitution of the join variables
(subject or object of the triple) according to table 1. Figure 2b presents
a federated where the joinable predicate owl:sameAs of Q2S is inside the
OPTIONAL Clause.

– If a joinable predicate of Q2 is inside an OPTIONAL clause, we make sure
to not generate non well designed queries like query shown in 6c.

4 Evaluation

We want to answer empirically the following questions: Does Hibiscus summary
prune non joinable predicates? Does Classes summary effective? Does PFed
produce "realistic" queries compared to automatic query generation benchmarks?
Does PFed generate correct plausible federated queries?

All data, codes, and generated query are available at the project web page 6.

4.1 Experimental Setup

Dataset and Queries: We use SWDF 2012 and DBPedia 3.5.1 datasets
and clean queries of Feasible 7. Table 2 reports statistics about the datasets and
query logs. It is strange that the query log of SWDF contains more predicates
than the original dataset hosted at the SPARQL endpoint. Some queries in the
logs use predicates that are not defined in the dataset. Using DBpedia to generate
plausible federated queries is challenging because DBpedia dataset has a high
number of predicates and the log of DBpedia has a high number of queries. We
use only SELECT queries to construct plausible federated queries.

dataset |triples| |dataset predicates| |original log| |SELECT queries| |log predicates|
SWDF 242 256 170 64 030 37 592 201
DBPedia 232 542 405 39 672 217 812 127 812 247

Table 2: Real Datasets and real logs

6 https://github.com/GDD-Nantes/PFed
7 https://github.com/dice-group/feasible

https://github.com/GDD-Nantes/PFed


12 Hala Skaf-Molli et al.

Approaches: We can compare our approach only with Splodge, because
only Splodge is automatic federated queries benchmark. However, we can com-
pare only with minimal queries since Splodge generates only conjunctive queries
(without OPTIONAL, UNION). We modify the code of Splodge8 to generate
all possible queries instead of stopping after the generation of the first couple of
joinable predicates.

4.2 Experimental Results

Does Hibiscus summary prune non joinable predicates ? Table 3 presents the
results of pruning using data summaries of Hibiscus. As we can see, the reduction
is 62.75% for SWDF query log for path-shaped queries and by 42.82% for star-
shaped. The reduction if only 2.15% of DBpedia log for both path-shaped queries
and star-shaped generation. This reduction is not significant because most of
predicates in DBPedia has the authority <http://dbpedia.org>.

path-shaped star-shaped
dataset |predicate joinable | |pruned log| % reduce |predicate joinable | |pruned log| % reduce
SWDF 6 14 003 62.75 3 21 475 42.82
DBPedia 229 125 070 2.15 229 125 070 2.15

Table 3: Logs pruning using Hibiscus summaries

Does Classes summary effective? We use Classes summary to prune the log
returned by Hibiscus. Classes summary is effective because it increases consider-
ably the percentage of pruned queries. The reduction is impressive for DBPedia
from 2.15% with Hibiscus to 71.42% with Classes summary as shown in table 4.

path-shaped star-shaped
dataset |predicate joinable | |pruned log| % reduce |predicate joinable | |pruned log| % reduce
SWDF 3 9 355 75.12 3 21 495 42.82
DBPedia 139 36 522 71.42 83 36 449 71.48

Table 4: Logs pruning using Hibiscus & Classes summaries

Does PFed produce "realistic" queries compared to automatic query generation
benchmarks? We run Splodge on both SWDF and DBpedia. As parameters, we
used a low minimum selectivity to get at least one result. We also didn’t use a
max selectivity in order to get as much queries as possible.
8 We do not use the original code of Splodge because it does not im-
plement Star-shaped queries, we use the code at https://github.com/
Institute-Web-Science-and-Technologies/splodge

https://github.com/Institute-Web-Science-and-Technologies/splodge
https://github.com/Institute-Web-Science-and-Technologies/splodge


Recommending Plausible Federated Queries 13

Query Structure |queries| |predicates SWDF| |predicates DBpedia |
Path SWDF to DBpedia 1 300 6 1 108
Path DBpedia to SWDF 170 3 98

Star 63 3 38
Table 5: Statistics of minimal queries generated by Splodge using SWDF and
DBpedia

Path-shaped queries SWDF to DBpedia Star-shaped queries
all generated with result % all generated with result %

397 77 19.39 249 20 8.03
Table 6: Statistics of minimal queries generated by PFed using Hibiscus &
Classes summaries

Table 5 presents minimal queries generated by Splodge. Table 6 shows that
from 3 joinable predicates of SWDF and 139 joinable predicates of DBPedia (see
table 4), PFed generates only 77 minimal path-shaped queries with non empty
result set. Whereas, Splodge generates 1300 queries, some of these queries are
not significant as the query displayed in Figure 7. PFed generates relatively less
queries, 20 PFedmin star-shaped queries with non empty result set based on
3 joinable predicates of SWDF and 83 joinable predicates of DBPedia. PFed
relies on query logs to generate plausible queries.

Does PFed generate correct plausible federated queries ? Due to the size of
the pruned logs, we can generate a large number of plausible federated queries.
In our experimentation, we focus on the generation of path-shaped between
foaf:based_near from SWDF and dbpedia2:capital from DBPedia because foaf-
:based_near predicate is used to link SWDF and DBpedia datasets. The pruned
SWDF query log contains 2 866 queries that contains foaf:based_near. Many of
these queries have the same structure but with different literals and variables.
Therefore, instead of producing 2866×14 = 40124 queries where 14 is the number
of queries that contains dbpedia2:capital in pruned DBpedia log, we define pat-
terns for foaf:based_near queries. We differentiate 9 patterns for foaf:based_near
queries and we generate 24 queries. All generated queries are executed correctly
and 19 of these queries have non empty results set (see table 7).

SELECT ? v0 ? v2 WHERE {
SERVICE <http :// swdf −2012>
{ ? v0 f o a f : based_near ? v1
SERVICE <http :// dbped ia . org> {

? v1 dbped ia2 : image2Capt ion ? v2 . }}}

Fig. 7: A minimal federated query generated by Splodge



14 Hala Skaf-Molli et al.

p1 |p1| p2 |p2| |PFed| |with result| %
PFed path foaf:based_near 9 dbpedia2:capital 5 24 19 79.17
PFed star skos:prefLabel 3 dbo:thumbnail 14 42 14 33.33

Table 7: PFed path and star, p1 ∈ SWDF and p2 ∈ DBPedia

We generate star-shaped plausible federated queries based on skos:prefLable
from SWDF and dbpedia:thumbnail from DBPedia (see table 7). The 42 gener-
ated queries are executed correctly and 28 of these queries produce results.

5 Conclusion and Future Work

We presented PFed an approach for automatic generation of plausible federated
queries based on real query logs. PFed starts by pruning the logs to exclude non
joinable queries using two data summaries. The first one is based on the author-
ities and the second is based on the type of subjects and objects of predicates.
Experimentations with real query logs of SWDF and DBpedia demonstrate that
PFed is able to prune considerably the logs and generate correct plausible fed-
erated queries.

As future work, we would like to experiment PFed with more real query logs
and produce plausible federated queries over a large number of SPARQL end-
points. Finally, we plan to extend PFed with statistical information to generate
only queries that return results.

Acknowledgement

This work is part of the multidisciplinary project Sedela, funded by CominLabs,
that brings together three laboratories: LS2N, CREAD and Lab-STICC.

References

1. Acosta, M., Vidal, M., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an adap-
tive query processing engine for SPARQL endpoints. In: International Semantic
Web Conference. Lecture Notes in Computer Science, vol. 7031, pp. 18–34. Springer
(2011)

2. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art. IEEE transactions on knowledge and data
engineering 17(6), 734–749 (2005)

3. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets.
In: LDOW (2009)

4. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of RDF
data management systems. In: The International Semantic Web Conference. pp.
197–212 (2014)

5. Arenas, M., Pérez, J.: Federation and navigation in sparql 1.1. In: Reasoning Web
International Summer School. pp. 78–111. Springer (2012)



Recommending Plausible Federated Queries 15

6. Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL
query logs. PVLDB 11(2), 149–161 (2017), http://www.vldb.org/pvldb/vol11/
p149-bonifati.pdf

7. Görlitz, O., Thimm, M., Staab, S.: SPLODGE: systematic generation of SPARQL
benchmark queries for linked open data. In: The Semantic Web - ISWC 2012 -
11th International Semantic Web Conference, Boston, MA, USA, November 11-
15, 2012, Proceedings, Part I. pp. 116–132 (2012), https://doi.org/10.1007/
978-3-642-35176-1_8

8. Nassopoulos, G., Serrano-Alvarado, P., Molli, P., Desmontils, E.: FETA: Federated
QuEry TrAcking for Linked Data. In: International Conference on Database and
Expert Systems Applications (DEXA). p. 0. No. 9828 in Lecture Notes in Computer
Science (Sep 2016)

9. Neumann, T., Moerkotte, G.: Characteristic sets: Accurate cardinality estimation
for rdf queries with multiple joins. In: Data Engineering (ICDE), 2011 IEEE 27th
International Conference on. pp. 984–994. IEEE (2011)

10. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. In: In-
ternational semantic web conference. pp. 30–43. Springer (2006)

11. Saleem, M., Hasnainb, A., Ngonga Ngomo, A.C.: LargeRDFBench: A billion triples
benchmark for sparql endpoint federation. In: Journal of Web Semantics (JWS)
(2017), https://svn.aksw.org/papers/2017/LargeRDFBench_JWS/public.pdf

12. Saleem, M., Mehmood, Q., Ngomo, A.C.N.: Feasible: A feature-based sparql bench-
mark generation framework. In: International Semantic Web Conference. pp. 52–
69. Springer (2015)

13. Saleem, M., Ngomo, A.C.N.: Hibiscus: Hypergraph-based source selection for
sparql endpoint federation. In: European Semantic Web Conference. pp. 176–191.
Springer (2014)

14. Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: Fed-
bench: A benchmark suite for federated semantic data query processing. In: In-
ternational Semantic Web Conference. pp. 585–600 (2011), https://doi.org/10.
1007/978-3-642-25073-6_37

15. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: Fedx: Optimization
techniques for federated query processing on linked data. In: International Semantic
Web Conference. pp. 601–616. Springer (2011)

16. Vandenbussche, P.Y., Umbrich, J., Matteis, L., Hogan, A., Buil-Aranda, C.: Spar-
qles: Monitoring public sparql endpoints. Semantic Web 8(6), 1049–1065 (2017)

http://www.vldb.org/pvldb/vol11/p149-bonifati.pdf
http://www.vldb.org/pvldb/vol11/p149-bonifati.pdf
https://doi.org/10.1007/978-3-642-35176-1_8
https://doi.org/10.1007/978-3-642-35176-1_8
https://svn.aksw.org/papers/2017/LargeRDFBench_JWS/public.pdf
https://doi.org/10.1007/978-3-642-25073-6_37
https://doi.org/10.1007/978-3-642-25073-6_37

	PFed: Recommending Plausible Federated Queries

