Sara El Hassad

Hala Skaf-Molli

Pascal Molli
email: pascal.molli@univ-nantes.fr

Florian Hacques
email: florian.hacques@etu.univ-nantes.fr

PFed: Recommending Plausible Federated Queries

Keywords: Semantic Web, Consuming Linked Open Data, SPARQL query, Federated SPARQL Query, Plausible, Joinable

Federated SPARQL query processing allows to query multiple interlinked datasets hosted by remote SPARQL endpoints. However, finding pertinent federated queries over a growing number of datasets is challenging. In this paper, we propose PFed, an approach to recommend plausible federated queries based on query logs of different datasets. The problem is not to find similar federated queries, but plausible complementary queries over different datasets. Starting with a real SPARQL query log, PFed stretches the query with real queries from different logs. A generated federated query Q is plausible if an external observer cannot deny that queries in the original logs could be subqueries of Q. PFed relies on data summaries and real SPARQL query logs to generate plausible federated queries. It starts by pruning the queries logs by selecting only queries with joinable predicates. Experimental results with real logs of DBpedia and SWDF demonstrate that PFed is able to prune drastically the logs and recommend realistic federated queries.

Introduction

Following the Linked Open Data cloud (LOD) principles many datasets have been published. Federated SPARQL query engines [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF][START_REF] Acosta | ANAPSID: an adaptive query processing engine for SPARQL endpoints[END_REF] have been developed to query multiple interlinked datasets hosted by remote SPARQL endpoints. They allow to consume LOD data in a decentralized way without the need to copy the data. However, finding pertinent federated queries over a growing number of datasets is challenging. This requires to fully understand the datasets and find potential joins among them. In this paper, we propose PFed, an approach to recommend federated queries for end-users. More precisely, PFed recommends plausible federated queries using the query logs of different SPARQL endpoints. This is not a classical recommendation problem. In recommender systems [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art[END_REF], the problem is to recommend resources (or items) for users based on similar ones already seen by the users. In PFed, we start with a SPARQL query from a query log and we stretch this query with real queries from other existing query logs for generating a plausible federated query Q. The generated federated query Q is called plausible if an external observer of PFed cannot deny that queries in the original logs could be subqueries of Q. To illustrate, Figure 1 presents extracted queries from real query logs 1 of SWDF and DBpedia. More precisely, Figure 1a presents SPARQL queries from the log of SWDF 2012 and Figure 1b present SPARQL queries from the log of DBpedia 3.5. Consider the Q1S from the log of SWDF, this query can be extended with the query Q1D from the log of DBpedia. The result is the SPARQL 1.1 federated Query Q1S1D given in Figure 2a. Q1S1D is generated by joining the variable ?place of the query Q1S, i.e., the object of the predicate foaf:based_near with the variable ?country of the query Q1D, i.e. the subject of the predicates rdfs:label and dbpedia2:capital. The joined variable ?country has been renamed by ?place, in the generated query Q1S1D. The execution of this query over a federation of SWDF and DBpedia produces 1056 results.

The generated query Q1S1D can be recommended as a plausible federated query because for an external observer Q1S and Q1D are subqueries of Q1S1D, if we ignore the renaming of variables. In the same way, we can generate a more complex federated query such as the query Q2S2D shown in Figure 2b. Q2S2D is obtained by extending the query Q2S from the log of SWDF with the query Q2D from the log of DBpedia. The joining variable ?sameAs is renamed as ?person in Q2S2D. The objective of this paper is to show how we can generated plausible generated queries automatically. Currently, we cannot find a federated query log. This is normal, because a federated engine like FedX [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF], for example, decomposes a federated query into sub-queries, and evaluates these sub-queries against relevant SPARQL endpoints. Therefore, a query log of a SPARQL endpoint does not know the federated query, it is only aware of a fragment of the federated query. Fig. 2: Plausible federated queries generated from logs of SWDF 2012 and DBpedia 3.5.1 in Figure 1 We believe generating plausible federated queries over real datasets allows to leverage the full power of the LOD. Recommending real federated queries is challenging. This requires to explore a large number of queries to find joins among datasets. In addition, not all combinations of joinable queries generate a federated query that is semantically correct [START_REF] Pérez | Semantics and complexity of sparql[END_REF][START_REF] Arenas | Federation and navigation in sparql 1.1[END_REF]. We propose PFed, a new approach to generate plausible and correct federated queries. PFed starts by pruning the queries logs by selecting only queries with joinable predicates reducing the search space. The contributions of the paper are:

-We define a new semantic summary for pruning query logs.

-We define an algorithm to exclude non joinable queries from logs.

-We propose an approach to generate plausible and correct federated queries using the pruned logs. -We validate our approach using queries of SWDF 2012 and DBpedia 3.5.1.

This paper is organized as follows. Section 2 summarizes related works. Section 3 details PFed, an automatic generator of plausible federated queries. Section 4 presents our experimental results. Finally, conclusions and future work are outlined in Section 5.

Related Work

Feta [START_REF] Nassopoulos | FETA: Federated QuEry TrAcking for Linked Data[END_REF] is a federated query tracker that computes Basic Graph Patterns from a federated log. It supposes the existence of a federated query log. In this work, we want to recommend federated queries rather than analyzing federated query logs.

Many efforts have been done to automatically generate SPARQL queries, either for individual dataset [START_REF] Aluç | Diversified stress testing of RDF data management systems[END_REF][START_REF] Saleem | Feasible: A feature-based sparql benchmark generation framework[END_REF] or multiple datasets as Splodge [START_REF] Görlitz | SPLODGE: systematic generation of SPARQL benchmark queries for linked open data[END_REF] and Fed-Bench [START_REF] Schmidt | Fedbench: A benchmark suite for federated semantic data query processing[END_REF]. Federated queries benchmarks have been proposed for evaluating the performance of federated query engine. Existing benchmark rely either on hand-crafted queries or on automatically generated ones.

FedBench [START_REF] Schmidt | Fedbench: A benchmark suite for federated semantic data query processing[END_REF] rely on hand-crafted queries. The datasets of FedBench are real datasets preselected from the Linked Data Cloud, e.g. Life Science, Cross domain. FedBench is commonly used for the evaluation of federated query engines. FedBench is not designed to recommend plausible federated queries over a federation of SPARQL endpoints. LargeRDFBench [START_REF] Saleem | LargeRDFBench: A billion triples benchmark for sparql endpoint federation[END_REF] attempts to generate more realistic federated queries. The benchmark comprises a total of 32 queries for SPARQL endpoint federation. Queries are ranging from simple queries extracted from FedBench queries and large data queries created by the authors with the help of the expert domain. As FedBench, LargeRDFBench are designed for preselected datasets and queries are designed for specific domains and cannot be used for automatic generation of realistic federated queries.

Splodge [START_REF] Görlitz | SPLODGE: systematic generation of SPARQL benchmark queries for linked open data[END_REF] proposes heuristics for automatic query generation. Splodge generates only conjunctive queries of triple patterns, i.e., Basic Graph Patterns (BGP) with bound predicate, unbound subject and unbound object. Other SPARQL operators such as FILTER, OPTIONAL are not considered. However, recent analytical study of large SPARQL query logs [START_REF] Bonifati | An analytical study of large SPARQL query logs[END_REF] shows that 74.83% of studied queries have JOIN, FILTER and OPTIONAL and only 7.49% have JOIN alone (conjunctive queries). Consequently, the queries of Splodge cannot reflect the reality.

Existing approaches of automatic generation of federated queries do not reflect reality and hand-crafted federated queries are designed for specific datasets with the purpose to stress the performance of a federated query engine. Benchmarks are not designed for recommending plausible federated queries.

Generation of Plausible Federated Queries

Intuitively, for generating a plausible federated query over n datasets, we start by combing (joining) the query logs log 1 and log 2 of two datasets d 1 and d 2 , each dataset is hosted by a SPARQL endpoint. We can distinguish different type of join combinations: subject-subject or object-subject leading to different query structures star-shaped, path-shaped, or hybrid queries [START_REF] Schmidt | Fedbench: A benchmark suite for federated semantic data query processing[END_REF]. Then, we generate new federated queries by joining the resulting queries and the log log 3 of the dataset d 3 . We repeat the same process iteratively until processing the n query logs.

Processing the whole logs to generate federated queries means that any query from one log could be combined with at least a query from the another log. However, this not always the case, for instance, in our experimentation for some join combinations only approximately 25% of query log of SWDF can be joined with the log of DBpedia. Therefore, we need to prune the logs to keep only joinable queries, i.e., queries contain at least one joinable predicate.

The problem is given two logs log 1 and log 2 , for a query

Q 1 ∈ log 1 checks if it exists a query Q 2 ∈ log 2 where Q 1 is joinable with Q 2 .

Finding joinable queries

To find joinable predicates, one can rely on the Vocabulary Of Interlinked Datasets VoID [START_REF] Alexander | Describing linked datasets[END_REF]. This vocabulary describes metadata about RDF datasets and the linkset. A linkset is a collection of RDF links between two datasets3 . An RDF link is an RDF triple whose subject and object are described in different datasets. This corresponds to the joinable predicates in the example of the Figure 2. However, we cannot use VoID to detect joinable predicates because a large number of RDF datasets do not provide VoID [START_REF] Vandenbussche | Sparqles: Monitoring public sparql endpoints[END_REF], only 13.65% of datasets 4(77/564) present a VoID description.

Another solution is to use the capabilities of data sources as defined in Hibiscus [START_REF] Saleem | Hibiscus: Hypergraph-based source selection for sparql endpoint federation[END_REF] to check the possible existence of matching. According to [START_REF] Saleem | Hibiscus: Hypergraph-based source selection for sparql endpoint federation[END_REF], the data summary of a source d ∈ D is the set CA(d) of all capabilities of that source. The total number of capabilities of a source is equal to the number of distinct predicates in it. The definition of the authorities of a subject or an object relies on the analysis of the Unified Resource Identifier (URI) syntax. The URI syntax consists of a hierarchical sequence of components referred to as the scheme, authority, path, query, and fragment 5 . For example, the uri <http://dbpedia. org/ontology/Plant> contains a schema "http", an authority "dbpedia.org" and a path "ontology/Plant". To compute the set of capabilities for a source, the first two components (path, authority) are combined as the authority of the URI. Figure 3 presents a sample of the summary of SWDF 2012 and DBpedia 3.5.1. For instance, in Figure 3a, the first capability of SWDF data source is the predicate foaf:based_near, its subject authority is <http://data.semanticweb. org> and its object authorities are <http://dbpedia.org>, <http://www.w3. org>, <http://sws.geonames.org>, and <http://data.semanticweb.org>.

Definition 1 (Capability

Hibiscus data summary allows to prune the query logs only if many predicates have different subjects or objects authority. However, this not always the case, especially for the subject authority. For instance, the majority of subjects of DBpedia have the authority <http://dbpedia.org>, only six predicates out of 39672 predicates of DBpedia 3.5.1 do not have <http://dbpedia.org> as a subject authority. Therefore, if a query Q 1 in SWDF query log is joinable with a query Q 2 in DBpedia query log on the subject authority <http://dbpedia. org>, then Q 1 will be joinable with a large number queries in the log of DBpedia. Therefore, for query logs of SWDF and DBpedia, Hibiscus will prune mostly queries with unbounded predicates.

We need to use the semantic of subjects and objects for finding joinable predicates. Intuitively, a subject or an object from one dataset could be joinable with If we want to find joinable predicates for path query from SWDF to DBPedia, we look for the type of the object of the predicate in DBPedia dataset. Figures 3c and3d present Classes summary for SWDF and DBpedia, respectively.

We use only the direct classes of subjects and objects to find common classes. We do not use inferences to find common classes because schemas information are not always available [START_REF] Neumann | Characteristic sets: Accurate cardinality estimation for rdf queries with multiple joins[END_REF].

Pruning query logs

Based on data summaries and classes summaries, we can prune the logs of corresponding datasets by retaining only joinable queries. The pruning depends on the structure of generated federated queries. Let D be a set of distinct data sources, d 1 , d 2 ∈ D. Let S 1 , SC 1 , S 2 , SC 2 be the summaries of d 1 and d 2 , log 1 and log 2 are the query log of d 1 and d 2 , respectively. For two queries The hybrid join pattern is built as a mix of a path join pattern and a star join pattern. Figure 4 presents possible structures of hybrid federated queries. The query generated in Figure 4a is built from the path query of

Q 1 ∈ log 1 and Q 2 ∈ log 2 with tp 1 = (s 1 , p 1 , o 1) ∈ Q 1 and tp 2 = (s 2 , p 2 , o 2) ∈ Q 2 ,
p 1 ∈ Q 1 , Q 1 ∈ log 1 and p 3 ∈ Q 2 , Q 2 ∈ log 2 .
The query generated in Figure 4b built from the star query of

p 1 ∈ Q 1 , Q 1 ∈ log 1 and p 2 ∈ Q 2 , Q 2 ∈ log 2 .
The algorithm 1 presents how to prune query logs to construct path-shaped federated queries. To illustrate, consider a sample of query logs of SWDF 2012 and dbpedia-3.5.1 in figures 1a and 1b, respectively.

After the execution of the algorithm, only Q1S, Q2S of SWDF and Q1D and Q2D of DBpedia will be preserved, because the intersection between the object authorities of based_near ∈ Q1S and the subject authority of dbpedia2:capital ∈ Q1D is not empty since they have the authority <http://dbpedia.org> and the type dbo:city in common. As well, the object authorities of owl:sameAs ∈ Q2S and the subject authority of dbo:birthDate ∈ Q2D have the authority <http://dbpedia.org> and the type dbp:Person in common. We exclude Q3S because it cannot be joined with any query from dbpedia, i.e. no predicate in dbpedia has <http://data.semanticweb.org> as subject authority. We also eliminate Q3D because the capability of unbound predicate is undefined.

For star-shaped federated queries (subject-subject), we have to modify the condition in line 8 of algorithm 1 by (SA 1 ∩ SA 2 = ∅) and the condition in line 11 by (SC 1 ∩ SC 2 = ∅). In this case, we keep queries Q4S and Q4D.

The subject authorities of skos:prefLabel ∈ Q4S and of dbo:thumbnail ∈ Q4D have the authority <http://dbpedia.org> and the type foaf:Organization in common.

Building plausible federated queries

The construction of plausible federated queries follows the following process:

-Use pruned logs to build minimal federated queries.

-Use minimal federated queries to build plausible federated queries. We start by generating minimal federated queries PFed min . A minimal federated contains one triple from log 1 and one triple from log 2 .

Minimal federated queries PFed min is a basic federated query, it is composed of two triples patterns and defined as follows. Figure 5a presents a minimal path-shaped federated query between foaf:based_near ∈ Q1S and dbpedia2:capital ∈ Q1D in Figure 3. Figure 5b presents a minimal star-shaped federated query between skos:prefLabel ∈ Q4S and dbo:thumbnail ∈ Q4D.

We keep only PFed min queries that produce results to generate plausible federated queries. (c) Q1 Q2 Fig. 6: A non well designed federated query Plausible Federated queries PFed The construction of Q PFed is tricky, if the original queries contain OPTIONAL operator. We have to construct only correct plausible federated query. A plausible federated query is correct if it is well designed [START_REF] Pérez | Semantics and complexity of sparql[END_REF] and service-safeness [START_REF] Arenas | Federation and navigation in sparql 1.1[END_REF].

Definition 5 (Well designed[10]).

A graph pattern P is well designed if for every occurrence of a sub-pattern P' = (P1 OPT P2) of P and for every variable ?X occurring in P, the following condition holds: if ?X occurs both inside P2 and outside P', then it also occurs in P1.

The federated query in Figure 6c is not well designed because the variable ?o2 occurs in P2 and outside the P' (i.e. clause SERVICE <dataset2>), but it not occurs in P1.

The service-safeness provides condition that ensures that a SPARQL query containing SERVICE operator can be safely evaluated. Our generated queries ensure service-safeness because each SERVICE clause has only bounded service, i.e., during the construction the URI of the SPARQL endpoints are known.

The main issue is to build well designed queries. A correct plausible federated query is constructed as follows. Let log 1 , log 2 be two pruned query logs, Q 1 ∈ log 1 , Q 2 ∈ log 2 , Q 1 and Q 2 contribute to the construction of a minimal query, then:

-If Q 1 and Q 2 are conjunctive queries (a.k.a BGPs) then Q PFed = Q 1 Q 2 , Q PFed is a simple concatenation of queries (Q 1 . Q 2),

Evaluation

We want to answer empirically the following questions: Does Hibiscus summary prune non joinable predicates? Does Classes summary effective? Does PFed produce "realistic" queries compared to automatic query generation benchmarks? Does PFed generate correct plausible federated queries? All data, codes, and generated query are available at the project web page6 .

Experimental Setup

Dataset and Queries: We use SWDF 2012 and DBPedia 3.5.1 datasets and clean queries of Feasible7 . Table 2 reports statistics about the datasets and query logs. It is strange that the query log of SWDF contains more predicates than the original dataset hosted at the SPARQL endpoint. Some queries in the logs use predicates that are not defined in the dataset. Using DBpedia to generate plausible federated queries is challenging because DBpedia dataset has a high number of predicates and the log of DBpedia has a high number of queries. We use only SELECT queries to construct plausible federated queries. Approaches: We can compare our approach only with Splodge, because only Splodge is automatic federated queries benchmark. However, we can compare only with minimal queries since Splodge generates only conjunctive queries (without OPTIONAL, UNION). We modify the code of Splodge8 to generate all possible queries instead of stopping after the generation of the first couple of joinable predicates.

Experimental Results

Does Hibiscus summary prune non joinable predicates ? Table 3 presents the results of pruning using data summaries of Hibiscus. As we can see, the reduction is 62.75% for SWDF query log for path-shaped queries and by 42.82% for starshaped. The reduction if only 2.15% of DBpedia log for both path-shaped queries and star-shaped generation. This reduction is not significant because most of predicates in DBPedia has the authority <http://dbpedia.org>. 6 shows that from 3 joinable predicates of SWDF and 139 joinable predicates of DBPedia (see table 4), PFed generates only 77 minimal path-shaped queries with non empty result set. Whereas, Splodge generates 1300 queries, some of these queries are not significant as the query displayed in Figure 7. PFed generates relatively less queries, 20 PFed min star-shaped queries with non empty result set based on 3 joinable predicates of SWDF and 83 joinable predicates of DBPedia. PFed relies on query logs to generate plausible queries. Does PFed generate correct plausible federated queries ? Due to the size of the pruned logs, we can generate a large number of plausible federated queries. In our experimentation, we focus on the generation of path-shaped between foaf:based_near from SWDF and dbpedia2:capital from DBPedia because foaf-:based_near predicate is used to link SWDF and DBpedia datasets. The pruned SWDF query log contains 2 866 queries that contains foaf:based_near. Many of these queries have the same structure but with different literals and variables. Therefore, instead of producing 2866×14 = 40124 queries where 14 is the number of queries that contains dbpedia2:capital in pruned DBpedia log, we define patterns for foaf:based_near queries. We differentiate 9 patterns for foaf:based_near queries and we generate 24 queries. All generated queries are executed correctly and 19 of these queries have non empty results set (see table 7). We generate star-shaped plausible federated queries based on skos:prefLable from SWDF and dbpedia:thumbnail from DBPedia (see table 7). The 42 generated queries are executed correctly and 28 of these queries produce results.

Conclusion and Future Work

We presented PFed an approach for automatic generation of plausible federated queries based on real query logs. PFed starts by pruning the logs to exclude non joinable queries using two data summaries. The first one is based on the authorities and the second is based on the type of subjects and objects of predicates. Experimentations with real query logs of SWDF and DBpedia demonstrate that PFed is able to prune considerably the logs and generate correct plausible federated queries.

As future work, we would like to experiment PFed with more real query logs and produce plausible federated queries over a large number of SPARQL endpoints. Finally, we plan to extend PFed with statistical information to generate only queries that return results.

1 2 .Fig. 1 :

 21 Fig. 1: SPARQL queries from the logs of SWDF 2012 and DBpedia 3.5.1

SELECT

 * WHERE { SERVICE <h t t p : / / swdf -2012> { ? o b j r d f : t y p e f o a f : O r g a n i z a t i o n . ? o b j f o a f : b a s e d _ n e a r ? p l a c e SERVICE <h t t p : / / d b p e d i a -3.5.1 > { ? p l a c e r d f s : l a b e l " U n i t e d Kingdom " @en . ? p l a c e d b p e d i a 2 : c a p i t a l ? c a p i t a l . ? c a p i t a l geo : l a t ? l a t . ? c a p i t a l geo : l o n g ? l o n g }}} #r e s u l t s = 1 056 (a) Q1S Q1D SELECT * WHERE { SERVICE <h t t p : / / swdf -2012> { swc : tim-f i n i n r d f : t y p e f o a f : P e r s o n { swc : tim-f i n i n f o a f : name ? name1} UNION { swc : tim-f i n i n r d f s : l a b e l ? name1 } OPTIONAL { swc : tim-f i n i n f o a f : mbox_sha1sum ? mbox_sha1sum } OPTIONAL { swc : tim-f i n i n f o a f : homepage ? homepage } OPTIONAL { swc : tim-f i n i n f o a f : page ? page } OPTIONAL { swc : tim-f i n i n ow l : sameAs ? p e r s o n SERVICE <h t t p : / / d b p e d i a -3.5.1 > { ? p e r s o n s k o s : s u b j e c t ? s u b j e c t . ? p e r s o n dbo : b i r t h D a t e ? b i r t h . ? p e r s o n f o a f : name ? name2 . ? p e r s o n r d f s : comment ? d e s c r i p t i o n FILTER (l a n g (? d e s c r i p t i o n) = " en ") } } OPTIONAL { swc : tim-f i n i n r d f s : s e e A l s o ? s e e A l s o } }} #r e s u l t s = 178 (b) Q2S Q2D

2 P Jlog1 ←-∅; 3 P 4 foreach Q1 ∈ log1 do 5 foreach Q2 ∈ log2 do 6 let 7 let 8 if OA1 ∩ SA2 = ∅ then 9 let 12 P 13 P

 234567891213 Jlog2 ←-∅; OA1 = S1.OAuth.P redicate(Q1) SA2 = S2.SAuth.P redicate(Q2) OC1 = SC1.OClasses.P redicate(Q1) 10 let SC2 = SC2.SClasses.P redicate(Q2)11 if OC1 ∩ SC2 = ∅ then Jlog1 ←-P Jlog1 ∪ Q1 Jlog2 ←-P Jlog2 ∪ Q2

SELECTFig. 5 :

 5 Fig.5: Minimal federated queries generated from pruned logs of SWDF and DBpedia in Figure3

). Given a source d, a capability is a triple (p, SA(d, p), OA(d, p)), which contains (1) a predicate p in d, (2) the set SA(d, p) of all distinct subject authorities of p in d and (3) the set OA(d, p) of all distinct object authorities of p in d.

 we say that Q 1 and Q 2 are joinable if p 1 and p 2 are joinable path or joinable star., p 2) = true, if OA(d 1 , p 1) ∩ SA(d 2 , p 2) = ∅ and OC(d 1 , p 1) ∩ SC(d 2 , p 2) = ∅. , p 2) = true, if SA(d 1 , p 1) ∩ SA(d 2 , p 2) = ∅ and SC(d 1 , p 1) ∩ SC(d 2 , p 2) = ∅.

	tween log1 and log2 Input: log1, log2, S1, S2, SC1, SC2 Output: P Jlog1, P Jlog2 Definition 2 (Joinable Path). joinableP ath(p 1 Definition 3 (Joinable Star). joinableStar(p 1 Algorithm 1: Algorithm for Excluding non PATH Joinable queries be-query logs and summaries Joinable Path Queries of log1 and log2 1 Function PJDetection(F):

Definition 4 (PFed min). Let

 log 1 , log 2 be two pruned logs of queries of datasets d 1 and d 2 , respectively. p 1 ∈ log 1 and p 2 ∈ log 2 are two predicates. PFed ?o 1 . ?s, p 2 , ?o 2 | joinableStar(p 1 , p 2) = true }In order to construct a path (start) join, we substitute the object (subject) of p 1 and the subject of p 2 by the same value as given in the table 1.

	tp1 object tp2 subject substitution value
	?x	?y	?x
	?x	a	a
	a	?x	a
	a	b	null

min = { ?s, p 1 , ?x . ?x, p 2 , ?o | joinableP ath(p 1 , p 2) = true} or {?s, p 1 ,

Table 1 :

 1 All substitution values possible to create path join. ?x, ?y are variables and a, b are constants (URIs or literals)

 as in figure2a, Q1S1D = Q1S Q1D.-If Q 1 contains binary operators like UNION or OPTIONAL, we distinct two cases:• If a joinable predicate is outside binary clauses of Q 1 , we add Q 2 in the BGP part of Q 1 . • If a joinable predicate of Q 1 is inside the UNION or OPTIONAL clauses,we append Q 2 inside this clause after the substitution of the join variables (subject or object of the triple) according to table1. Figure2bpresents a federated where the joinable predicate owl:sameAs of Q2S is inside the OPTIONAL Clause. -If a joinable predicate of Q 2 is inside an OPTIONAL clause, we make sure to not generate non well designed queries like query shown in 6c.

Table 2 :

 2 Real Datasets and real logs

	dataset	|triples| |dataset predicates| |original log| |SELECT queries| |log predicates|
	SWDF	242 256	170	64 030	37 592	201
	DBPedia 232 542 405	39 672	217 812	127 812	247

Table 3 :

 3 Logs pruning using Hibiscus summariesDoes Classes summary effective? We use Classes summary to prune the log returned by Hibiscus. Classes summary is effective because it increases considerably the percentage of pruned queries. The reduction is impressive for DBPedia from 2.15% with Hibiscus to 71.42% with Classes summary as shown in table 4.

			path-shaped			star-shaped	
	dataset |predicate joinable | |pruned log| % reduce |predicate joinable | |pruned log| % reduce
	SWDF	3	9 355	75.12	3	21 495	42.82
	DBPedia	139	36 522	71.42	83	36 449	71.48

Table 4 :

 4 Logs pruning using Hibiscus & Classes summariesDoes PFed produce "realistic" queries compared to automatic query generation benchmarks? We run Splodge on both SWDF and DBpedia. As parameters, we used a low minimum selectivity to get at least one result. We also didn't use a max selectivity in order to get as much queries as possible.

	Query Structure	|queries| |predicates SWDF| |predicates DBpedia |
	Path SWDF to DBpedia 1 300	6	1 108
	Path DBpedia to SWDF 170	3	98
	Star	63	3	38

Table 5 :

 5 Statistics of minimal queries generated by Splodge using SWDF and DBpedia

	Path-shaped queries SWDF to DBpedia	Star-shaped queries	
	all generated with result	%	all generated with result %
	397	77	19.39	249	20	8.03

Table 6 :

 6 Statistics of minimal queries generated by PFed using Hibiscus & Classes summaries Table 5 presents minimal queries generated by Splodge. Table

Table 7 :

 7 PFed path and star, p 1 ∈ SWDF and p 2 ∈ DBPedia

	SELECT ? v0 ? v2 WHERE {
	SERVICE <h t t p : / / swdf -2012>
	{ ? v0 f o a f : b a s e d _ n e a r ? v1
	SERVICE <h t t p : / / d b p e d i a . org > {
	? v1 d b p e d i a 2 : i m a g e 2 C a p t i o n ? v2 . }}}
	Fig. 7: A minimal federated query generated by Splodge

https://www.w3.org/TR/void

http://sparqles.ai.wu.ac.at/

URI Syntax Components: https://tools.ietf.org/pdf/rfc3986.pdf

https://github.com/GDD-Nantes/PFed

https://github.com/dice-group/feasible

We do not use the original code of Splodge because it does not implement Star-shaped queries, we use the code at https://github.com/ Institute-Web-Science-and-Technologies/splodge

Acknowledgement

This work is part of the multidisciplinary project Sedela, funded by CominLabs, that brings together three laboratories: LS2N, CREAD and Lab-STICC.

://github.com/dice-group/feasible 2 Common prefixes are used and swc:<http://data.semanticweb.org/ns/swc/ontology#>, swrc:<http://swrc.ontoware.org/ontology#>,dbpedia:<http://dbpedia.org/resource/>, dbpedia2:<http://dbpedia.org/property/> and dbo:<http://dbpedia.org/ontology/>