
HAL Id: hal-02066896
https://hal.science/hal-02066896v1

Preprint submitted on 13 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Guaranteed Control of Sampled Switched Systems using
Semi-Lagrangian Schemes and One-Sided Lipschitz

Constants
Adrien Le Coënt, Laurent Fribourg

To cite this version:
Adrien Le Coënt, Laurent Fribourg. Guaranteed Control of Sampled Switched Systems using Semi-
Lagrangian Schemes and One-Sided Lipschitz Constants. 2019. �hal-02066896�

https://hal.science/hal-02066896v1
https://hal.archives-ouvertes.fr


Guaranteed Control of Sampled Switched Systems using
Semi-Lagrangian Schemes and One-Sided Lipschitz Constants

Adrien Le Coënt1 and Laurent Fribourg2

Abstract— In this paper, we propose a new method for
ensuring formally that a controlled trajectory stay inside a given
safety set S for a given duration T . Using a finite gridding X
of S, we first synthesize, for a subset of initial nodes x of X ,
an admissible control for which the Euler-based approximate
trajectories lie in S at t ∈ [0, T ]. We then give sufficient
conditions which ensure that the exact trajectories, under the
same control, also lie in S for t ∈ [0, T ], when starting at initial
points “close” to nodes x. The statement of such conditions
relies on results giving estimates of the deviation of Euler-based
approximate trajectories, using one-sided Lipschitz constants.
We illustrate the interest of the method on several examples,
including a stochastic one.

I. INTRODUCTION

Consider an ordinary differential equation (ODE) of the
form ż = f(z) on Rn. Classically, one knows that, if the
function f is Lipschitz continuous with Lipschitz constant L,
the solution of the ODE starting at a given initial value exists
and is unique. Besides, one has:

‖Xt,z1 −Xt,z2‖≤ eLt‖z1 − z2‖, (1)

where ‖·‖ denotes the Euclidean norm, and Xt,zi denotes the
value of the solution of the ODE at time t, starting at initial
value zi (i = 1, 2). This gives a rough growth bound, i.e. a
function bounding the distance of neighboring trajectories as
t evolves.

In the 90’s, several researchers [9], [21] have obtained a
more accurate growth bound, using the notion of “one-sided
Lipschitz (OSL)” function. The function f is said to be OSL
if there exists a constant λ ∈ R such that, for all z1, z2 ∈ Rn:

〈f(z1)− f(z2), z1 − z2〉 ≤ λ‖z1 − z2‖2,

where 〈·, ·〉 denotes the scalar product of two vectors of Rn.
The real λ is called the OSL constant associated with f . In
[9], it is proven that, if f is continuous and OSL with OSL
constant λ, then the solution of the ODE starting at a given
initial value exists and is unique, and, for all z1, z2 ∈ Rn:

‖Xt,z1 −Xt,z2‖≤ eλt‖z1 − z2‖. (2)

This gives a more accurate growth bound because a Lipschitz
function f is always OSL, and the associated OSL constant λ
is always less than or equal to its Lipschitz counterpart L.
Furthermore, in the case of “stiff” differential equations, we
have λ� L (see [9]). Note also that a function can be OSL
but not Lipschitz (not even locally Lipschitz): inequation
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(2) then still applies while inequation (1) does not apply
any longer. Using the OSL constant λ, it is also possible to
bound the error ‖Xt,z1 − X̃t,z2‖ in function of ‖z1 − z2‖,
where X̃t,z2 denotes the Euler approximate z2 + tf(z2) of
the solution Xt,z2 . In [6], we have derived some analytic
forms of such error estimates when one focuses on a compact
subdomain S ⊂ Rn of solutions. We have also given an OSL-
based error estimate for (a variant of) the Euler-Maruyama
approximate solution in the case of stochastic ODEs [20].
These results have been used to synthesize controls that
are “correct-by-construction”, in the sense that they are
guaranteed to satisfy given safety constraints [6], [20]. In this
paper, we show how such error estimates can be integrated to
semi-Lagrangian (SL) schemes in order to synthesize optimal
controls for problems with safety constraints.

The plan of the paper is as follows: in Section II, we
present the context of our work and the principle of the
method; in Section III, we give formal sufficient conditions
that guarantee the safety of the control; Section IV illustrates
on two examples how the method can be extended for
stochastic ODEs and differential games; we conclude in
Section V.

II. CONTEXT AND PRINCIPLE OF THE METHOD

Let us present the context and the principle of our method.

A. Switched systems
A hybrid system is a system where the state evolves

continuously according to several possible modes, and where
the change of modes (switching) is done instantaneously.We
consider here the special case of hybrid systems called
“sampled switched systems” [15] where the change of modes
occurs periodically with a period of τ seconds. We will
suppose furthermore that the state keeps its value when the
mode is changed (no jump). More formally, we denote the
state of the system at time t by z(t) ∈ Rn. The set of modes
A is finite. With each mode a ∈ A is associated a vector
field fa that governs the state z(t), we have:

ż(t) = fa(z(t)).

We make the following hypothesis:
(H0) For all a ∈ A, fa is a locally Lipschitz continuous

map.

We will denote by Xa
t,z0 the solution at time t of ż(t) =

fa(z(t)) with z(0) = z0. The existence of Xa
t,z0 is guar-

anteed by assumption (H0). Let us consider S ⊂ Rn be a



compact and convex set, typically a “rectangular set”, i.e. a
cartesian product on n closed intervals. We know by (H0)
that there exists a constant La > 0 such that:

‖fa(z1)− fa(z2)‖≤ La‖z1 − z2‖ ∀z1, z2 ∈ S. (3)

We also define, for all a ∈ A:

Ca = sup
z∈S

La‖fa(z)‖. (4)

Let us denote by T a compact overapproximation of the set
of trajectories starting in S for 0 ≤ t ≤ τ , i.e. T is such that

T ⊇ {Xa
t,z0 | a ∈ A, 0 ≤ t ≤ τ, z0 ∈ S}. (5)

The existence of T is guaranteed by assumption (H0). It
follows from (H0) that the vector fields fa of the system
are OSL on T : for all a ∈ A, there exists a constant λa ∈ R
such that

〈fa(z1)−fa(z2), z1−z2〉 ≤ λa‖z1−z2‖2 ∀z1, z2 ∈ T . (6)

We consider a finite time horizon problem: we suppose
that time t belongs to interval [0, kτ ], where k is a given
integer number. Given a sequence of modes (or “pattern”)
π := a1 · · · ak ∈ Ak, we denote by Xπ

t,z0 the solution of
the ODE of mode a1 for t ∈ [0, τ [ with initial condition z0,
extended continuously with the solution of the ODE of
mode a2 for t ∈ [τ, 2τ [, and so on iteratively until mode ak
for t ∈ [(k − 1)τ, kτ ].

B. Optimal problems

We consider the cost function: Jk,τ : Rn × Ak → R≥0
defined by:

Jk,τ (z0, π) = ‖Xπ
kτ,z0 − zref‖,

and zref a given “target” state of Rn.

We consider the value function vτk : Rn → R≥0 defined
by:

vτk(z0) := min
π∈Ak

{Jk,τ (z0, π)} ≡ min
π∈Ak

{‖Xπ
kτ,z0 − zref‖}.

The function min is well-defined because the set A is finite.
We consider the following finite time horizon optimal

control problem:

Given k ∈ N and τ ∈ R>0, find for each z ∈ Rn

• the value vτk(z0), i.e.

min
π∈Ak

{‖Xπ
kτ,z0 − zref‖},

• and an optimal pattern:

πkτ (z0) := arg min
π∈Ak

{‖Xπ
kτ,z0 − zref‖}.

We are interested here in an optimal problem with safety
constraints: we want that all the trajectories starting in
S always stay in S for t ∈ [0, kτ ]. More precisely, we
will focus on control patterns π ∈ Ak that are “admissible

for z0 ∈ S”, i.e. such that: Xπ
iτ,z0

∈ S, for all i ∈ {1, . . . , k}
(discrete-time safety constraint). We will also consider a
stronger admissibility criterion requiring: Xπ

t,z0 ∈ S, for all
t ∈ [0, kτ ] (continuous-time safety constraint).

In order to solve such optimal control problems, it is
classical to spatially discretize the set S ⊂ Rn. Given
a hyper-rectangle S , we consider a partition of S into
a finite number of hyper-rectangular cells. The grid X
associated with S is the set of all the cell centers. We
suppose furthermore that the radius of every cell is upper
bounded by a given positive real ε: each cell C of center x
is such that ‖z0 − x‖≤ ε, for all z0 ∈ C. The center x ∈ X
of a cell C ⊂ S is said to be the “ε-representative” of all
point of C. Since the set of cells forms a partition of S ,
each point z0 ∈ S has a unique ε-representative x ∈ S with
‖z0 − x‖≤ ε.

In this context, the idea of a Semi-Lagrangian (SL)
procedure is the following: we consider the points of X as
the vertices of a finite oriented graph; there is a connection
from x ∈ X to x′ ∈ X if x′ is the ε-representative of the
Euler-based image (x + τfa(x)) of x, for some a ∈ A.
We then compute using dynamic programming the “path of
length k with minimal cost” starting at x: such a path is a
sequence of n + 1 connected points x xk xk−1 · · · x1 of
X which minimises the distance ‖x1 − zref‖. The dynamic
progamming procedure thus gives us a spatially discrete
value function vτ,εk : X → R≥0, and a spatially discrete
pattern function πkτ,ε : X → Ak which “approximate” on S
their counterparts vτk and πkτ respectively.

There is a vast literature on SL-schemes (see, e.g., [7],
[12]) which gives numerous results to the following
convergence problem P1:

“Under which conditions does the spatially-discrete value
function vτ,εk converge to the value function vτk when ε→ 0

?”

Actually, when ε decreases too much, the computations
with SL-procedures become quickly impractical. We prefer
to consider here that ε is fixed (as well as τ and k), and
focus on the following (local) problem P2:

“Given z0 ∈ S, under which conditions does there exist a
pattern π ∈ Ak which guarantees:

1) the satisfaction of the safety constraint Xπ
iτ,z0

∈ S for
all i ∈ {1, . . . , k} (or Xπ

t,z0 ∈ S, for all t ∈ [0, kτ ]),
2) while minimizing ‖Xπ

kτ,z0
−zref‖ as much as possible

?”

In order to solve problem P2, we use the SL-based
procedure as sketched out above. Given a point z ∈ S of ε-
representative x ∈ X , we apply the SL procedure to x. The
procedure generates a path of the form x xk xk−1 · · · x1,
where xk, · · · , x1 are computed using an Euler scheme, and



lie by construction in S. The associated control pattern is
of the form ak ak−1 · · · a1 ∈ Ak. Let πi := ak · · · ai for
1 ≤ i ≤ k. In order, to ensure that the corresponding points
Xπ1
τ,z, X

π2
2τ,z, . . . X

πk
kτ,z of the exact trajectory lie also in S,

we need to establish a bound on the pairwise distances:
‖x− z0‖, ‖xk −Xπ1

τ,z0‖, ‖xk−1 −X
π2
2τ,z0
‖, . . . ,

‖xi −Xπi
(k−i+1)τ,z0

‖, . . . , ‖x1 −Xπk
kτ,z0
‖.

At time t = 0, the first distance ‖x − z0‖ is known to
be bounded by ε. We will establish bounds ∆1, . . . ,∆k on
the following distances using a recent result which gives
an upper bound to the deviation of Euler-based trajectories
with time (see [6]). More precisely, we will give an error
function ∆(t) measuring the distance at time t between an
approximate (Euler-based) trajectory starting at x ∈ X given
by the SL-scheme, and an exact trajectory starting from the
cell of x. In order to guarantee that the exact trajectory
always lies in the hypercube S at times t = τ, 2τ, . . . , kτ ,
we merely perform two simple operations:

1) compute the “safety margin” of the Euler-based tra-
jectory, i.e., its distance to the boundary of S at time
t = τ, 2τ, . . . , kτ , and

2) check that this margin is always greater than the error
∆(t) at time t = τ, 2τ, . . . , kτ .

The complexity of these operations is very low.

C. Comparison with related work

We distinguish between works dealing with problem P1
and those dealing with P2.
• Problem P1: In many papers of the literature on SL

methods with state constraints (see, e.g., [10]), the
authors enforce the trajectory system to stay in S by
introducing a (somehow artificial) “penalization” term
in the cost function J , making the cost of crossing
the boundary of S prohibitive (cf. [11]). In order to
guarantee the result of convergence of vτ,ε to vτ , they
also often make a restrictive assumption of “controlla-
bility”. Note however that, in works like [1], [4], [5],
no controllability assumption is made.
In [23] (cf. [24]), the authors construct a sequence of
abstractions which are more and more precise. The
sequence of value function associated with each ab-
straction converges to the optimal value function as-
sociated the original problem. The abstract transition
function computes an over-approximation of the set
of trajectories starting at neighbouring points. This
over-approximation is computed using a growth bound
(bounding the distance of neighboring trajectories)
based on the Jacobian matrix of fa. More precisely, the
growth bound is a function mapping any r ∈ Rn≥0 to
eMtr, where M is a n × n-matrix whose (i, j)-entry
is Djf

i
a(z), if i = j and |Djf

i
a(z)| otherwise, and

f ia(z) denotes the i-th component of vector fa(z). By
comparison, our work here can be seen as a particular
case of [23] where one uses, for each of the n compo-
nents, a uniform growth bound, mapping r ∈ R≥0 to

eλatr. The counterpart of the convergence result of [23]
for the value function, would state in our context that
the synthesized control converge towards the optimal
control as ε tends to 0. However, this does not seem
true (unless adding very restrictive assumptions), which
leads us to focus on problem P2 instead of P1.

• Problem P2: In the work of [25], [26], the authors
pursue an objective similar to ours: providing a (finite
time-horizon) optimal control procedure with a formal
guarantee of constraint satisfaction (safety). However
they do not use SL-schemes, but perform a reachability
analysis based on over-approximative state set represen-
tations (zonotopes, cf. [14], [2]).
In [8], the authors also provide a formal guarantee of
safety property. Contrarily to [25], [26], they do use
SL-schemes. They also focus to (periodically) sampled
systems as we do. However, they still perform a form of
reachability analysis similar to [25], [26], using convex
polytopes as state set representations. Their growth
bound are not based on OSL constants as here, but
rather on overapproximations of Lagrange remainders
in Taylor series.

III. SUFFICIENT CONDITIONS FOR REACHABILITY WITH
SAFETY

Given a starting point z0 ∈ S and a mode a ∈ A, we
denote by X̃a

τ,y the Euler-based image of z0 at time t = τ
via a. We have:

X̃a
τ,z0 := z0 + τ fa(z0).

The set of admissible modes for x ∈ X is defined by:

Aτ (x) := {a ∈ A | X̃a
τ,x ∈ S}.

The function nexta : X → X ∪ {⊥} is defined by:
• if a ∈ Aτ (x), then: nexta(x) = x′, where x′ is the
ε-representative X̃a

τ,x ,
• otherwise (i.e., X̃a

τ,x 6∈ S): nexta(x) = ⊥.

For a pattern π ∈ Ak, the function nextπ : X → X ∪{⊥}
is defined as follows:
• if π = a for some a ∈ A, then nextπ(x) = nexta(x),
• if π is of the form a · π′;

– if nexta(x) 6= ⊥, then
nextπ(x) = nextπ

′
(nexta(x)),

– otherwise, nextπ(x) = ⊥.

It is easy to show, using the definition of next:

Proposition 1: Let x ∈ X , and πk ∈ Ak a pattern of
the form ak ak−1 · · · a1. Let us write πi := ak · · · ai for
1 ≤ i ≤ k, and xk+1 := x.

If nextπk(x) ∈ X , then there exists a sequence of points
of the form xk+1xk · · ·x1 ∈ Xn+1 with, for all 1 ≤ i ≤ k:



• X̃ai
τ,xi+1

∈ S,
• xi = nextai(xi+1) = nextπi(x), and
• ‖xi − X̃ai

τ,xi+1
‖≤ ε.

Definition 1: For all point x ∈ X , the spatially discrete
value function vτ,εk : X → R≥0 ∪ {∞} is defined by:

• for k = 0, vτ,εk (x) = ‖x‖,
• for k ≥ 1,

– if Aτ (x) = ∅: vτ,εk (x) =∞,
– if Aτ (x) 6= ∅:

vτ,εk (x) = mina∈Aτ (x){v
τ,ε
k−1(nexta(x))}.

If vτ,εk (x) 6= ∞, one defines the approximate optimal
pattern of length k associated to x, denoted by πτ,εk (x) ∈ Ak,
recursively by:

• if k = 0, πτ,εk (x) = nil,

• if k ≥ 1, πτ,εk (x) = ak(x) · π′ where

ak(x) = arg min
a∈Aτ (x)

{vτ,εk−1(nexta(x))}

and π′ = πτ,εk−1(x′) with x′ = nextak(x)(x).

Using the value function vτ,εk it is thus easy to construct an
SL procedure PROCτ,εk which takes a point x ∈ X as input,
and returns, in case of success (i.e., when vτ,εk (x) ≥ 0), a
pattern πτ,εk ∈ Ak with nextπ

τ,ε
k (x) ∈ X . We now define, for

such a pattern πτ,εk output by PROCτ,εk (x), a value ∆(πτ,εk )

which gives us an upperbound to ‖Xπτ,εk
kτ,z0

− nextπ
τ,ε
k (x)‖,

for any z0 ∈ B(x, ε) (i.e., any z0 such that : ‖z0 − x‖≤ ε).

Definition 2: Let µ be a given positive constant. Let us
define, for all a ∈ A and t ∈ [0, τ ], δat,µ as follows:
• if λa < 0:

δat,µ =

(
µ2eλat +

C2
a

λ2
a

(
t2 +

2t

λa
+

2

λ2
a

(
1− eλat

))) 1
2

• if λa = 0 :

δat,µ =
(
µ2et + C2

a(−t2 − 2t+ 2(et − 1))
) 1

2

• if λa > 0 :

δat,µ =
(
µ2e3λat+

C2
a

3λ2
a

(
−t2 − 2t

3λa
+

2

9λ2
a

(
e3λat − 1

))) 1
2

where Ca and λa are constants defined in Section II-A.

Proposition 2: [6] Given x ∈ Rn, we have, for all a ∈ A
and all z0 ∈ B(x, ε) (i.e., z0 such that ‖z0 − x‖≤ ε):

‖Xa
τ,z0 − X̃

a
τ,x‖≤ δaτ,ε.

Definition 3: Let us define ∆(ak · · · a1) recursively by:

• ∆(ai) = δaiτ,ε for i = 1, and
• ∆(ai · · · a1) = δaiτ,µ with µ = ε + ∆(ai−1 · · · a1), for
i ≥ 2.

In the rest of the paper, we suppose that k ∈ N
and τ, ε ∈ R>0 are given and fixed. So, for the sake of
notation simplicity, we will abbreviate vτ,εk as vk. We
abbreviate similarly πτ,εk and PROCτ,εk as πk and PROCk
respectively. We will suppose also that we are given a
compact set S ⊂ Rn as well as a “target” set R ⊂ S .1 We
have:

Lemma 1: Let x ∈ X and πk ≡ ak · · · a1 ∈ Ak the pattern
generated by PROCk(x) with nextπk(x) ∈ X . We have, for
all z0 ∈ B(x, ε):

1) ‖Xπk
kτ,z0

− X̃a1
τ,x2
‖≤ ∆(πk),

with x2 := nextak···a2(x) for k ≥ 2, and x2 := x for
k = 1;

2) ‖Xπk
kτ,z0

− nextπk(x)‖≤ ∆(πk) + ε.

Proof: Let us prove items 1-2 by induction on k.
Let us first prove item 1 for the base case k = 1. We have

πk = π1 = a1 and x2 = x. We have to prove, when
‖x − z0‖≤ ε: ‖Xa1

τ,z0 − X̃a1
τ,x‖≤ ∆(a1) = δa1τ,ε. This

inequation holds by Proposition 2, and the proof of item 1
is done. The proof of item 2 of the base case follows from
item 1 and Proposition 1, using triangular inequality.

Let us now consider the induction step. We have to prove
the following induction conclusion:

1) ‖Xak+1···a1
(k+1)τ,z0

− X̃a1
τ,x2
‖≤ ∆(ak+1 · · · a1),

with x2 := nextak···a2(x)
2) ‖Xak+1···a1

(k+1)τ,z0
− nextak+1···a1(x)‖

≤ ∆(ak+1 · · · a1) + ε.
We have by induction hypothesis:
1) ‖Xak+1···a2

kτ,z0
− X̃a2

τ,x3
‖≤ ∆(ak+1 · · · a2),

with x3 := nextak+1···a2(x), and
2) ‖Xak+1···a2

kτ,z0
− nextak+1···a2(x)‖≤ µ,

with µ := ∆(ak+1 · · · a2) + ε.
Besides, by Definition 3: ∆(ak+1 · · · a1) = δa1τ,µ.
Applying Proposition 2, with z2 = X

ak+1···a2
kτ,z0

and
x2 = nextak+1···a2(x), we have:

‖Xa1
τ,z2 − X̃

a1
τ,x2
‖≤ δa1τ,µ

since ‖x2 − z2‖≤ µ by item 2 of induction hypothesis. It
follows

‖Xak+1···a1
(k+1)τ,z0

− X̃a1
τ,x2
‖≤ δa1τ,µ = ∆(ak+1 · · · a1).

This achieves the proof of the item 1 of the induction
conclusion. The item 2 of the induction conclusion then
follows from item 1 and Proposition 1, using triangular
inequality. This completes the proof of the induction step.

1We suppose implicitly that R contains the target point zref , so R can
be seen as a neighborhood of zref .



Using item 2 of Lemma 1, it is easy to show:

Theorem 1: (sufficient conditions of safety and k-
reachability) Let x ∈ X , and ßk ≡ ak · · · a1 ∈ Ak the
pattern generated by PROCk(x) with nextπk(x) ∈ X .
Suppose, for all 1 ≤ i ≤ k:

• (Hi
1): B(nextπi(x),∆(πi) + ε) ⊆ S, and

• (Hk
2 ): B(nextπk(x),∆(πk) + ε) ⊆ R,

where πi := ak · · · ai. Then we have, for all z0 ∈ B(x, ε)2

• Xπi
(k−i+1)τ,z0

∈ S for all 1 ≤ i ≤ k
(discrete-time safety),

and
• Xπk

kτ,z0
∈ R (k-reachability).

Furthermore, assuming that, for all a ∈ A, δat,ε is a convex

function for t ∈ [0, τ ] (i.e., d2(δat )
dt2 > 0 for all t ∈ [0, τ ] 3),

we have:
Xπk
t,z0 ∈ S for all t ∈ [0, kτ ] (dense-time safety).

Suppose in particular that conditions (Hi
1)-(Hk

2 ) hold for
a set of points Y ⊆ X which ε-covers R, i.e., such that:
R ⊆

⋃
x∈Y B(x, ε). In this case, the procedure PROCk

gives us a guarantee of “(R,S)-stability” as defined in [13].
By Theorem 1, we know indeed that, for all z0 ∈ R
of representative x ∈ X , the pattern πk generated by
PROCk(x) applied to z0 yields a trajectory that reaches
at t = kτ a point z′ of R (while always staying in S for
0 ≤ t ≤ kτ ); the process can then be iterated to z′, and
so on repeatedly. This means that, via the set of patterns πk
associated to elements of Y , one can control any trajectory
starting at R in order to make it return to R periodically every
kτ seconds, and stay in S for all t ≥ 0 (“(R,S)-stability”).4

The SL-based procedure PROCk can thus replace
advantageously the brute-force enumeration strategy
implemented in tool MINIMATOR [19]: the time complexity
of MINIMATOR procedure is indeed O(mk × N) where
m is the number of modes, N the number of cells and k
the time-horizon length, while the complexity of PROCk
is O(m× k ×N).

A. Description of the implementation

The procedure is implemented in Octave. It is composed
of 9 functions and a main script totalling 500 lines of code.
For comparison, the tool MINIMATOR uses 28 functions for
a total of 2000 lines of code.

2In particular, for any z0 ∈ S of ε-representative x.
3The sign of d

2(δat )

dt2
on [0, τ ] depends on the value of the constants Ca

and λa occurring in Definition 2; knowing these constant values, the sign
is easy to determine (see [6]).

4R can be seen as a special case of viability kernel for S (see, e.g.,
[3]) since any trajectory starting from R can be controlled in order to stay
inside S forever.

The computations are realised in a virtual machine running
Ubuntu 18.06 LTS, having access to one core of a 2.3GHz
Intel Core i5, associated to 3.5GB of RAM memory.

Note that the accuracy of the Euler approximation can
be optionally increased by using a smaller time step. The
time-step h used for Euler approximation is not necessarily
equal to the control sampling period, but is in general a
submultiple of τ (τ = p × h where p is a natural number
greater than 1).

Example 1: (2-tanks)
In this example, we illustrate the approach given above for

(R,S)-stability on a two tank example. The two-tank system
is a linear example taken from [17]. The system consists of
two tanks and two valves. The first valve adds to the inflow of
tank 1 and the second valve is a drain valve for tank 2. There
is also a constant outflow from tank 2 caused by a pump.
The system is linearized at a desired operating point. The
objective is to keep the water level in both tanks within limits
using a discrete open/close switching strategy for the valves.
Let the water level of tanks 1 and 2 be given by x1 and x2
respectively. The behavior of x1 is given by ẋ1 = −x1 − 2
when the tank 1 valve is closed, and ẋ1 = −x1 + 3 when it
is open. Likewise, x2 is driven by ẋ2 = x1 when the tank 2
valve is closed and ẋ2 = x1 − x2 − 5 when it is open.

Let S = [−2, 3] × [−1, 2], R = [−1.5, 2.5] × [−0.5, 1.5],
N = 10 × 10 the number of cells, ε = 0.33, τ = 0.1.
The proof of (R,S)-stability is obtained for k = 5, it takes
7.34 seconds. By comparison, MINIMATOR takes 25.53
seconds to obtain a controller without any optimality result.
Simulations of the (R,S)-stability controller are given in
Figure 1.

IV. EXTENSIONS

We now explain how to extend the method to stochastic
ODEs and differential games.

A. Stochastic switched systems

Let us consider a stochastic switched system defined by

dXt = fa(Xt)dt+ ga(Xt)dWt, X0 = x0, (7)

where Wt is a standard m−dimensional Brownian motion,
and suppose that for all a ∈ A:

(H1) fa : Rn → Rn is a continuously differentiable
function whose derivative grows at most polynomially,

(H2) ga = (gai,j )i∈{1,...,n},j∈{1,...,m} : Rn → Rn×m is a
globally Lipschitz continuous function,

(H3) fa is globally one-sided Lipschitz.

Under the above-mentioned hypotheses, we can establish
bounds δat,ε similar to Definition 2 for stochastic switched
systems using the tamed Euler scheme [16]. The detail of
this bound is given in Appendix for a single mode stochastic
switched system (i.e. a stochastic differential equation). We
refer the reader to [20] for the details of the error bounding
for stochastic switched systems. The result is stated as
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Fig. 1. Simulations of the (R,S)-stability controller on the two tank
example. The safety set is S = [−2, 3]× [−1, 2], the recurrence set R =
[−1.5, 2.5] × [−0.5, 1.5], the blue box is the set R, the red circle is the
objective here chosen as (1.0, 0.0). The trajectory of the system is in black
for two initial conditions: (2.5, 2.5) (top) and (−1.5, 1.5) (bottom).

follows for a single switching step integration:

Proposition 3 ([20]): Consider two points x0 and z in
Rn,and a positive real number ε. Suppose that x0 ∈ B(z, ε).
Let us denote by X̃t,z the tamed Euler approximation of
Xt starting from initial point z in (7). Then EXt,x0

∈
B(X̃t,z, δ

a
t,ε) for all t ∈ [0, τ ], where E is the symbol of

expected value.

Example 2: (Stochastic system) Consider the system (see
([28], [27])):
dx1 = (−0.25x1 + ux2 + (−1)u0.25)dt+ 0.01x1dW

1
t

dx2 = ((u−3)x1−0.25x2+(−1)u(3−u))dt+0.01x2dW
2
t

where u = 1, 2.

We can apply the above procedure PROCτ,εk in order to
minimize the average distance of the state to the origin after
a given number of steps. We consider a switching period τ =
0.5 subdivided in time steps of size ∆t = 10−4. Consider
the interest set R = B((0, 0), ρ) with ρ = 7, discretized with
an accuracy ε = 0.57. We compute (sub)optimal patterns
for the entire set, using different lengths of patterns, and

simulate the induced controller for 200 initial conditions
randomly selected in R. Simulations are given in Figure 2.
The procedure took 11.8 seconds of computation for patterns
of length 1, 47.4 seconds of computation for patterns of
length 3.

Fig. 2. Simulations of Example 2 with the controller induced by PROCk ,
for patterns of length 1 (top), length 3 (bottom). The blue circle is the set
R = B((0, 0), 7), the red marker is the target state (the origin), the black
lines are the controlled trajectories.

B. Sampled Pursuit-Evasion Games with Safety

Let us explain here how one can extend our SL-based
method to Pursuit-Evasion games, closely following the work
of [7]. The ODEs are defined by:

(ż1(t), ż2(t)) = (f1a (z1(t)), f2b (z2(t))), t > 0

(z1(0), z2(0)) = (z01 , z
0
2)

where (z1(t), z2(t)) ∈ Rn×Rn, (z01 , z
0
2) ∈ Rn×Rn, a ∈ A,

b ∈ B, and f1a and f2b are functions of Rn → Rn. Given
a safety set S = S1 × S2 ⊂ Rn × Rn, the (dense-time)
safety constraint is: z1(t) ∈ S1, z2(t) ∈ S2. The target set is
defined by:
R = {(z1, z2) ∈ Rn × Rn : ‖z1 − z2‖≤ γ}, γ ≥ 0

Example 3: (The Tag-Chase game with constraints) [7]
Two players 1 (pursuer) and 2 (evader) which run one after

the other in the same 2-dimensional domain (courtyard), so
that the game is set in S = S2

1 ⊂ R4. Players 1 and 2 can



run in every direction with velocity V1 and V2 respectively.
The control sets are of the form

A = {α1, . . . , αm1
}, B = {β1, . . . , βm2

}.

We have the dynamics for z1 = (i1, j1) and z2 = (i2, j2):

1: i̇1 = V1 sinα ; j̇1 = V1 cosα
2: i̇2 = V2 sinβ ; j̇2 = V2 cosβ

where α ∈ A is the direction for 1, and β ∈ B is the direction
for 2 (α and β are the angles between the j-axis and the
velocities for 1 and 2). For z1 ≡ (i1, j1) and z2 ≡ (i2, j2),
the capture occurs when z ≡ (z1, z2) ∈ R ≡ R1 ×R2 with

R = {((i1, j1), (i2, j2)) ∈ S :
√

(i1 − i2)2 + (j1 − j2)2 ≤ γ}.
We build a partition of S = S1 × S2 and construct a

grid X = X1 × X2 by performing separately the operations
described in Section III on S1 and S2.

Definition 4: For x = (x1, x2) ∈ X , the sets of admissible
controls Aτ (x1) and Bτ (x2) w.r.t. S1 and S2 respectively,
are defined by:

Aτ (x1) = {a ∈ A : x1 + τf1a (x1) ∈ S1},

Bτ (x2) = {b ∈ B : x2 + τf2b (x2) ∈ S2}.

Let denote by nexta,b : X1×X2 → X1×X2, the function
defined, for x = (x1, x2) by:

nexta,b(x) := (nexta(x1), nextb(x2)),

where nexta : X1 → X1 and nextb : X2 → X2 are defined
as in Section III.

Definition 5: The value function vk : X → R≥0 ∪ {∞}
is defined, for all x ≡ (x1, x2) ∈ X with x1 ≡ (i1, j1) and
x2 ≡ (i2, j2), by:
• For k = 0, vk(x) =

√
(i1 − i2)2 + (j1 − j2)2;

• For k ≥ 1,
– if Aτ (x1) = ∅ ∨ Bτ (x2) = ∅, vk(x) =∞;
– if Aτ (x1) 6= ∅ ∧ Bτ (x2) 6= ∅,

vk(x) = max
b∈Bτ (x2)

min
a∈Aτ (x1)

{vk−1(nexta,b(x))}.

Similarly to what has been done in Section III, one can
construct, for x = (x1, x2) ∈ X with vk(x) ≥ 0, a procedure
PROCk which returns a pattern (π1

k, π
2
k) ∈ Ak × Bk with

nextπ
1
k(x1) ∈ X1 and nextπ

2
k(x2) ∈ X2.5 The counterpart

of Theorem 1 is:

Theorem 2: (sufficient conditions of safety and k-capture)
Consider a point x = (x1, x2) ∈ X , and let (π1

k, π
2
k) ≡

(ak · · · a1, bk · · · b1) be the pattern generated by PROCk(x)
with nextπ

1
k(x1) ∈ X1 and nextπ

2
k(x2) ∈ X2. Suppose that,

for all 1 ≤ i ≤ k:

5Note that the 1st element of the sequence (π1
k, π

2
k) ∈ A

k×Bk is of the
form (ak,bk) = argmaxb∈Bτ (x2) mina∈Aτ (x1){vk−1(next

a,b(x))}.
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Fig. 3. Simulations of the tag-chase game. The initial states are z1 =
(1.7, 1.7), z2 = (1.5, 1.0). The capture states are z1 = (1.7, 1.04), z2 =
(1.67, 0.9).

1) B(nextak···ai(x1),∆(ak · · · ai) + ε) ⊆ S1 and
B(nextbk···bi(x2),∆(bk · · · bi) + ε) ⊆ S2,
and

2) B(nextak···a1(x1),∆(ak · · · a1) + ε) ⊆ R1 and
B(nextbk···b1(x2),∆(bk · · · b1) + ε) ⊆ R2.

Then we have for all z = (z1, z2) ∈ B(x1, ε)×B(x2, ε),
and all i ∈ {1, . . . , k}:

• Xak···ai
(k−i+1)τ,z1

∈ S1 and Xbk···bi
(k−i+1)τ,z2

∈ S2 (safety),
and

• (Xak···a1
kτ,z1

, Xbk···b1
kτ,z2

) ∈ R. (k-capture).

Example 4: (Tag-Chase game) Let us consider Example 3
with V1 = 2, V2 = 1, S = [−2, 2]4, m1 = m2 = |A|= |B|=
6, A = B = {±π/3,±π/2,±2π/3}. Let the target R be
defined by: R = {(z1, z2) ∈ R4 : ‖z1 − z2‖≤ 0.7}.

Let N = 10 the number of nodes in each dimension,
ε = 0.31, τ = 0.2. One can check that conditions 1 and
2 of Theorem 2 are satisfied for k = 1. Applying the
corresponding strategy to z = (z1, z2) with z1 = (1.7, 1.7),
z2 = (1.5, 1.0), it can be shown that the controlled trajectory,
after 66 steps, reaches the state z1 = (1.7, 1.04), z2 =
(1.67, 0.9) which belongs to the target R. See the controller
simulation Figure 3 where the player 1 (pursuer) is in blue,
and the player 2 (evader) in red. For this initial state, one
can observe that, at step 68, a limit cycle of length 16 is
reached (see Figure 4). Note that, for other initial states, the
length of the limit cycle may be different, and is often 2.
The experiment takes 534 seconds of CPU time.

V. FINAL REMARKS

We have presented a new SL-based method for synthe-
sizing a provably safe finite-time horizon control. We have
illustrated the interest of the method on a classical example
(2-tanks) and shown how to extend it to stochastic ODEs and
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Fig. 4. Simulations of the tag-chase game. The initial states are z1 =
(1.7, 1.7), z2 = (1.5, 1.0). At step 68, a limit cycle of length 16 is reached.

differential games. The potential application of such methods
to Model Predictive Control has been pointed in [25].

A defect of our method is that, in order to satisfy the
sufficient conditions of Theorem 1, one may have to decrease
the cell size ε too much, thus making the number of cells
explode, as often in SL methods. In this case, methods using
symbolic reachability analysis, such as in [8], [25], [26], may
be more efficient. A comparative experimental work between
the two kinds of method is planned for future work.
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VI. APPENDIX: ERROR BOUNDING FOR THE TAMED
EULER SCHEME

A. Assumptions
The symbol ‖·‖ denotes the Euclidean norm on Rn.The

symbol 〈·, ·〉 denotes the scalar product of two vectors of Rn.
Given a point x ∈ Rn and a positive real r > 0, the ball
B(x, r) of centre x and radius r is the set {y ∈ Rn | ‖x−y‖≤
r}.

Let τ ∈ (0,∞) be a fixed real number, let (Ω,F ,P)
be a probability space with normal filtration (Ft)t∈[0,τ ], let
n,m ∈ N := {1, 2, . . . } let W = (W (1), . . . ,W (m)) :
[0, R]×Ω→ Rm be an m-dimensional standard (Wt)t∈[0,τ ]-
Brownian motion and let x0 : Ω → Rn be an F0/B(Rn)-
measurable mapping with E[‖x0‖p] <∞ for all p ∈ [1,∞).
Moreover, let f : Rn → Rn be a continuously differentiable
function whose derivative grows at most polynomially. For-
mally, let us suppose the existence of constants D ∈ R≥0
and q ∈ N such that, for all x, y ∈ Rn

‖f(x)− f(y)‖2≤ D‖x− y‖2(1 + ‖x‖q+‖y‖q) (H1)

Let g = (gi,j)i∈{1,...,d},j∈{1,...,m} : Rn → Rd×m be a
globally Lipschitz continuous function: there exists Lg ∈
R≥0 such that, for all x, y ∈ Rn

‖g(x)− g(y)‖≤ Lg‖x− y‖ (H2)

Finally, let us suppose that f is globally one-sided Lipschitz
with constant λ ∈ R:

∃λ ∈ R ∀x, y ∈ Rn : 〈f(y)− f(x), y − x〉 ≤ λ ‖y − x‖2
(H3)

Then consider the Stochastic Differential Equations
(SDE):

dXt = f(Xt)dt+ g(Xt)dWt, X0 = x0 (8)

for t ∈ [0, τ ]. The drift coefficient f is the infinitesimal
mean of the process X and the diffusion coefficient g
is the infinitesimal standard deviation of the process X .
Under the above assumptions, the SDE (8) is known to
have a unique strong solution. More formally, there exists
an adapted stochastic process X : [0, τ ] × Ω → Rn with
continuous sample paths fulfilling

Xt,x0
= x0 +

∫ t

0

f(Xs)ds+

∫ t

0

g(Xs)dWs

for all t ∈ [0, τ ] P-a.s. (see, e.g., [22]).
We denote by Xt,x0

the solution of Equation (8) at time t
from initial condition X0,x0

= x0 P-a.s., in which x0 is a
random variable that is measurable in F0.

Remark 1: Constants λ, Lg and D can be computed using
(constrained) optimization algorithms (see [6]).

B. Tamed Euler scheme
The standard time-discrete tamed Euler scheme is defined

as a follows. Let XN
n,z : Ω→ Rd,

XN
n+1,z = XN

n,z +
τ
N · f(XN

n,z)

1 + τ
N · ‖f(XN

n,z)‖
+g(XN

n,z)(W (n+1)τ
N
−Wnτ

N
)

(9)

for all n ∈ {0, 1, . . . , N − 1} and all N ∈ N. In this method
the drift term τ

n · f(XN
n,z) is ”tamed” by the factor 1/(1 +

τ
N ·‖f(XN

n,z)‖) for n ∈ {0, 1, . . . , N−1} and N ∈ N in (9).
A time continuous interpolation of the tamed Euler scheme

(introduced in [18]) is written as follows. Let X̃N
z : [0, τ ]×

Ω → Rn, N ∈ N, be a sequence of stochastic processes
given by

X̃N
t,z = X̃N

n,z+
(t− nτ/N) · f(X̃N

n,z)

1 + τ/N · ‖f(X̃N
n,z)‖

+g(X̃N
n,z)(Wt−Wnτ

N
)

(10)
for all t ∈ [nτN ,

(n+1)τ
N ], n ∈ {0, 1 . . . , N − 1} and all

N ∈ N. Note that X̃N
t,z : [0, τ ] × Ω → Rn is an adapted

stochastic process with continuous sample paths for every
N ∈ N.

Lemma 2: Let us suppose (H1) (H2) and (H3). Let the
setting in this section be fulfilled, and z : Ω → Rn be an
F0/B(Rn)-measurable mapping with E[‖z‖p] < ∞ for all
p ∈ [1,∞). Then, for any even integer r ≥ 2, there exist
two constants Er,z and Fr,z such that

sup
0≤t≤τ

E‖Xt,z − X̃t,z‖r≤ (∆t)
r
2 (Er,z(∆t)

r
2 + Fr,zd).

with ∆t = τ/N and:
Er,z = 2r(‖f(0)‖r+D2

r+1
2

(1 + E sup0≤t≤τ‖Xt,z‖qr)
1
2 (E sup0≤t≤τ‖Xt,z‖2r)

1
2 ),

Fr,z = 2r(‖g(0)‖2r+LrgE sup0≤t≤τ‖Xt,z‖
r
2 ).

Remark 2: Constants Er,z and Fr,z are computed using
the constants λ and Lg (see Remark 1), and the expected
values of Xt,z at each time t = 0,∆t, 2∆t, . . . , N∆t. These
expected values are computed using a Monte Carlo method
(by averaging here the value of 104 samplings).

C. Mean square error bounding

The following Theorem holds for SDE (8). This corre-
sponds to a stochastic version of Theorem 1 of [6], showing
that a similar result holds on average, using the tamed Euler
method of [18]. It is an adaptation of Theorem 4.4 in [16].

Theorem 3: Given the SDE system (8) satisfying (H1)-
(H2)-(H3). Let δ0 ∈ R≥0. Suppose that z is a random
variable on Rn such that

E[‖x0 − z‖2] ≤ δ20 .

Then, we have, for all τ ≥ 0:

E[ sup
0≤t≤τ

‖Xt,x0 − X̃t,z‖2] ≤ δ2τ,δ0 ,

with δ2τ,δ0 := β(τ)eγτ , where:

γ = 2(
√

∆t + 2λ+ L2
g + 128L4

g), and

β(τ) = 2δ20 + 2τ∆tL
2
g(1 + 128L2

g)(F2,zd+ E2,z∆t)

+ 4τ
√

∆tD(F4,zd+ E4,z∆
2
t )

1
2

(1 + 4E sup
0≤t≤τ

‖Xt,z‖2q+4E sup
0≤t≤τ

‖X̃t,z‖2q)
1
2 .

(11)

with ∆t = τ/N .


