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Guaranteed Control of Sampled Switched Systems using Semi-Lagrangian Schemes and One-Sided Lipschitz Constants

In this paper, we propose a new method for ensuring formally that a controlled trajectory stay inside a given safety set S for a given duration T . Using a finite gridding X of S, we first synthesize, for a subset of initial nodes x of X , an admissible control for which the Euler-based approximate trajectories lie in S at t ∈ [0, T ]. We then give sufficient conditions which ensure that the exact trajectories, under the same control, also lie in S for t ∈ [0, T ], when starting at initial points "close" to nodes x. The statement of such conditions relies on results giving estimates of the deviation of Euler-based approximate trajectories, using one-sided Lipschitz constants. We illustrate the interest of the method on several examples, including a stochastic one.

I. INTRODUCTION

Consider an ordinary differential equation (ODE) of the form ż = f (z) on R n . Classically, one knows that, if the function f is Lipschitz continuous with Lipschitz constant L, the solution of the ODE starting at a given initial value exists and is unique. Besides, one has:

X t,z1 -X t,z2 ≤ e Lt z 1 -z 2 , (1) 
where • denotes the Euclidean norm, and X t,zi denotes the value of the solution of the ODE at time t, starting at initial value z i (i = 1, 2). This gives a rough growth bound, i.e. a function bounding the distance of neighboring trajectories as t evolves.

In the 90's, several researchers [START_REF] Donchev | Stability and euler approximation of one-sided lipschitz differential inclusions[END_REF], [START_REF] Lempio | Set-valued interpolation, differential inclusions, and sensitivity in optimization[END_REF] have obtained a more accurate growth bound, using the notion of "one-sided Lipschitz (OSL)" function. The function f is said to be OSL if there exists a constant λ ∈ R such that, for all z 1 , z 2 ∈ R n :

f (z 1 ) -f (z 2 ), z 1 -z 2 ≤ λ z 1 -z 2 2 ,
where •, • denotes the scalar product of two vectors of R n . The real λ is called the OSL constant associated with f . In [START_REF] Donchev | Stability and euler approximation of one-sided lipschitz differential inclusions[END_REF], it is proven that, if f is continuous and OSL with OSL constant λ, then the solution of the ODE starting at a given initial value exists and is unique, and, for all z 1 , z 2 ∈ R n : X t,z1 -X t,z2 ≤ e λt z 1 -z 2 .

(

) 2 
This gives a more accurate growth bound because a Lipschitz function f is always OSL, and the associated OSL constant λ is always less than or equal to its Lipschitz counterpart L. Furthermore, in the case of "stiff" differential equations, we have λ L (see [START_REF] Donchev | Stability and euler approximation of one-sided lipschitz differential inclusions[END_REF]). Note also that a function can be OSL but not Lipschitz (not even locally Lipschitz): inequation (2) then still applies while inequation [START_REF] Altarovici | A general hamilton-jacobi framework for non-linear state-constrained control problems[END_REF] does not apply any longer. Using the OSL constant λ, it is also possible to bound the error X t,z1 -Xt,z2 in function of z 1 -z 2 , where Xt,z2 denotes the Euler approximate z 2 + tf (z 2 ) of the solution X t,z2 . In [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using euler's method[END_REF], we have derived some analytic forms of such error estimates when one focuses on a compact subdomain S ⊂ R n of solutions. We have also given an OSLbased error estimate for (a variant of) the Euler-Maruyama approximate solution in the case of stochastic ODEs [START_REF] Le Coënt | Control synthesis for stochastic switched systems using the tamed euler method[END_REF]. These results have been used to synthesize controls that are "correct-by-construction", in the sense that they are guaranteed to satisfy given safety constraints [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using euler's method[END_REF], [START_REF] Le Coënt | Control synthesis for stochastic switched systems using the tamed euler method[END_REF]. In this paper, we show how such error estimates can be integrated to semi-Lagrangian (SL) schemes in order to synthesize optimal controls for problems with safety constraints.

The plan of the paper is as follows: in Section II, we present the context of our work and the principle of the method; in Section III, we give formal sufficient conditions that guarantee the safety of the control; Section IV illustrates on two examples how the method can be extended for stochastic ODEs and differential games; we conclude in Section V.

II. CONTEXT AND PRINCIPLE OF THE METHOD

Let us present the context and the principle of our method.

A. Switched systems

A hybrid system is a system where the state evolves continuously according to several possible modes, and where the change of modes (switching) is done instantaneously.We consider here the special case of hybrid systems called "sampled switched systems" [START_REF] Girard | Approximately bisimilar symbolic models for incrementally stable switched systems[END_REF] where the change of modes occurs periodically with a period of τ seconds. We will suppose furthermore that the state keeps its value when the mode is changed (no jump). More formally, we denote the state of the system at time t by z(t) ∈ R n . The set of modes A is finite. With each mode a ∈ A is associated a vector field f a that governs the state z(t), we have:

ż(t) = f a (z(t)).
We make the following hypothesis:

(H0) For all a ∈ A, f a is a locally Lipschitz continuous map.

We will denote by X a t,z0 the solution at time t of ż(t) = f a (z(t)) with z(0) = z 0 . The existence of X a t,z0 is guaranteed by assumption (H0). Let us consider S ⊂ R n be a compact and convex set, typically a "rectangular set", i.e. a cartesian product on n closed intervals. We know by (H0) that there exists a constant L a > 0 such that:

f a (z 1 ) -f a (z 2 ) ≤ L a z 1 -z 2 ∀z 1 , z 2 ∈ S. (3) 
We also define, for all a ∈ A:

C a = sup z∈S L a f a (z) . (4) 
Let us denote by T a compact overapproximation of the set of trajectories starting in S for 0 ≤ t ≤ τ , i.e. T is such that

T ⊇ {X a t,z0 | a ∈ A, 0 ≤ t ≤ τ, z 0 ∈ S}. (5) 
The existence of T is guaranteed by assumption (H0). It follows from (H0) that the vector fields f a of the system are OSL on T : for all a ∈ A, there exists a constant λ a ∈ R such that

f a (z 1 )-f a (z 2 ), z 1 -z 2 ≤ λ a z 1 -z 2 2 ∀z 1 , z 2 ∈ T . ( 6 
)
We consider a finite time horizon problem: we suppose that time t belongs to interval [0, kτ ], where k is a given integer number. Given a sequence of modes (or "pattern")

π := a 1 • • • a k ∈ A k ,
we denote by X π t,z0 the solution of the ODE of mode a 1 for t ∈ [0, τ [ with initial condition z 0 , extended continuously with the solution of the ODE of mode a 2 for t ∈ [τ, 2τ [, and so on iteratively until mode a k for t ∈ [(k -1)τ, kτ ].

B. Optimal problems

We consider the cost function: J k,τ : R n × A k → R ≥0 defined by: J k,τ (z 0 , π) = X π kτ,z0 -z ref , and z ref a given "target" state of R n .

We consider the value function v τ k : R n → R ≥0 defined by:

v τ k (z 0 ) := min π∈A k {J k,τ (z 0 , π)} ≡ min π∈A k { X π kτ,z0 -z ref }.
The function min is well-defined because the set A is finite. We consider the following finite time horizon optimal control problem:

Given k ∈ N and τ ∈ R >0 , find for each z ∈ R n • the value v τ k (z 0 ), i.e. min π∈A k { X π kτ,z0 -z ref },
• and an optimal pattern:

π k τ (z 0 ) := arg min π∈A k { X π kτ,z0 -z ref }.
We are interested here in an optimal problem with safety constraints: we want that all the trajectories starting in S always stay in S for t ∈ [0, kτ ]. More precisely, we will focus on control patterns π ∈ A k that are "admissible for z 0 ∈ S", i.e. such that: X π iτ,z0 ∈ S, for all i ∈ {1, . . . , k} (discrete-time safety constraint). We will also consider a stronger admissibility criterion requiring: X π t,z0 ∈ S, for all t ∈ [0, kτ ] (continuous-time safety constraint).

In order to solve such optimal control problems, it is classical to spatially discretize the set S ⊂ R n . Given a hyper-rectangle S , we consider a partition of S into a finite number of hyper-rectangular cells. The grid X associated with S is the set of all the cell centers. We suppose furthermore that the radius of every cell is upper bounded by a given positive real ε: each cell C of center x is such that z 0 -x ≤ ε, for all z 0 ∈ C. The center x ∈ X of a cell C ⊂ S is said to be the "ε-representative" of all point of C. Since the set of cells forms a partition of S, each point z 0 ∈ S has a unique ε-representative x ∈ S with z 0 -x ≤ ε.

In this context, the idea of a Semi-Lagrangian (SL) procedure is the following: we consider the points of X as the vertices of a finite oriented graph; there is a connection from x ∈ X to x ∈ X if x is the ε-representative of the Euler-based image (x + τ f a (x)) of x, for some a ∈ A. We then compute using dynamic programming the "path of length k with minimal cost" starting at x: such a path is a sequence of n + 1 connected points

x x k x k-1 • • • x 1 of X which minimises the distance x 1 -z ref .
The dynamic progamming procedure thus gives us a spatially discrete value function v τ,ε k : X → R ≥0 , and a spatially discrete pattern function π k τ,ε : X → A k which "approximate" on S their counterparts v τ k and π k τ respectively.

There is a vast literature on SL-schemes (see, e.g., [START_REF] Cristiani | Fully-discrete schemes for the value function of pursuit-evasion games with state constraints[END_REF], [START_REF] Ferretti | Monotone numerical schemes and feedback construction for hybrid control systems[END_REF]) which gives numerous results to the following convergence problem P1: "Under which conditions does the spatially-discrete value function v τ,ε k converge to the value function v τ k when ε → 0 ?" Actually, when ε decreases too much, the computations with SL-procedures become quickly impractical. We prefer to consider here that ε is fixed (as well as τ and k), and focus on the following (local) problem P2: "Given z 0 ∈ S, under which conditions does there exist a pattern π ∈ A k which guarantees:

1) the satisfaction of the safety constraint X π iτ,z0 ∈ S for all i ∈ {1, . . . , k} (or X π t,z0 ∈ S, for all t ∈ [0, kτ ]), 2) while minimizing X π kτ,z0 -z ref as much as possible ?"

In order to solve problem P2, we use the SL-based procedure as sketched out above. Given a point z ∈ S of εrepresentative x ∈ X , we apply the SL procedure to x. The procedure generates a path of the form

x x k x k-1 • • • x 1 , where x k , • • • , x 1 are
computed using an Euler scheme, and lie by construction in S. The associated control pattern is of the form

a k a k-1 • • • a 1 ∈ A k . Let π i := a k • • • a i for 1 ≤ i ≤ k.
In order, to ensure that the corresponding points X π1 τ,z , X π2 2τ,z , . . . X π k kτ,z of the exact trajectory lie also in S, we need to establish a bound on the pairwise distances:

x

-z 0 , x k -X π1 τ,z0 , x k-1 -X π2 2τ,z0 , . . . , x i -X πi (k-i+1)τ,z0 , . . . , x 1 -X π k kτ,z0
. At time t = 0, the first distance x -z 0 is known to be bounded by ε. We will establish bounds ∆ 1 , . . . , ∆ k on the following distances using a recent result which gives an upper bound to the deviation of Euler-based trajectories with time (see [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using euler's method[END_REF]). More precisely, we will give an error function ∆(t) measuring the distance at time t between an approximate (Euler-based) trajectory starting at x ∈ X given by the SL-scheme, and an exact trajectory starting from the cell of x. In order to guarantee that the exact trajectory always lies in the hypercube S at times t = τ, 2τ, . . . , kτ , we merely perform two simple operations:

1) compute the "safety margin" of the Euler-based trajectory, i.e., its distance to the boundary of S at time t = τ, 2τ, . . . , kτ , and 2) check that this margin is always greater than the error ∆(t) at time t = τ, 2τ, . . . , kτ .

The complexity of these operations is very low.

C. Comparison with related work

We distinguish between works dealing with problem P1 and those dealing with P2.

• Problem P1: In many papers of the literature on SL methods with state constraints (see, e.g., [START_REF] Falcone | Numerical solution of dynamic programming equations[END_REF]), the authors enforce the trajectory system to stay in S by introducing a (somehow artificial) "penalization" term in the cost function J, making the cost of crossing the boundary of S prohibitive (cf. [START_REF] Falcone | Semi-lagrangian schemes for hamilton-jacobi equations, discrete representation formulae and godunov methods[END_REF]). In order to guarantee the result of convergence of v τ,ε to v τ , they also often make a restrictive assumption of "controllability". Note however that, in works like [START_REF] Altarovici | A general hamilton-jacobi framework for non-linear state-constrained control problems[END_REF], [START_REF] Bokanowski | Reachability and minimal times for state constrained nonlinear problems without any controllability assumption[END_REF], [START_REF] Cardaliaguet | Pursuit differential games with state constraints[END_REF], no controllability assumption is made.

In [START_REF] Reissig | Symbolic optimal control[END_REF] (cf. [START_REF] Rungger | Arbitrarily precise abstractions for optimal controller synthesis[END_REF]), the authors construct a sequence of abstractions which are more and more precise. The sequence of value function associated with each abstraction converges to the optimal value function associated the original problem. The abstract transition function computes an over-approximation of the set of trajectories starting at neighbouring points. This over-approximation is computed using a growth bound (bounding the distance of neighboring trajectories) based on the Jacobian matrix of f a . More precisely, the growth bound is a function mapping any r ∈ R n ≥0 to e M t r, where M is a n × n-matrix whose (i, j)-entry is D j f i a (z), if i = j and |D j f i a (z)| otherwise, and f i a (z) denotes the i-th component of vector f a (z). By comparison, our work here can be seen as a particular case of [START_REF] Reissig | Symbolic optimal control[END_REF] where one uses, for each of the n components, a uniform growth bound, mapping r ∈ R ≥0 to e λat r. The counterpart of the convergence result of [START_REF] Reissig | Symbolic optimal control[END_REF] for the value function, would state in our context that the synthesized control converge towards the optimal control as ε tends to 0. However, this does not seem true (unless adding very restrictive assumptions), which leads us to focus on problem P2 instead of P1.

• Problem P2: In the work of [START_REF] Schürmann | Guaranteeing constraints of disturbed nonlinear systems using set-based optimal control in generator space[END_REF], [START_REF] Schürmann | Optimal control of sets of solutions to formally guarantee constraints of disturbed linear systems[END_REF], the authors pursue an objective similar to ours: providing a (finite time-horizon) optimal control procedure with a formal guarantee of constraint satisfaction (safety). However they do not use SL-schemes, but perform a reachability analysis based on over-approximative state set representations (zonotopes, cf. [START_REF] Girard | Reachability of uncertain linear systems using zonotopes[END_REF], [START_REF] Althoff | Zonotope bundles for the efficient computation of reachable sets[END_REF]).

In [START_REF] Silva | Synthesis of safe controllers for nonlinear systems using dynamic programming techniques[END_REF], the authors also provide a formal guarantee of safety property. Contrarily to [START_REF] Schürmann | Guaranteeing constraints of disturbed nonlinear systems using set-based optimal control in generator space[END_REF], [START_REF] Schürmann | Optimal control of sets of solutions to formally guarantee constraints of disturbed linear systems[END_REF], they do use SL-schemes. They also focus to (periodically) sampled systems as we do. However, they still perform a form of reachability analysis similar to [START_REF] Schürmann | Guaranteeing constraints of disturbed nonlinear systems using set-based optimal control in generator space[END_REF], [START_REF] Schürmann | Optimal control of sets of solutions to formally guarantee constraints of disturbed linear systems[END_REF], using convex polytopes as state set representations. Their growth bound are not based on OSL constants as here, but rather on overapproximations of Lagrange remainders in Taylor series.

III. SUFFICIENT CONDITIONS FOR REACHABILITY WITH SAFETY

Given a starting point z 0 ∈ S and a mode a ∈ A, we denote by Xa τ,y the Euler-based image of z 0 at time t = τ via a. We have:

Xa τ,z0 := z 0 + τ f a (z 0 ).
The set of admissible modes for x ∈ X is defined by:

A τ (x) := {a ∈ A | Xa τ,x ∈ S}.
The function next a : X → X ∪ {⊥} is defined by:

• if a ∈ A τ (x), then: next a (x) = x , where x is the ε-representative Xa τ,x , • otherwise (i.e., Xa τ,x ∈ S): next a (x) = ⊥.
For a pattern π ∈ A k , the function next π : X → X ∪ {⊥} is defined as follows:

• if π = a for some a ∈ A, then next π (x) = next a (x), • if π is of the form a • π ; -if next a (x) = ⊥, then next π (x) = next π (next a (x)), -otherwise, next π (x) = ⊥.
It is easy to show, using the definition of next:

Proposition 1: Let x ∈ X , and π k ∈ A k a pattern of the form a k a k-1 • • • a 1 . Let us write π i := a k • • • a i for 1 ≤ i ≤ k, and x k+1 := x.
If next π k (x) ∈ X , then there exists a sequence of points of the form

x k+1 x k • • • x 1 ∈ X n+1 with, for all 1 ≤ i ≤ k: • Xai τ,xi+1 ∈ S, • x i = next ai (x i+1 ) = next πi (x), and • x i -Xai τ,xi+1 ≤ ε.
Definition 1: For all point x ∈ X , the spatially discrete value function v τ,ε k : X → R ≥0 ∪ {∞} is defined by:

• for k = 0, v τ,ε k (x) = x , • for k ≥ 1, -if A τ (x) = ∅: v τ,ε k (x) = ∞, -if A τ (x) = ∅: v τ,ε k (x) = min a∈Aτ (x) {v τ,ε k-1 (next a (x))}.
If v τ,ε k (x) = ∞, one defines the approximate optimal pattern of length k associated to x, denoted by π τ,ε k (x) ∈ A k , recursively by:

• if k = 0, π τ,ε k (x) = nil, • if k ≥ 1, π τ,ε k (x) = a k (x) • π where a k (x) = arg min a∈Aτ (x) {v τ,ε k-1 (next a (x))} and π = π τ,ε k-1 (x ) with x = next a k (x) (x).
Using the value function v τ,ε k it is thus easy to construct an SL procedure P ROC τ,ε k which takes a point x ∈ X as input, and returns, in case of success (i.e., when

v τ,ε k (x) ≥ 0), a pattern π τ,ε k ∈ A k with next π τ,ε k (x) ∈ X .
We now define, for such a pattern π τ,ε k output by P ROC τ,ε k (x), a value ∆(π τ,ε k ) which gives us an upperbound to X π τ,ε k kτ,z0 -next π τ,ε k (x) , for any z 0 ∈ B(x, ε) (i.e., any z 0 such that : z 0 -x ≤ ε).

Definition 2: Let µ be a given positive constant. Let us define, for all a ∈ A and t ∈ [0, τ ], δ a t,µ as follows:

• if λ a < 0: δ a t,µ = µ 2 e λat + C 2 a λ 2 a t 2 + 2t λa + 2 λ 2 a 1 -e λat 1 2
• if λ a = 0 :

δ a t,µ = µ 2 e t + C 2 a (-t 2 -2t + 2(e t -1)) 1 2
• if λ a > 0 :

δ a t,µ = µ 2 e 3λat + C 2 a 3λ 2 a -t 2 - 2t 3λa + 2 9λ 2 a e 3λat -1 1 2
where C a and λ a are constants defined in Section II-A.

Proposition 2: [6] Given x ∈ R n , we have, for all a ∈ A and all z 0 ∈ B(x, ε) (i.e., z 0 such that z 0 -x ≤ ε):

X a τ,z0 -Xa τ,x ≤ δ a τ,ε . Definition 3: Let us define ∆(a k • • • a 1 )
recursively by:

• ∆(a i ) = δ ai τ,ε for i = 1, and

• ∆(a i • • • a 1 ) = δ ai τ,µ with µ = ε + ∆(a i-1 • • • a 1 ), for i ≥ 2.
In the rest of the paper, we suppose that k ∈ N and τ, ε ∈ R >0 are given and fixed. So, for the sake of notation simplicity, we will abbreviate v τ,ε k as v k . We abbreviate similarly π τ,ε k and P ROC τ,ε k as π k and P ROC k respectively. We will suppose also that we are given a compact set S ⊂ R n as well as a "target" set R ⊂ S. 1 We have:

Lemma 1: Let x ∈ X and π k ≡ a k • • • a 1 ∈ A k the pattern generated by P ROC k (x) with next π k (x) ∈ X . We have, for all z 0 ∈ B(x, ε): 1) X π k kτ,z0 -Xa1 τ,x2 ≤ ∆(π k ), with x 2 := next a k •••a2 (x) for k ≥ 2, and x 2 := x for k = 1; 2) X π k kτ,z0 -next π k (x) ≤ ∆(π k ) + ε.
Proof: Let us prove items 1-2 by induction on k. Let us first prove item 1 for the base case k = 1. We have π k = π 1 = a 1 and x 2 = x. We have to prove, when x -z 0 ≤ ε: X a1 τ,z0 -Xa1 τ,x ≤ ∆(a 1 ) = δ a1 τ,ε . This inequation holds by Proposition 2, and the proof of item 1 is done. The proof of item 2 of the base case follows from item 1 and Proposition 1, using triangular inequality.

Let us now consider the induction step. We have to prove the following induction conclusion:

1) X

a k+1 •••a1 (k+1)τ,z0 -Xa1 τ,x2 ≤ ∆(a k+1 • • • a 1 ), with x 2 := next a k •••a2 (x) 2) X a k+1 •••a1 (k+1)τ,z0 -next a k+1 •••a1 (x) ≤ ∆(a k+1 • • • a 1 ) + ε. We have by induction hypothesis: 1) X a k+1 •••a2 kτ,z0 -Xa2 τ,x3 ≤ ∆(a k+1 • • • a 2 ), with x 3 := next a k+1 •••a2 (x), and 2) X a k+1 •••a2 kτ,z0 -next a k+1 •••a2 (x) ≤ µ, with µ := ∆(a k+1 • • • a 2 ) + ε. Besides, by Definition 3: ∆(a k+1 • • • a 1 ) = δ a1 τ,µ . Applying Proposition 2, with z 2 = X a k+1 •••a2 kτ,z0 and x 2 = next a k+1 •••a2 (x), we have: X a1 τ,z2 -Xa1 τ,x2 ≤ δ a1 τ,µ since x 2 -z 2 ≤ µ by item 2 of induction hypothesis. It follows X a k+1 •••a1 (k+1)τ,z0 -Xa1 τ,x2 ≤ δ a1 τ,µ = ∆(a k+1 • • • a 1
). This achieves the proof of the item 1 of the induction conclusion. The item 2 of the induction conclusion then follows from item 1 and Proposition 1, using triangular inequality. This completes the proof of the induction step.

Using item 2 of Lemma 1, it is easy to show: Theorem 1: (sufficient conditions of safety and kreachability) Let x ∈ X , and ß k ≡ a k • • • a 1 ∈ A k the pattern generated by P ROC k (x) with next π k (x) ∈ X . Suppose, for all 1 ≤ i ≤ k:

• (H i 1 ): B(next πi (x), ∆(π i ) + ε) ⊆ S, and • (H k 2 ): B(next π k (x), ∆(π k ) + ε) ⊆ R,
where

π i := a k • • • a i . Then we have, for all z 0 ∈ B(x, ε) 2 • X πi (k-i+1)τ,z0 ∈ S for all 1 ≤ i ≤ k (discrete-time safety), and • X π k kτ,z0 ∈ R (k-reachability).
Furthermore, assuming that, for all a ∈ A, δ a t,ε is a convex function for t ∈ [0, τ ] (i.e.,

d 2 (δ a t ) dt 2
> 0 for all t ∈ [0, τ ]3 ), we have:

X π k t,z0 ∈ S for all t ∈ [0, kτ ] (dense-time safety).
Suppose in particular that conditions (H i 1 )-(H k 2 ) hold for a set of points Y ⊆ X which ε-covers R, i.e., such that: R ⊆ x∈Y B(x, ε). In this case, the procedure P ROC k gives us a guarantee of "(R, S)-stability" as defined in [START_REF] Fribourg | Finite controlled invariants for sampled switched systems[END_REF]. By Theorem 1, we know indeed that, for all z 0 ∈ R of representative x ∈ X , the pattern π k generated by P ROC k (x) applied to z 0 yields a trajectory that reaches at t = kτ a point z of R (while always staying in S for 0 ≤ t ≤ kτ ); the process can then be iterated to z , and so on repeatedly. This means that, via the set of patterns π k associated to elements of Y, one can control any trajectory starting at R in order to make it return to R periodically every kτ seconds, and stay in S for all t ≥ 0 ("(R, S)-stability"). 4 The SL-based procedure P ROC k can thus replace advantageously the brute-force enumeration strategy implemented in tool MINIMATOR [START_REF] Kühne | Minimator 1.0[END_REF]: the time complexity of MINIMATOR procedure is indeed O(m k × N ) where m is the number of modes, N the number of cells and k the time-horizon length, while the complexity of

P ROC k is O(m × k × N ).

A. Description of the implementation

The procedure is implemented in Octave. It is composed of 9 functions and a main script totalling 500 lines of code. For comparison, the tool MINIMATOR uses 28 functions for a total of 2000 lines of code. on [0, τ ] depends on the value of the constants Ca and λa occurring in Definition 2; knowing these constant values, the sign is easy to determine (see [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using euler's method[END_REF]). 4 R can be seen as a special case of viability kernel for S (see, e.g., [START_REF] Aubin | The viability kernel algorithm for computing value functions of infinite horizon optimal control problems[END_REF]) since any trajectory starting from R can be controlled in order to stay inside S forever.

The computations are realised in a virtual machine running Ubuntu 18.06 LTS, having access to one core of a 2.3GHz Intel Core i5, associated to 3.5GB of RAM memory.

Note that the accuracy of the Euler approximation can be optionally increased by using a smaller time step. The time-step h used for Euler approximation is not necessarily equal to the control sampling period, but is in general a submultiple of τ (τ = p × h where p is a natural number greater than 1).

Example 1: (2-tanks) In this example, we illustrate the approach given above for (R, S)-stability on a two tank example. The two-tank system is a linear example taken from [START_REF] Hiskens | Stability of limit cycles in hybrid systems[END_REF]. The system consists of two tanks and two valves. The first valve adds to the inflow of tank 1 and the second valve is a drain valve for tank 2. There is also a constant outflow from tank 2 caused by a pump. The system is linearized at a desired operating point. The objective is to keep the water level in both tanks within limits using a discrete open/close switching strategy for the valves. Let the water level of tanks 1 and 2 be given by x 1 and x 2 respectively. The behavior of x 1 is given by ẋ1 = -x 1 -2 when the tank 1 valve is closed, and ẋ1 = -x 1 + 3 when it is open. Likewise, x 2 is driven by ẋ2 = x 1 when the tank 2 valve is closed and ẋ2

= x 1 -x 2 -5 when it is open. Let S = [-2, 3] × [-1, 2], R = [-1.5, 2.5] × [-0.5, 1 .5] 
, N = 10 × 10 the number of cells, ε = 0.33, τ = 0.1. The proof of (R, S)-stability is obtained for k = 5, it takes 7.34 seconds. By comparison, MINIMATOR takes 25.53 seconds to obtain a controller without any optimality result. Simulations of the (R, S)-stability controller are given in Figure 1.

IV. EXTENSIONS

We now explain how to extend the method to stochastic ODEs and differential games.

A. Stochastic switched systems

Let us consider a stochastic switched system defined by

dX t = f a (X t )dt + g a (X t )dW t , X 0 = x 0 , (7) 
where W t is a standard m-dimensional Brownian motion, and suppose that for all a ∈ A: (H1) f a : R n → R n is a continuously differentiable function whose derivative grows at most polynomially, (H2) g a = (g ai,j ) i∈{1,...,n},j∈{1,...,m} : R n → R n×m is a globally Lipschitz continuous function, (H3) f a is globally one-sided Lipschitz.

Under the above-mentioned hypotheses, we can establish bounds δ a t,ε similar to Definition 2 for stochastic switched systems using the tamed Euler scheme [START_REF] Higham | Strong convergence of Euler-type methods for nonlinear stochastic differential equations[END_REF]. The detail of this bound is given in Appendix for a single mode stochastic switched system (i.e. a stochastic differential equation). We refer the reader to [START_REF] Le Coënt | Control synthesis for stochastic switched systems using the tamed euler method[END_REF] for the details of the error bounding for stochastic switched systems. The result is stated as follows for a single switching step integration: Proposition 3 ( [START_REF] Le Coënt | Control synthesis for stochastic switched systems using the tamed euler method[END_REF]): Consider two points x 0 and z in R n ,and a positive real number ε. Suppose that x 0 ∈ B(z, ε). Let us denote by Xt,z the tamed Euler approximation of X t starting from initial point z in [START_REF] Cristiani | Fully-discrete schemes for the value function of pursuit-evasion games with state constraints[END_REF]. Then EX t,x0 ∈ B( Xt,z , δ a t,ε ) for all t ∈ [0, τ ], where E is the symbol of expected value.

Example 2: (Stochastic system) Consider the system (see ( [START_REF] Zamani | Symbolic control of stochastic systems via approximately bisimilar finite abstractions[END_REF], [START_REF] Zamani | Symbolic models for stochastic switched systems: A discretization and a discretization-free approach[END_REF])):

dx 1 = (-0.25x 1 + ux 2 + (-1) u 0.25)dt + 0.01x 1 dW 1 t dx 2 = ((u-3)x 1 -0.25x 2 +(-1) u (3-u))dt+0.01x 2 dW 2 t
where u = 1, 2.

We can apply the above procedure P ROC τ,ε k in order to minimize the average distance of the state to the origin after a given number of steps. We consider a switching period τ = 0.5 subdivided in time steps of size ∆ t = 10 -4 . Consider the interest set R = B((0, 0), ρ) with ρ = 7, discretized with an accuracy ε = 0.57. We compute (sub)optimal patterns for the entire set, using different lengths of patterns, and simulate the induced controller for 200 initial conditions randomly selected in R. Simulations are given in Figure 2. The procedure took 11.8 seconds of computation for patterns of length 1, 47.4 seconds of computation for patterns of length 3. 

B. Sampled Pursuit-Evasion Games with Safety

Let us explain here how one can extend our SL-based method to Pursuit-Evasion games, closely following the work of [START_REF] Cristiani | Fully-discrete schemes for the value function of pursuit-evasion games with state constraints[END_REF]. The ODEs are defined by:

( ż1 (t), ż2 (t)) = (f 1 a (z 1 (t)), f 2 b (z 2 (t))), t > 0 (z 1 (0), z 2 (0)) = (z 0 1 , z 0 2 ) where (z 1 (t), z 2 (t)) ∈ R n × R n , (z 0 1 , z 0 2 ) ∈ R n × R n , a ∈ A, b ∈ B, and f 1 a and f 2 b are functions of R n → R n . Given a safety set S = S 1 × S 2 ⊂ R n × R n , the (dense-time) safety constraint is: z 1 (t) ∈ S 1 , z 2 (t) ∈ S 2 . The target set is defined by: R = {(z 1 , z 2 ) ∈ R n × R n : z 1 -z 2 ≤ γ}, γ ≥ 0
Example 3: (The Tag-Chase game with constraints) [START_REF] Cristiani | Fully-discrete schemes for the value function of pursuit-evasion games with state constraints[END_REF] Two players 1 (pursuer) and 2 (evader) which run one after the other in the same 2-dimensional domain (courtyard), so that the game is set in S = S 2 1 ⊂ R 4 . Players 1 and 2 can run in every direction with velocity V 1 and V 2 respectively. The control sets are of the form A = {α 1 , . . . , α m1 }, B = {β 1 , . . . , β m2 }.

We have the dynamics for z 1 = (i 1 , j 1 ) and z 2 = (i 2 , j 2 ):

1: i1 = V 1 sinα ; j1 = V 1 cosα 2: i2 = V 2 sinβ ; j2 = V 2 cosβ
where α ∈ A is the direction for 1, and β ∈ B is the direction for 2 (α and β are the angles between the j-axis and the velocities for 1 and 2). For z 1 ≡ (i 1 , j 1 ) and z 2 ≡ (i 2 , j 2 ), the capture occurs when z

≡ (z 1 , z 2 ) ∈ R ≡ R 1 × R 2 with R = {((i 1 , j 1 ), (i 2 , j 2 )) ∈ S : (i 1 -i 2 ) 2 + (j 1 -j 2 ) 2 ≤ γ}.
We build a partition of S = S 1 × S 2 and construct a grid X = X 1 × X 2 by performing separately the operations described in Section III on S 1 and S 2 . Definition 4: For x = (x 1 , x 2 ) ∈ X , the sets of admissible controls A τ (x 1 ) and B τ (x 2 ) w.r.t. S 1 and S 2 respectively, are defined by:

A τ (x 1 ) = {a ∈ A : x 1 + τ f 1 a (x 1 ) ∈ S 1 }, B τ (x 2 ) = {b ∈ B : x 2 + τ f 2 b (x 2 ) ∈ S 2 }. Let denote by next a,b : X 1 × X 2 → X 1 × X 2 , the function defined, for x = (x 1 , x 2 ) by: next a,b (x) := (next a (x 1 ), next b (x 2 )),
where next a : X 1 → X 1 and next b : X 2 → X 2 are defined as in Section III.

Definition 5: The value function v k : X → R ≥0 ∪ {∞} is defined, for all x ≡ (x 1 , x 2 ) ∈ X with x 1 ≡ (i 1 , j 1 ) and x 2 ≡ (i 2 , j 2 ), by:

• For k = 0, v k (x) = (i 1 -i 2 ) 2 + (j 1 -j 2 ) 2 ; • For k ≥ 1, -if A τ (x 1 ) = ∅ ∨ B τ (x 2 ) = ∅, v k (x) = ∞; -if A τ (x 1 ) = ∅ ∧ B τ (x 2 ) = ∅, v k (x) = max b∈Bτ (x2) min a∈Aτ (x1) {v k-1 (next a,b (x))}.
Similarly to what has been done in Section III, one can construct, for 5 The counterpart of Theorem 1 is: Theorem 2: (sufficient conditions of safety and k-capture) Consider a point x = (x 1 , x 2 ) ∈ X , and let (π 

x = (x 1 , x 2 ) ∈ X with v k (x) ≥ 0, a procedure P ROC k which returns a pattern (π 1 k , π 2 k ) ∈ A k × B k with next π 1 k (x 1 ) ∈ X 1 and next π 2 k (x 2 ) ∈ X 2 .
1 k , π 2 k ) ≡ (a k • • • a 1 , b k • • • b 1 ) be the pattern generated by P ROC k (x) with next π 1 k (x 1 ) ∈ X 1 and next π 2 k (x 2 ) ∈ X 2 . Suppose that, for all 1 ≤ i ≤ k: 5 Note that the 1st element of the sequence (π 1 k , π 2 k ) ∈ A k ×B k is of the form (a k , b k ) = arg max b∈Bτ (x 2 ) min a∈Aτ (x 1 ) {v k-1 (next a,b (x))}.

1) B(next

a k •••ai (x 1 ), ∆(a k • • • a i ) + ε) ⊆ S 1 and B(next b k •••bi (x 2 ), ∆(b k • • • b i ) + ε) ⊆ S 2 , and 2) B(next a k •••a1 (x 1 ), ∆(a k • • • a 1 ) + ε) ⊆ R 1 and B(next b k •••b1 (x 2 ), ∆(b k • • • b 1 ) + ε) ⊆ R 2 .
Then we have for all z = (z 1 , z 2 ) ∈ B(x 1 , ε) × B(x 2 , ε), and all i ∈ {1, . . . , k}: Let N = 10 the number of nodes in each dimension, ε = 0.31, τ = 0.2. One can check that conditions 1 and 2 of Theorem 2 are satisfied for k = 1. Applying the corresponding strategy to z = (z 1 , z 2 ) with z 1 = (1.7, 1.7), z 2 = (1.5, 1.0), it can be shown that the controlled trajectory, after 66 steps, reaches the state z 1 = (1.7, 1.04), z 2 = (1.67, 0.9) which belongs to the target R. See the controller simulation Figure 3 where the player 1 (pursuer) is in blue, and the player 2 (evader) in red. For this initial state, one can observe that, at step 68, a limit cycle of length 16 is reached (see Figure 4). Note that, for other initial states, the length of the limit cycle may be different, and is often 2. The experiment takes 534 seconds of CPU time.

• X a k •••ai

V. FINAL REMARKS

We have presented a new SL-based method for synthesizing a provably safe finite-time horizon control. We have illustrated the interest of the method on a classical example (2-tanks) and shown how to extend it to stochastic ODEs and differential games. The potential application of such methods to Model Predictive Control has been pointed in [START_REF] Schürmann | Guaranteeing constraints of disturbed nonlinear systems using set-based optimal control in generator space[END_REF].

A defect of our method is that, in order to satisfy the sufficient conditions of Theorem 1, one may have to decrease the cell size ε too much, thus making the number of cells explode, as often in SL methods. In this case, methods using symbolic reachability analysis, such as in [START_REF] Silva | Synthesis of safe controllers for nonlinear systems using dynamic programming techniques[END_REF], [START_REF] Schürmann | Guaranteeing constraints of disturbed nonlinear systems using set-based optimal control in generator space[END_REF], [START_REF] Schürmann | Optimal control of sets of solutions to formally guarantee constraints of disturbed linear systems[END_REF], may be more efficient. A comparative experimental work between the two kinds of method is planned for future work.

2 Fig. 1 .

 21 Fig. 1. Simulations of the (R, S)-stability controller on the two tank example. The safety set is S = [-2, 3] × [-1, 2], the recurrence set R = [-1.5, 2.5] × [-0.5, 1.5], the blue box is the set R, the red circle is the objective here chosen as (1.0, 0.0). The trajectory of the system is in black for two initial conditions: (2.5, 2.5) (top) and (-1.5, 1.5) (bottom).

Fig. 2 .

 2 Fig. 2. Simulations of Example 2 with the controller induced by P ROC k , for patterns of length 1 (top), length 3 (bottom). The blue circle is the set R = B((0, 0), 7), the red marker is the target state (the origin), the black lines are the controlled trajectories.

Fig. 3 .

 3 Fig. 3. Simulations of the tag-chase game. The initial states are z 1 = (1.7, 1.7), z 2 = (1.5, 1.0). The capture states are z 1 = (1.7, 1.04), z 2 = (1.67, 0.9).

  (k-i+1)τ,z1 ∈ S 1 and X b k •••bi (k-i+1)τ,z2 ∈ S 2(safety), and• (X a k •••a1 kτ,z1 , X b k •••b1 kτ,z2 ) ∈ R. (k-capture).Example 4: (Tag-Chase game) Let us consider Example 3 withV 1 = 2, V 2 = 1, S = [-2, 2] 4 , m 1 = m 2 = |A|= |B|= 6, A = B = {±π/3,±π/2, ±2π/3}. Let the target R be defined by: R = {(z 1 , z 2 ) ∈ R 4 : z 1 -z 2 ≤ 0.7}.

Fig. 4 .

 4 Fig. 4. Simulations of the tag-chase game. The initial states are z 1 = (1.7, 1.7), z 2 = (1.5, 1.0). At step 68, a limit cycle of length 16 is reached.

We suppose implicitly that R contains the target point z ref , so R can be seen as a neighborhood of z ref .

In particular, for any z 0 ∈ S of ε-representative x.

The sign ofd 2 (δ a t ) dt 2

VI. APPENDIX: ERROR BOUNDING FOR THE TAMED EULER SCHEME A. Assumptions

The symbol • denotes the Euclidean norm on R n .The symbol •, • denotes the scalar product of two vectors of R n . Given a point x ∈ R n and a positive real r > 0, the ball B(x, r) of centre x and radius r is the set {y ∈ R n | x-y ≤ r}.

Let τ ∈ (0, ∞) be a fixed real number, let (Ω, F, P) be a probability space with normal filtration

Moreover, let f : R n → R n be a continuously differentiable function whose derivative grows at most polynomially. Formally, let us suppose the existence of constants D ∈ R ≥0 and q ∈ N such that, for all x, y ∈ R n f (x) -f (y) 2 ≤ D x -y 2 (1 + x q + y q ) (H1) Let g = (g i,j ) i∈{1,...,d},j∈{1,...,m} : R n → R d×m be a globally Lipschitz continuous function: there exists

Finally, let us suppose that f is globally one-sided Lipschitz with constant λ ∈ R:

H3) Then consider the Stochastic Differential Equations (SDE):

The drift coefficient f is the infinitesimal mean of the process X and the diffusion coefficient g is the infinitesimal standard deviation of the process X. Under the above assumptions, the SDE ( 8) is known to have a unique strong solution. More formally, there exists an adapted stochastic process X : [0, τ ] × Ω → R n with continuous sample paths fulfilling

for all t ∈ [0, τ ] P-a.s. (see, e.g., [START_REF] Oksendal | Stochastic Differential Equations: An Introduction with Applications[END_REF]).

We denote by X t,x0 the solution of Equation ( 8) at time t from initial condition X 0,x0 = x 0 P-a.s., in which x 0 is a random variable that is measurable in F 0 .

Remark 1: Constants λ, L g and D can be computed using (constrained) optimization algorithms (see [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using euler's method[END_REF]).

B. Tamed Euler scheme

The standard time-discrete tamed Euler scheme is defined as a follows. Let

for all n ∈ {0, 1, . . . , N -1} and all N ∈ N. In this method the drift term τ n • f (X N n,z ) is "tamed" by the factor 1/(1

) ) for n ∈ {0, 1, . . . , N -1} and N ∈ N in [START_REF] Donchev | Stability and euler approximation of one-sided lipschitz differential inclusions[END_REF]. A time continuous interpolation of the tamed Euler scheme (introduced in [START_REF] Hutzenthaler | Strong convergence of an explicit numerical method for SDEs with nonglobally lipschitz continuous coefficients[END_REF]) is written as follows. Let XN z : [0, τ ] × Ω → R n , N ∈ N, be a sequence of stochastic processes given by

, n ∈ {0, 1 . . . , N -1} and all N ∈ N. Note that XN t,z : [0, τ ] × Ω → R n is an adapted stochastic process with continuous sample paths for every N ∈ N.

Lemma 2: Let us suppose (H1) (H2) and (H3). Let the setting in this section be fulfilled, and z : Ω → R n be an

Then, for any even integer r ≥ 2, there exist two constants E r,z and F r,z such that

with ∆ t = τ /N and:

). Remark 2: Constants E r,z and F r,z are computed using the constants λ and L g (see Remark 1), and the expected values of X t,z at each time t = 0, ∆t, 2∆t, . . . , N ∆t. These expected values are computed using a Monte Carlo method (by averaging here the value of 10 4 samplings).

C. Mean square error bounding

The following Theorem holds for SDE [START_REF] Silva | Synthesis of safe controllers for nonlinear systems using dynamic programming techniques[END_REF]. This corresponds to a stochastic version of Theorem 1 of [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using euler's method[END_REF], showing that a similar result holds on average, using the tamed Euler method of [START_REF] Hutzenthaler | Strong convergence of an explicit numerical method for SDEs with nonglobally lipschitz continuous coefficients[END_REF]. It is an adaptation of Theorem 4.4 in [START_REF] Higham | Strong convergence of Euler-type methods for nonlinear stochastic differential equations[END_REF].

Theorem 3: Given the SDE system (8) satisfying (H1)-(H2)-(H3). Let δ 0 ∈ R ≥0 . Suppose that z is a random variable on R n such that E[ x 0 -z 2 ] ≤ δ 2 0 . Then, we have, for all τ ≥ 0: 

with ∆ t = τ /N .