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On the Lee classes of locally conformally

symplectic complex surfaces

Vestislav Apostolov and Georges Dloussky

We prove that the deRham cohomology classes of Lee forms of lo-
cally conformally symplectic structures taming the complex struc-
ture of a compact complex surface S with first Betti number equal
to 1 is either a non-empty open subset of H1

dR(S,R), or a single
point. In the latter case, we show that S must be biholomorphic to
a blow-up of an Inoue–Bombieri surface. Similarly, the deRham co-
homology classes of Lee forms of locally conformally Kähler struc-
tures of a compact complex surface S with first Betti number equal
to 1 is either a non-empty open subset of H1

dR(S,R), a single point
or the empty set. We give a characterization of Enoki surfaces in
terms of the existence of a special foliation, and obtain a vanish-
ing result for the Lichnerowicz–Novikov cohomology groups on the
class VII compact complex surfaces with infinite cyclic fundamen-
tal group.

1. Introduction

This paper is a sequel to our previous work [2] in which we have established
the following result

Theorem 1.1. [2] Any compact complex surface S = (M,J) admits a non-
degenerate 2-form ω which tames the complex structure J , i.e. its (1, 1)-part
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932 V. Apostolov and G. Dloussky

ω1,1 with respect to J is positive-definite, and satisfies

(1) dω = α ∧ ω

for some closed 1-form α.

A non-degenerate 2-forms ω satisfying (1) is called a locally conformally
symplectic (LCS) structure and the corresponding closed 1-form α is referred
to as the Lee form of ω. The notion of an LCS structure is conformally
invariant in the sense that if ω is an LCS structure with Lee form α, then
ω̃ = efω is an LCS structure with Lee form α̃ = α+ df . Thus, the deRham
class [α] ∈ H1

dR(S,R) is a natural invariant of (the conformal class of) an
LCS structure, which we shall call the Lee class of ω. We thus consider the
set of all Lee classes of LCS structures taming the complex structure of S

T (S) := {[α] ∈ H1
dR(S,R) : ∃ ω ∈ E2(S,R) s. t. ω1,1 > 0, dω = α ∧ ω}.

Theorem 1.1 then states that T (S) 6= ∅. This result is new only when the first
Betti number b1(S) is odd, in which case 0 /∈ T (S) (see e.g. [2, Prop. 3.5]).
Conversely, when b1(S) is even, it follows from [13, Lemme II.3] and [16,
p. 185] that T (S) = {0}.

A further motivation for studying LCS structures comes from the fol-
lowing recent result by Eliashberg–Murphy [10] (see also [7, Thm. 2.15 &
Rem. 2.16]):

Theorem 1.2. [10] Let (M,J) be a compact almost complex manifold and
a 6= 0 ∈ H1

dR(M,R) a non-trivial deRham class. Then for any C > 1 suffi-
ciently large and any closed 1-form α ∈ Ca, there exists an LCS structure
with Lee form α, compatible with the orientation on M induced by J .

The LCS forms ω constructed in [10] are in fact exact in the sense that

ω = dαβ := dβ − α ∧ β

for a 1-form β on M . On a compact complex surface containing a rational
curve, such LCS forms cannot tame the underlying complex structure, i.e.
generically they are different from the LCS structures provided by Theo-
rem 1.1.

The main result of this paper is the following structure theorem for the
set T (S).
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Lee classes of complex surfaces 933

Theorem 1.3. Let S be a compact complex surface with first Betti number
equal to 1. Then, either T (S) is a non-empty open subset in H1

dR(S,R),
or else T (S) is a single point and S is a blow-up of an Inoue–Bombieri
surface [17].

The proof of this result relies, at one hand, on a characterization of the
case when T (S) is not open in terms of the “Kähler rank” theory developed
in [8] (see Theorem 4.1, Remark 4.6 and Lemma 4.7 below), and, at the other
hand, on the characterization of the blow-ups of Inoue–Bombieri surfaces
obtained by Brunella in [6].

As observed recently in [27], Theorem 1.3 shows that on the Inoue–
Bombieri complex surfaces (and their blow-ups) the existence result for LCS
structures provided by Theorem 1.1 is complementary to the one provided
by Theorem 1.2, see Corollary 4.9 below.

Theorem 1.3 is to be compared with recent results of R. Goto [15] about
the deformations of Lee classes of locally conformally Kähler structures. As
a matter of fact, combining [15, Thm. 2.3] with Theorem 4.1 in this paper,
we obtain the following

Theorem 1.4. Let S be a compact complex surface with first Betti number
equal to 1 and C(S) ⊂ T (S) the set of Lee classes of locally conformally
Kähler structures on S, i.e.

C(S) = {[α] ∈ H1
dR(S,R) : ∃ ω ∈ E1,1(S,R), ω > 0, dω = α ∧ ω}.

Then C(S) is either empty, a single point or a non-empty open subset in
H1
dR(S,R).

Examples of either type do exist, due to [4, 30], see [2, Thm. 1.4].

The proofs of Theorems 1.3 and 1.4 use a vanishing result for the first
cohomology group H1

dL
(S,L) associated to the sheaf of parallel sections of

the flat real line bundle L corresponding to a deRham class a ∈ T (S) (see
Theorem 4.1), which holds true for all surfaces with b1(S) = 1 except the
blow-ups of Inoue–Bombieri surfaces, according to [6, Thm. 1], Theorem 4.1,
and Lemma 4.7 below. One is thus naturally led to ask whether or not
the assumption a ∈ T (S) can be removed from this statement. In the final
section of the paper, we recollect some observations regarding this and some
related questions, and establish the following vanishing result.
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934 V. Apostolov and G. Dloussky

Theorem 1.5. Let S be a compact complex surface with first Betti number
equal to 1 and fundamental group isomorphic to Z. Then, for any real flat

bundle L associated to a class a 6= 0 ∈ H1
dR(S,R)

exp∼= H1(S,R∗+),

dimRH
k
dL(S,L) = 0, k 6= 2, dimRH

2
dL(S,L) = dimRH

2(S,R).

2. Preliminaries

Let X = (M,J) be a compact complex manifold of complex dimension n,
and α a closed 1-form onX, representing de Rham class a = [α] ∈ H1

dR(X,R).
We denote by Lα = X × R the topologically trivial real line bundle over X,
endowed with the flat connection ∇αs := ds+ α⊗ s, where s is a smooth
function on X, also viewed as a smooth section of Lα. Similarly,∇α induces a
holomorphic structure on the complex bundle Lα := Lα ⊗ C such that paral-
lel sections are holomorphic. Writing α|Ui = dfi on an open covering U = (Ui)

of X, {(Ui, e−fi)} defines a parallel (respectively holomorphic) trivialization
of Lα (resp. of Lα) with transition functions efi−fj on Ui ∩ Uj . With respect
to this trivialization, s0 = (Ui, e

fi) is a nowhere vanishing smooth section of
Lα. This construction fits in into the sequence of natural morphisms

(2) H1
dR(X,R)

exp∼= H1(X,R∗+)−→H1(X,C∗) −→ Pic(X),

where R∗+ denotes the sheaf of locally constant positive real functions, and
Pic(X) = H1(X,O∗) is the group of isomorphism classes of holomorphic line
bundles. Indeed, Lα represents the isomorphism class exp(a) ∈ H1(X,R∗+)
given by (2) whereas Lα represents its image in Pic0(X), where Pic0(X)
denotes the subgroup of H1(X,O∗) of isomorphism classes of holomorphic
line bundle with zero first Chern class.

In what follows, we shall tacitly identify Lα and Lα̃ (resp. Lα and Lα̃)
for any two α, α̃ ∈ a, and denote (with a slight abuse of notation) by La
(resp. La) a flat line bundle obtained by some choice of α ∈ a; we shall refer
to La (resp. La) as the flat real (resp. the flat holomorphic) line bundle
corresponding to a ∈ H1

dR(X,R). Similarly, we shall implicitly identify a flat
real line bundle (resp. a holomorphic line bundle) with the class it represents
in H1(X,R∗+) (resp. in Pic(X)).

We denote by Ek(X,R), resp. Ep,q(X,C) the space of smooth real k-forms
on X, resp. of smooth complex-valued (p, q)-forms on X. The α-twisted
differential

dα := d− α ∧ ·
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defines the Lichnerowicz–Novikov complex

(3) · · · dα→ Ek−1(X,R)
dα→ Ek(X,R)

dα→ · · ·

which is isomorphic to the de Rham complex of differential forms with values
in L∗

(4) · · · dL∗→ Ek−1(X,L∗)
dL∗→ Ek(X,L∗) dL∗→ · · ·

associated to the sheaf of locally constant sections of L∗. This can be viewed
by writing α|Ui = dfi on an open covering U = (Ui) of X: then, for any dα-

closed smooth form ω on X, ωi|Ui := e−fiω gives rise to a smooth section

in Ek(X,L∗), satisfying dωi = 0 on Ui, i.e. {Ui, ωi) defines a dL∗-closed form
with values in L∗. In particular, we have an isomorphism between the coho-
mology groups

(5) Hk
α(X,R) ∼= Hk

dL∗ (X,L∗),

associated to the complexes (3) and (4), respectively.
Considering complex-valued forms, one can similarly introduce the op-

erators

dL∗ = ∂L∗ + ∂̄L∗ , and dα = ∂α + ∂̄α

with

∂α = ∂ − α1,0 ∧ and ∂̄α = ∂̄ − α0,1∧,

acting respectively on Ep,q(X,L∗) and Ep,q(X,C). These give rise to the
isomorphisms

(6) Hp,q

∂̄α
(X,C) ∼= Hp,q(X,L∗) ∼= Hq(X,Ωp ⊗ L∗),

where Hp,q

∂̄α
(X,C)=Ker(∂̄α)/Im(∂̄α) whereas Hp,q(X,L∗)∼=Hq(X,Ωp ⊗ L∗)

is the usual Dolbeault cohomology group of X with values in the flat holo-
morphic line bundle L∗, and Ωp stands for the holomorphic vector bundle
of (p, 0) forms on X.

For any (k − 1)-form φ and (2n− k)-form ψ on X, we have

d(φ ∧ ψ) = (dαφ) ∧ ψ + (−1)k−1φ ∧ (d−αψ).

Integrating the above formula over the closed manifold X leads to a natural
pairing between Hk

α(X,R) and H2n−k
−α (X,R).
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936 V. Apostolov and G. Dloussky

For any Riemannian metric g on X, the L2 adjoint of dα is

d∗α = − ∗ d−α∗,

where ∗ is the Hodge operator with respect to g. (We have used that X is
oriented and even dimensional.) It follows that the corresponding twisted
Laplace operator ∆g

α = dαd
∗
α + d∗αdα has the same index as the usual Lapla-

cian ∆g and satisfies

∗∆g
α = ∆g

−α ∗ .

Hodge theory (see e.g. [1, 28]) and (5) then imply that the spaces Hk
α(X,R)

are finite dimensional and the pairing between Hk
α(X,R) and H2n−k

−α (X,R)
defined above is a perfect pairing, i.e.

(7) Hk
α(X,R) ∼=

(
H2n−k
−α (X,R)

)∗
, Hk

dL(X,L) ∼=
(
H2n−k
dL∗ (X,L∗)

)∗
,

where the upper ∗ denotes the dual vector space. The index theorem also
implies (as observed in [12])

(8)

2n∑
k=0

(−1)kdimR H
k
α(X,R) = e(X),

where e(M) is the Euler characteristic of M . Notice that if [α] 6= 0 ∈
H1
dR(X,R), then

(9) H0
α(X,R) = H2n

α (X,R) = {0},

Indeed, suppose dαf = 0 for some smooth non-zero function f . This means
that f satisfies the linear system df = fα, so f cannot vanish on X, showing
that α = d log |f |, a contradiction. Thus, H0

α(X,R) = {0} and H0
−α(X,R) ∼=

(H2n
α (X,R))∗ = {0}.
We shall use the following elementary fact

Lemma 2.1. Suppose M is a compact manifold and p : M̃ →M a fi-
nite cover. For any flat real line bundle L = Lα denote L̃ = Lα̃ the cor-
responding pullback to M̃ , where α̃ = p∗α. Then the natural pull-back map
p∗ : Hk

α(M,R)→ Hk
α̃(M̃,R) is injective.

Proof. We need to show that if β is dα-closed k-form on M such that β̃ :=
p∗(β) = dα̃γ̃ on M̃ , then β is dα-exact on M . Denote by Γ the finite group of
diffeomorphisms of M̃ such that M = M̃/Γ. As both α̃ and β̃ are invariant
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Lee classes of complex surfaces 937

under the action of Γ of M̃ , the average of γ̃ over Γ is a Γ-invariant (k − 1)-
form γ on M̃ , satisfying β̃ = dα̃γ. As γ descends to M (being Γ-invariant),
we also have β = dαγ on M . �

Similarly to (7), we have isomorphisms

Hp,q

∂̄α
(X,C) ∼= (Hn−p,n−q

∂̄−α
(X,C))∗, Hp,q(X,L) ∼=

(
Hn−p,n−q(X,L∗)

)∗
where the second identification is the usual Serre duality and the first follows
from the second via (6).

We shall now specialize to the case when X = S is a compact complex
surface. For a flat real line bundle L := Lα and L = Lα ⊗ C the correspond-
ing flat holomorphic line bundle, we shall denote by

• bk(S,L) := dimR H
k
dL

(S,L) = dimR H
k
−α(S,R),

• hp,q(S,L) := dimCH
p,q(S,L) = dimCH

p,q

∂̄−α
(S,C),

the corresponding dimensions. We then have

Lemma 2.2. Let S be a compact complex surface, L = Lα a flat real line
bundle corresponding to a closed 1-form α and L = Lα ⊗ C the corresponding
flat holomorphic line bundle. Let Bx : Ŝ → S be the blow-down map from the
complex surface Ŝ obtained from S by blowing up a point x ∈ S and denote
by α̂ = B∗x(α), L̂ = Lα̂ and L̂ = Lα̂ the corresponding objects on Ŝ, obtained
by the natural pull-back map. Then,

(a) b1(Ŝ, L̂) = b1(S,L), b3(Ŝ, L̂) = b3(S,L), b2(Ŝ, L̂) = b2(S,L) + 1;

(b) hk,0(Ŝ, L̂) = hk,0(S,L), k = 0, 1, 2.

Proof. (a) Notice that as e(Ŝ) = e(S) + 1 (see e.g. [3]), the last equality in
(a) follows from the first two and (8)-(9). Also, using the duality H3

α(S,R) ∼=
(H1
−α(S,R))∗ (see (7)), it is enough to show that for each [α] ∈ H1

dR(S,R),

dimRH
1
α(Ŝ,R) = dimRH

1
α(S,R). As the dimension of H1

α(S,R) does not de-
pend on the choice of α ∈ a, we can choose α such that it identically vanishes
on a open ball U centred at x. We are going to prove that the natural pull-
back map B∗x : H1

α(S,R)→ H1
α̂(Ŝ,R) is then an isomorphism.

We shall first prove that B∗x is surjective. With our choice for α, any
dα̂-closed 1-form ϕ̂ on Ŝ is closed over Û = B−1

x (U). As
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H1
dR(Û ,R) ∼= H1

dR(CP 1,R) = {0},

we can write ϕ̂|Û = d(ξ̂|Û ). Multiplying ξ̂|Û by the pull-back via Bx of a bump

function centred at x and supported in U , we can assume ξ̂ is globally de-
fined on Ŝ and φ̂ = ϕ̂− dα̂ξ̂ is another form representing [ϕ̂] ∈ H1

α̂(Ŝ) which
vanishes identically on a neighbourhood of E. Then, the diffeomorphism
(B−1

x ) : S \ {x} → Ŝ \ E allows us to define a smooth 1-form φ = (B−1
x )∗(φ̂)

on S with dαφ = 0 and B∗x(φ) = φ̂.
We now prove that B∗x : H1

α(S,R)→ H1
α̂(Ŝ,R) is injective. Suppose ϕ is

a dα-closed 1-form on S, such that ϕ̂ = B∗x(ϕ) = dα̂ξ̂. As H1
dR(U,R) = {0},

we can modify ϕ with a dα-exact 1-form (as we did above with ϕ̂) and assume
without loss that ϕ|U ≡ 0. It follows that the function ξ̂ satisfies dξ̂|Û ≡ 0,

i.e. ξ̂ is a smooth function on Ŝ which is constant on Û and, therefore, is
the pull back to Ŝ of a smooth function ξ on S (which is constant on U). It
follows that ϕ = dαξ.

(b) Again, we assume without loss that the closed 1-form α identically
vanishes on a open ball U centred at x. Clearly, we have an injective pull-back
map B∗x : Hk,0

∂̄α
(S,C)→ Hk,0

∂̄α̂
(Ŝ,C) so we need to establish its surjectivity.

Suppose β̂ is a (k, 0)-form on Ŝ satisfying ∂̄α̂β̂ = 0. Pulling back β̂ by the
biholomorphism B−1

x : S \ {x} → Ŝ \ E defines a (k, 0)-form β on S \ {x},
which satisfies ∂̄αβ = 0. As α vanishes on U , the (k, 0)-form β is holomorphic
on U \ {x}, and therefore extends over x by Hartogs’ extension theorem. By
construction, β̂ = B∗x(β) on Ŝ \ E, hence everywhere by continuity. �

3. Complex surfaces with b1 = 1

From now on, S will denote a compact complex surface whose first Betti
number b1(S) = 1. Kodaira [19] has shown that for such a surface either
H0(S,Km

S ) = {0} for all m ≥ 1, where KS = Ω2 stands for the canonical
bundle of S, or there exists m0 ≥ 1 such that Km0

S
∼= O is trivial. In the first

case, the surface is said to belong to the class VII (we follow the terminology
of [3]) whereas in the latter case, Kodaira proved that the minimal model S0

of S must be a secondary Kodaira surface, see [3, 19]. The classification of
compact complex surfaces in the class VII is still open, but the special case
when the minimal model S0 of S satisfies b2(S0) = 0 has been settled by
[5, 21, 29]: S0 must then be either a Hopf surface [18] or an Inoue–Bombieri
surface [17]. The class of the minimal complex surfaces S0 ∈ VII for which
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Lee classes of complex surfaces 939

b2(S0) > 0 is commonly denoted by VII+
0 . We summarize the situation in

the following

Theorem 3.1. [5, 19, 21, 29] Any compact complex surface S with first
Betti number b1(S) = 1 is obtained by blowing up a minimal complex surface
S0 of one of the following types

• a secondary Kodaira surface;

• a Hopf surface;

• an Inoue–Bombieri surface;

• a minimal complex surface in the class VII+
0 .

We shall use the following key vanishing result (see e.g. [2, Lemma 2.13]
for a proof).

Lemma 3.2. [2, 23] Let S be a compact complex surface whose minimal
model belongs to the class VII+

0 . Then, for any non-trivial holomorphic line
bundle L ∈ Pic0(S)

H2(S,L) ∼= H0(S,KS ⊗ L∗) = {0}.

4. The space of Lee classes

4.1. A characterization of the case when T (S) is a single point

In this section we are going to establish the following result.

Theorem 4.1. Let S be a compact complex surface with b1(S) = 1 and
T (S) ⊂ H1

dR(S,R) the set of Lee classes of LCS forms taming the complex
structure on S. Then the following conditions are equivalent.

(1) ∃ 0 6= a ∈ H1
dR(S,R) and α ∈ a such that

d−αd
c
−α(1) = dJα+ α ∧ Jα = 0;

(2) T (S) = {a};

(3) T (S) ⊂ H1
dR(S,R) is not open;

(4) ∃ a ∈ T (S) such that H1
dLa

(S,La) 6= {0}.

We first need a variation of a result in [15]:
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Proposition 4.2. Let M be a compact 2n-dimensional manifold which ad-
mits an LCS structure with Lee class 0 6= a ∈ H1

dR(M,R). Let L = La be the
corresponding flat real line bundle and L∗ its dual. If H3

dL∗ (M,L∗) = {0},
then for any b ∈ H1

dR(M,R) there exists ε > 0 such that for |t| < ε, M ad-
mits an LCS structure with Lee class in (a+ tb) ∈ H1

dR(M,R). The state-
ment holds true for the Lee classes of LCS structures taming a given almost
complex structure J on M .

Proof. Let α, β be representatives of the de Rham classes a and b, respec-
tively, and ω0 a smooth 2-form on M satisfying dαω0 = 0 and ωn0 6= 0. As
the latter condition is open, it is enough to construct a C∞ family ω(t) of
2-forms, satisfying d(α+tβ)ω(t) = 0 for |t| < ε. (The case when ω0 tames J
is handled similarly, by noting that ω1,1 > 0 is an open condition.) To this
end, we take ω(t) be a formal power series

ω(t) =

∞∑
i=0

ωit
i,

where ωi are smooth 2-forms on M (and ω0 is the 2-form chosen above).
Using dαω0 = 0, the condition d(α+tβ)

(
ω(t)

)
= 0 reads as

(10) dαωi+1 = β ∧ ωi, i = 0, . . .

which can be used to build ωi by induction: Indeed, the right hand side is
dα-closed as

dα(β ∧ ωi) = −β ∧ (dαωi) = −β ∧ (β ∧ ωi−1) = 0.

As H3
α(M,R) ∼= H3

dL∗ (M,L∗) = {0} by the hypothesis, one can solve (10)
inductively as follows. Let g be a Riemannian metric on M and d∗α the
formal L2 adjoint of dα (with respect to g) acting on p-forms. The vanish-
ing of H3

α(M,R) ensures that the Laplacian ∆g
α = dαd

∗
α + d∗αdα is invertible

on E3(M,R), with inverse Gα. Note that, as β ∧ ωi is a dα-closed 3-form,

dα

(
Gα(β ∧ ωi)

)
= 0. Letting

ωi+1 := d∗α(Gα(β ∧ ωi),

we have

dαωi+1 = ∆g
α

(
Gα(β ∧ ωi)

)
− d∗αdα

(
Gα(β ∧ ωi)

)
= β ∧ ωi.
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The convergence of the series in Ck(M) follows by standard Schauder es-
timates for the Laplacian, whereas the smoothness of the solutions follows
from standard regularity theory for elliptic PDE’s. Indeed, notice that ω(t)
satisfies the PDE

(d∗αdα+tβ + dα+tβd
∗
α)(ω(t)) = dα+tβd

∗
αω0,

in which the rhs is C∞. The above PDE is elliptic for t small enough (as it
is so for t = 0). �

Proof of Theorem 4.1. ‘(1) ⇒ (2)’: By Theorem 1.1, T (S) 6= ∅. Let ã ∈
T (S). As b1(S) = 1, ã can be represented by the closed 1-form tα for some
real constant t 6= 0. Let ω be a dtα-closed 2-form with ω1,1 > 0. Using that
d−αd

c
−α(1) = 0, we have

d−tαd
c
−tα(1) = tdJα+ t2α ∧ Jα = t(t− 1)α ∧ Jα.

It follows that

0 =

∫
M
dc−tα(1) ∧ dtαω =

∫
M
d−tαd

c
−tα(1) ∧ ω

= t(t− 1)

∫
M
α ∧ Jα ∧ ω

= t(t− 1)

∫
M
α ∧ Jα ∧ ω1,1.

As
∫
M α ∧ Jα ∧ ω1,1 > 0, it follows that t = 1, i.e. T (S) = {[α]}.

‘(2) ⇒ (3)’ is obvious.

‘(3)⇒ (4)’ follows from Proposition 4.2 and the facts that b1(S) = 1 and
H3
dL∗ (S,L∗) ∼= H1

dL
(S,L), see (7).

‘(4) ⇒ (1)’: We shall consider four cases, according to the type of the
minimal model S0 in Theorem 3.1

Cases 1 and 2: S0 is either a secondary Kodaira surface or a Hopf surface.
These cases are impossible because of the following

Lemma 4.3. If the minimal model of S is a secondary Kodaira surface or
a Hopf surface, then for any a 6= 0 ∈ H1

dR(S,R), H1
dLa

(S,La) = {0}.

Proof. Belgun [4] has shown that any secondary Kodaira surface S0 admits
a Vaisman locally conformally Kähler structure ω0, i.e. an LCS structure ω0

with ω0 = ω1,1
0 > 0 and such that the Lee form α0 is parallel with respect
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to g0(·, ·) = ω0(·, J ·). By [20], H1
tα0

(S0,R) = {0} for any t 6= 0. As b1(S0) =
1, it follows that for any ǎ 6= 0 ∈ H1

dR(S0,R), H1
dLǎ

(S0, Lǎ) = {0}. As the

blow-down map b : S → S0 induces an isomorphism between H1
dR(S0,R) and

H1
dR(S,R), any non-zero class a ∈ H1

dR(S,R) is the pull-back of a class ǎ 6=
0 ∈ H1

dR(S0,R), thus by Lemma 2.2, H1
dLa

(S,La) = {0}.
Hopf surfaces are classified in [18], and they are either primary or sec-

ondary. Gauduchon–Ornea [14] showed that any primary Hopf surfaces S0

is a small deformation of a primary Hopf surface admitting Vaisman locally
conformally metrics, so that the same argument as in the case of a secondary
Kodaira surface proves the claim. If S0 is a secondary Hopf surface, it is cov-
ered by a primary one. Using Lemma 2.1 and Lemma 2.2, we conclude again
that H1

dLa
(S,La) = {0} for each non-trivial flat real line bundle L = La. �

Case 3: S0 is an Inoue–Bombieri surface. In this case our claim follows from

Lemma 4.4. If the minimal model of S is an Inoue–Bombieri surface, then
T (S) = {a}, H1

dLa
(S,La) 6= 0 and there exits α ∈ a satisfying the identity in

Theorem 4.1 (1).

Proof. The Inoue–Bombieri surfaces S0 are classified in [17] and appear as
three types of quotients of H× C, where

H = {w = w1 + iw2, : w2 > 0}

denotes the upper half-plane. An inspection upon the explicit forms of the
desk transformations on H× C (see [17]) shows that in each case the (1, 0)-
form −idw/w2 is invariant and therefore descends to S0. Let α := dw2/w2 =
Re(−idw/w2) denote the corresponding real 1-form on S0. We thus have that
Jα = Im(−idw/w2) = −dw1/w2 satisfies

(11) dJα = −dw1 ∧ dw2/w
2
2 = −α ∧ Jα.

Pulling back α from S0 to S by the blow-down map, we have a non-zero
1-form α on S satisfying (11). As α does not vanish on S0, we have that
a := [α] 6= 0 on S0, and hence also on S (see Lemma 2.2). By ‘(1) ⇒ (2)’,
we have T (S) = {[α]}. By Proposition 4.2, H3

α(S,R) 6= {0} so that, by (7)
and (5), dimR H

3
α(S,R) = dimR H

1
−α(S,R) = dimRH

1
dLα

(S,Lα) 6= 0. �

Remark 4.5. An alternative way to show H1
dLα

(S,Lα) 6= {0} appears in
[27].
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Case 4: S0 belongs to the class VII+
0 . Let [α] ∈ T (S) and 0 6= [β] ∈ H1

−α(S,R).
As d−αβ = 0, ∂̄−αβ

0,1 = 0 where β0,1 = 1
2(β − iJβ) is the (0, 1)-part of β.

AsH0,1

∂̄−α
(S,C) ∼= H1(S,Lα) andH2(S,Lα) = {0} (see Lemma 3.2), it follows

from the Riemann–Roch formula and [2, Lemmas 2.4 & 2.11] that

dimC H
0,1

∂̄−α
(S,C) = dimC H

0(S,Lα) = 0.

Thus, β0,1 = ∂̄−α(h+ if) for some smooth real-valued functions f, h on S.
Equivalently, β = d−αh+ dc−αf . Since [β] 6= 0 ∈ H1

−α(S,R), f is not identi-
cally zero whereas d−αβ = 0 implies

(12) d−αd
c
−αf = dJdf + α ∧ Jdf − Jα ∧ df + f(dJα+ α ∧ Jα) = 0.

Let ω be a d−α-closed 2-form with (1, 1)-part F = ω1,1 > 0. We consider the
hermitian metric g on S whose fundamental 2-form is F . By [2, Lemmas 2.4
& 2.5], we have

(13) δg(θg − α) + g(θg − α, α) = 0,

where we recall θg = JδgF . Taking contraction with F in (12) yields

M(f) := ∆gf + g(df, θg − 2α) + f
(
δgα+ g(α, θg − α)

)
= 0.

The adjoint operator M∗(f) of M(f) with respect to the L2-product induced
by g is

M∗(f) = ∆gf − g(df, θg − 2α) + f
(
δg(θg − α) + g(α, θg − α)

)
= ∆gf − g(df, θg − 2α),

where for the last equality we have used the property (13) of the hermitian
metric g. By Hopf maximum principle, the kernel of M∗ consist of the con-
stant functions. It follows (see [2, App. A]) that the principal eigenvalues
satisfy λ0(M∗) = λ0(M) = 0 so that M(f) = 0 admits a unique up to scale
non-zero solution f which never vanishes on M . Letting

α̃ :=
d−αf

f
= α+ d log |f |,

it is straightforward to check that (12) is equivalent to

dJα̃+ α̃ ∧ Jα̃ = 0.



i
i

“2-Apostolov” — 2019/1/20 — 23:16 — page 944 — #14 i
i

i
i

i
i

944 V. Apostolov and G. Dloussky

Noting that [α̃] = [α] 6= 0 (as [α] ∈ T (S) by assumption, see [2, Prop. 3.5]),
this concludes the proof of ‘(4) ⇒ (1)’ in Case 4 too. �

Remark 4.6. The condition (1) of Theorem 4.1 above gives a direct link
to the theory of complex surfaces of Kähler rank one, see [8, 16]. Indeed, the
condition (1) of Theorem 4.1 implies that the (1, 1)-form α ∧ Jα is closed
and positive in the sense of [8], thus by [8, Cor. 4.3], forcing the Kähler rank
of S be equal to 1. We shall use a further ramification of the theory of [8]
in the proof of Theorem 1.3 below, see in particular Lemma 4.7.

4.2. Proof of Theorem 1.3

By Theorem 4.1, we only need to show that if the condition (1) of Theo-
rem 4.1 holds true, then S must be a blow-up of an Inoue–Bombieri surface.

As b1(S) = 1, the torsion-free part H1(S,Z)f of H1(S,Z) is Z, so that
S admits an infinite cyclic cover S̃ whose fundamental group is the kernel

of the morphism π1(S)→
(
π1(S)/[π1(S), π1(S)]

)f
. Denote by γ the deck

transformation on S̃, such that S = S̃/〈γ〉. We then have the following rein-
terpretation of condition (1) of Theorem 4.1 in terms of the theory developed
in [8].

Lemma 4.7. Let S be a compact complex surface with b1(S) = 1 and S̃ the
infinite cyclic cover of S with S = S̃/〈γ〉. Then, the condition (1) of The-
orem 4.1 is equivalent to the existence of a positive pluriharmonic function
h̃ on S̃, which is automorphic in the sense that h̃ ◦ γ = Ch̃ for a positive
constant C.

Proof. Suppose first that α is a closed 1-form on S satisfying the condition
(1) of Theorem 4.1. Let α̃ be the pull back to S̃ of α. By the very construction
of S̃, any closed 1-form on S pulls back to an exact 1-form on S̃. We thus
can write α̃ = df̃ for some smooth function f̃ on S̃. Using that α̃ is invariant
under the action of γ, it follows that f̃ satisfies

f̃ ◦ γ − f̃ = c,

for some real constant c. It is easily seen that the relation d−α̃d
c
−α̃(1) = 0 is

equivalent to ddc(ef̃ ) = 0, i.e. h̃ := ef̃ is a positive pluriharmonic function
on S̃ satisfying h̃ ◦ γ = ech̃.

Conversely, if h̃ is a positive pluriharmonic function on S̃ satisfying h̃ ◦
γ = ech̃, letting α̃ := d log h̃ defines a closed, γ-invariant 1-form on S̃ which
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satisfies d−α̃d
c
−α̃(1) = 0. It follows that α̃ is the pull-back of a (non-zero)

closed 1-form α on S, satisfying d−αd
c
−α(1) = 0. As we noticed in the proof of

Lemma 4.4, such a form α defines a nontrivial class [α] 6= 0 ∈ H1
dR(S,R). �

Theorem 1.3 is thus a direct consequence of Theorem 4.1 and [6, Thm 1]. �

Combining Theorem 4.1 with some observations from [2] leads to

Corollary 4.8. Let S be a compact complex surface with b1(S) = 1 and S0

its minimal model. Then,

(a) If S0 is a secondary Kodaira surface or a Hopf surface, then T (S) =
(−∞, 0) where H1

dR(S,R) ∼= R is oriented by the sign of the degree
with respect to any Gauduchon metric on S of the flat holomorphic
line bundle La associated to a ∈ H1

dR(S), see [2].

(b) If S0 is an Inoue–Bombieri surface, then T (S) = {a}.

(c) If S0 belongs to VII+
0 , then T (S) ⊂ R is a non-empty and open subset

of (−∞, 0).

Proof. (a) The pull-back by the blow-down map b : S → S0 defines an iso-
morphism b∗ : H1

dR(S0,R)→ H1
dR(S,R) (compare with Lemma 2.2(a)) which

by [30, 33] (see also [2, Prop. 3.4]) embeds T (S0) into T (S). According
to [2, Prop. 4.3], T (S0) ⊂ T (S) ⊂ (−∞, 0), so it is enough to show that
T (S0) = (−∞, 0). In the case when S0 is a Hopf surface this is established
in [2, Prop. 5.1] and it follows from [31, Thm. 5.1], by using that any that
Hopf surfaces can be obtained as a small deformations of a Vaisman Hopf
surface (see [14]). If S0 is a secondary Kodaira surface, it admits a Vaisman
locally conformally Kähler metric by [4]. Thus, T (S0) = (−∞, 0) again fol-
lows from [31, Thm. 5.1] (or [2, Lemma 3.7] by noting that Vaisman metrics
are pluricanonical).

The statement (b) is established in Lemma 4.4.
(c) See Theorem 4.1. �

As another application of Theorem 4.1, one can consider exact LCS
structures, i.e. LCS structures for which ω = dαη = dη − α ∧ η for some 1-
form η. Theorem 1.2 provides the existence of exact LCS structures with
arbitrary large Lee classes on any compact almost complex 2n-manifold with
non-zero b1(M). As an exact LCS structure does not admit symplectically
embedded spheres (this is because by making a conformal modification of ω
we can assume that α = 0 on a tubular neighbourhood of the sphere) they
cannot tame the complex structure of a complex surface with a rational
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curve, in particular of a non-minimal complex surface or a minimal surface
in the class VII+

0 which contains a cycle of rational curves. Similarly, as
observed by A. Otiman [27]

Corollary 4.9. [27] The Inoue–Bombieri surfaces admit no exact LCS
structure taming its almost complex structure.

Proof. If ω = dαη is an exact LCS structure which tames J , so is then ω̃ =
dα̃η for each closed 1-form α̃ which is C∞ close to α. It follows that α is an
interior point of T (S), a contradiction. �

By contrast, on a secondary Kodaira surface and on a Hopf surface, for
any [α] ∈ T (S) = C(S) = (−∞, 0) (see the proof of Corollary 4.8) one can
find a locally conformally Kähler structure with potential, i.e. of the form
ω = dαd

c
αf for some smooth function f , see [26]. This follows from the facts

that, up to a finite covering, these surfaces can be obtained as small defor-
mations of surfaces admitting a Vaisman locally conformally Kähler metric
[4, 14, 32] and that the fundamental (1, 1)-form ω of a Vaisman locally con-
formally Kähler structure can be written, up to scale, as ω = dαd

c
α(1), see

[26] or [2, (14)], noting that the positive-definiteness of dαd
c
α(1) is an open

condition under small deformation of the complex structure [26]. Thus, on
these minimal complex surfaces, any [α] ∈ T (S) can be realized as the Lee
class of an exact LCS structure which tames the complex structure.

4.3. Proof of Theorem 1.4

Let S be a compact complex surface with b1(S) = 1 and S0 its minimal
model. Identifying H1

dR(S0,R) ∼= H1
dR(S,R) ∼= R via the blow-down map b :

S → S0, we have by [30, 33], C(S) = C(S0) ⊂ R. Thus, we can assume with-
out loss that S = S0 is minimal. We consider the following three cases, see
Theorem 3.1.

Case 1: S ∈ VII+
0 . We shall use a result of Goto [15, Thm. 2.3] (compare

with Proposition 4.2 above).

Theorem 4.10. [15] Let X be a compact complex manifold endowed with a
locally conformally Kähler form ω with Lee form α. Suppose that H3(X,L∗α) =
{0} and that for every ∂̄α-closed (0, 2)-form ψ there exists a (0, 1)-form γ
such that ∂αψ = ∂α∂̄αγ. Then, for any closed 1-form β, there exists an ε > 0
such that for any 0 < |t| < ε, X has a locally conformally Kähler form ωt
with Lee form α+ tβ.
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As S ∈ VII+
0 , we know by Lemma 3.2 that H0,2

∂̄α
(S,C) ∼= H2(S,L∗α) =

{0}, which shows that the second necessary condition of Theorem 4.10
for the class [α] ∈ C(S) to be an interior point is aways satisfied. In other
words, [α] ∈ C(S) is an interior point for C(S) provided that H3

dL∗ (S,L∗) ∼=
H1
dL

(S,L) = {0} where L = Lα (see (7)). By Theorem 4.1, the latter con-
dition fails if and only if C(S) ⊂ T (S) = {[α]}, showing that then C(S) is
either empty or a single point.

Case 2: S is a Hopf surface or a secondary Kodaira surface. Then C(S) =
T (S) = (−∞, 0) ⊂ R by the arguments in the proof of Corollary 4.8(a).

Case 3: S is an Inoue–Bombieri surface. In this case, according to Lemma 4.4,
C(S) ⊂ T (S) = {a} is either empty or a point. Both cases do appear, as
noticed in [4]. �

5. Vanishing results for twisted cohomologies on class VII
surfaces.

5.1. Flat versus topologically trivial holomorphic line bundles

Most of the theory developed in Section 2 for a real closed 1-form α gen-
eralizes mutatis mutandis to the case when α is a closed complex-valued 1-
form: We can associate to such an α the deRham complex dα : Ek(X,C) 7→
Ek+1(X,C) with cohomology groups Hk

α(X,C) and the Dolbeault complexes
with respect to the operator ∂̄α = ∂̄ − α0,1∧, which give rise to cohomol-
ogy groups Hk,0

∂̄α
(X,C). Furthermore, α induces a holomorphic structure on

Lα = C×X, given by ∂̄αs = (ds)0,1 + α0,1 ⊗ s and we have the identifica-
tion

H0(X,Ωk ⊗ Lα) ∼= Hk,0

∂̄−α
(X,C).

The conclusion of Lemma 2.2(b) holds true as well in this more general
context.

Recall that equivalence classes of flat complex line bundles are classified
by elements of H1(X,C∗). By the short exact sequences

{0} → Z↪→C exp 2πi·−→ C∗ → {1}

{0} → Z↪→O exp 2πi·−→ O∗ → {1}
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we obtain the commutative digram

0 > H1(X,Z) > H1(X,C) > H1(X,C∗) c1
> H2(X,Z) > · · ·

0 > H1(X,Z)

wwww
> H1(X,O)

j
∨

> H1(X,O∗)

k
∨

c1
> H2(X,Z)

wwww
> · · ·

The first line shows that for any topologically trivial flat holomorphic line
bundle L ∈ H1(X,C∗), there exists a closed complex-valued α with L =
Lα. Furthermore, if j is injective, then k is injective too whereas if j is an
isomorphism, then k is an isomorphism between the group H1

0 (X,C∗) of
equivalent classes of topologically trivial flat holomorphic line bundles and
the group Pic0(X) of equivalence classes of topologically trivial holomorphic
line bundles.

In this section, we shall apply this construction in the special case of
a compact complex surface S with first Betti number b1(S) = 1. It is well-
known (see e.g. [19, (14)]) that on a compact complex surface S, the mor-
phism j in the above diagram is always surjective and is an isomorphism
iff H1,0(S,C) = {0}. As the latter property holds true for a complex surface
with b1(S) = 1 (see [19, Thm. 3]), we have the following well-known (see e.g.
[22])

Lemma 5.1. On a compact complex surface S with b1(S) = 1,

H1
0 (S,C∗) ∼= Pic0(S).

In particular, for any holomorphic line bundle L ∈ Pic0(S) there exists a
closed complex-valued 1-form α such that L = Lα.

5.2. A characterization of Enoki surfaces

An important class of examples of minimal complex surfaces in the class
VII+

0 , called Enoki surfaces, was introduced and studied by Enoki in [11].
We shall use here the following characterization of such surfaces

Theorem 5.2. [11]. A minimal compact complex surface in the class VII+
0

is an Enoki surface if and only if there exits a non-trivial holomorphic line
bundle L ∈ Pic0(S) which admits a meromorphic section f . In this case, the
divisor defined by (f) is mD for some m ∈ Z, where D is the unique cycle
of rational curves of S.
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By virtue of Lemma 2.2(b) and the remarks at the beginning of Sec-
tion 5.1, it follows that

Corollary 5.3. A compact complex surface S whose minimal model is in
class VII+

0 is a blow-up of an Enoki surface if and only if S admits a non-
trivial holomorphic line bundle L ∈ Pic0(S) with H0(S,L) 6= {0}.

We recall the following general observation

Lemma 5.4. Let S be a compact complex surface whose minimal model
is in the class VII+

0 . Then, for any topologically trivial holomorphic line
bundle L

dimCH
0(S,Ω1 ⊗ L) ≤ 1.

Proof. By Lemma 2.2(b) and the remarks at the beginning of Section 5.1
(and since the fundamental group does not change under blow-down), we
can assume without loss of generality that S = S0 is a minimal complex
surface in the class VII+

0 . Let βi ∈ H0(S,Ω1 ⊗ L), i = 1, 2, be two non-
trivial holomorphic 1-forms with values in L. It is clear (for instance by
thinking of βi as smooth (1, 0)-forms satisfying ∂̄−αβi = 0, see (6) and Sec-
tion 5.1, and Lemma 5.1) that β1 ∧ β2 ∈ H0(S,Ω2 ⊗ L2) = H0(S,KS ⊗ L2).
By Lemma 3.2, β1 ∧ β2 ≡ 0. Letting A ⊂ S be the vanishing locus of β1, we
thus have on S \A,

β2 = fβ1,

where f is a holomorphic function defined on S \A. We claim that f extends
as a meromorphic function over A, i.e. on S.

Let Dmax be the maximal divisor of S (see e.g. [23]). As A is an analytic
subset of S, it is composed of curves contained in Dmax, and of isolated
points. By Hartogs’ extension theorem, f extends holomorphically over the
isolated points of A, so we consider a point p ∈ A which belongs to an irre-
ducible component D0 of Dmax with D0 ⊂ A. Let U be an open neighbour-
hood of p over which both vector bundles Ω1 and L trivialize. Since C{z1, z2}
is a factorial ring, we can write (with respect to holomorphic coordinates
z = (z1, z2) on U)

βi = µi(z)(ai(z)dz1 + bi(z)dz2), i = 1, 2,

where µi(z), ai(z), bi(z) are holomorphic functions such that the codimension
of the vanishing locus Z(ai, bi) of ai and bi is 2. Thus, Z(a1, b1) consists of
isolated points in U . Avoiding theses points, at least one of the coefficients
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a1, b1 does not vanish at p, say a1(p) 6= 0. We then have (in a neighbourhood
of p)

β1 ∧ β2 = µ1(z)µ2(z)
(
a1(z)b2(z)− a2(z)b1(z)

)
dz1 ∧ dz2 ≡ 0

hence a1b2 − a2b1 ≡ 0, i.e. β2 = µ2a2

µ1a1
β1 where µ2a2

µ1a1
is a meromorphic function

on U which extends f over p. It thus follows that f extends meromorphically
over U minus the isolated points Z(a1, b1), hence on U (by Levi’s extension
theorem). Thus, f extends meromorphically on S. Since any meromorphic
function on S is constant (see [19]), we conclude that

dim CH
0(S,Ω1 ⊗ L) = 1.

�

Another feature of the Enoki surfaces is given by the following

Lemma 5.5. Let S be an Enoki surface. Then, for any non-trivial holo-
morphic line bundle L ∈ Pic0(S)

dimCH
0(S,Ω1 ⊗ L) = dimCH

0(S,L) ≤ 1.

Moreover, the equality dimCH
0(S,Ω1 ⊗ L) = dimCH

0(S,L) = 1 holds if and
only if L = m[D], m ∈ N∗, where D is the cycle of rational curves of S

Proof. Since there is no non-trivial meromorphic functions, dimCH
0(S,L) ≤

1 for any line bundle L ∈ Pic(S). In [11], the Enoki surfaces are obtained as
compactifications of affine line bundles by a cycle D =

∑n−1
i=0 Ci of n = b2(S)

rational curves. Theorem 5.2 then shows that dimCH
0(S,L) = 1 if and only

if L = m[D] with m ∈ N∗.
By Lemma 5.4, we also have dimCH

0(S,Ω1 ⊗ L) ≤ 1 for any L ∈ Pic0(S).
Enoki surfaces can be also described (see [9, Thm. 1.19]) by a polynomial
germ of the form

(14) F (z1, z2) =

(
z1z

n
2 t
n +

n−1∑
i=0

αit
i+1zi+1

2 , tz2

)
, 0 < |t| < 1.

In terms of (14), the maximal divisor D has local equation z2 = 0. It fol-
lows from (14) that dz2

z2
is a meromorphic (1, 0)-form on S, which has a

pole of order 1 along D, or equivalently, β0 := dz2 is a holomorphic (1, 0)-
form with values in L0 = [D] on S, showing that dimCH

0(S,Ω1 ⊗ Lm0 ) =
dimCH

0(S,Lm0 ) = 1 for any m ∈ N∗.
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Let L ∈ Pic0(S) be such that dimCH
0(S,Ω1 ⊗ L) = 1, and

β 6= 0 ∈ H0(S,Ω1 ⊗ L).

A similar argument as the one used in the proof of Lemma 5.4 shows that
there is a meromorphic section f of L ⊗ L−1

0 , such that β = fβ0. It thus
follows from Theorem 5.2 that (f) = pD, p ∈ Z. Since β is a holomorphic
form (and β0 does not vanish along D) we conclude that p ∈ N, so that
L = [pD]⊗ [D] = [mD] with m = p+ 1 ∈ N?, i.e. dimCH

0(S,L) = 1. �

Our main objective, which will occupy the remainder of the section, is
establishing the following partial converse of Lemma 5.5, which characterizes
Enoki surfaces by the existence of a special type of singular holomorphic
foliation:

Theorem 5.6. Let S be a compact complex surface whose minimal model
S0 is in class VII+

0 , and whose fundamental group is isomorphic to Z. Then,
for any non-trivial holomorphic line bundle L ∈ Pic0(S)

dimCH
0(S,Ω1 ⊗ L) = dimCH

0(S,L) ≤ 1

with dimCH
0(S,Ω1 ⊗ L) = 1 if and only if S0 is an Enoki surface.

Recall that, by Lemma 5.1, on a class VII surface S any L ∈ Pic0(S)
can be written as L = Lα for some closed complex-valued 1-form α. We
then have

Lemma 5.7. Let L = Lα ∈ Pic0(S) be a non-trivial holomorphic line bun-
dle on a complex surface S with minimal model in the class VII+

0 . Then, the
following isomorphisms hold true.

(a) If H0(S,L) = 0, then H0(S,Ω1 ⊗ L) ∼= H1
−α(S,C).

(b) If H0(S,L) 6= 0, then H0(S,L)
d∼= H0(S,Ω1 ⊗ L).

Proof. (a) In view of the identification (6) (see also Section 5.1), we are going
to construct an isomorphism s : H1,0

∂̄−α
(S,C)→ H1

−α(S,C). Let β be a (1, 0)-

form satisfying ∂̄−αβ = 0. Then, the (2, 0)-form ∂−αβ satisfies ∂̄−α(∂−αβ) =
0 and, therefore, ∂−αβ = 0 since H2,0

∂̄−α
(S,C) ∼= H0(S,Ω2 ⊗ L) = H0(S,KS ⊗

L) = {0} by Lemma 3.2. As d−αβ = (∂−α + ∂̄−α)(β) = 0, we thus have a
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natural map

s : H1,0

∂̄−α
(S,C) → H1

−α(S,C)

β 7→ [β].

It is easy to see that s is injective when H0(S,L) = {0}. Indeed, let β be a
∂̄−α-closed (1, 0)-form such that [β] = 0 in H1

−α(S,C). This means that there
exists a complex-valued smooth function ϕ on S with β = d−αϕ. Considering
bi-degree, it follows that ∂̄−αϕ = 0, i.e. ϕ defines a section in H0

∂̄−α
(S,C) ∼=

H0(S,L), thus ϕ = 0 and β = 0.
To prove the surjectivity of s, let θ be a complex-valued d−α-closed

1-form on S with [θ] 6= 0 ∈ H1
−α(S,C). Then the (0, 1)-part θ0,1 of θ sat-

isfies ∂̄−αθ
0,1 = 0, i.e. θ0,1 defines a class in H0,1

∂̄−α
(S,L) ∼= H1(S,L). Using

H0(S,L) = {0}, Lemma 3.2 and Riemann–Roch, we have H1(S,L) = {0}
which shows that θ0,1 = ∂̄−αϕ for some complex-valued smooth function ϕ.
Thus, the 1-form θ̃ := θ − d−αϕ is another representative of [θ], which is of
type (1, 0). It thus follows that θ̃ ∈ H1,0

∂̄−α
(S,C) and s(θ̃) = [θ̃] = [θ].

(b) Using the identifications (6), it is enough to show that the natural
morphism

d−α : H0
∂̄−α

(S,C)→ H1,0

∂̄−α
(S,C)

is an isomorphism. For any smooth complex-valued function ϕ satisfying
∂̄−αϕ = 0, the operator d−α associates the (1, 0) form β := d−αϕ. As β is
d−α-closed, it also satisfies ∂̄−αβ = 0. The map

d−α : H0
∂̄−α

(S,C)→ H1,0

∂̄−α
(S,C)

is injective as H0
−α(S,C) = {0} for [α] 6= 0 ∈ H1

dR(S,C), see (9). It is

surjective because H1,0

∂̄−α
(S,C) ∼= H0(S,Ω1 ⊗ L) must be 1-dimensional by

Lemma 5.4. �

Remark 5.8. The isomorphisms in Lemma 5.7 can be alternatively derived
from the following exact sequences of sheaves

(15) 0→ C(L)→ O(L)
d→ dO(L)→ 0,

(16) 0→ dO(L)→ Ω1 ⊗ L d→ Ω2 ⊗ L → 0,

where, for a flat holomorphic line bundle L ∈ H1(S,C∗), C(L) denotes the
sheaf of local parallel sections of L, and d is the deRham differential defined
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on smooth forms with values in L by using the flat connection on L. By
the long exact sequence of cohomologies associated (16) and Lemma 3.2 we
deduce an isomorphism

i : H0(S, dO(L)) ∼= H0(S,Ω1 ⊗ L).

The two isomorphisms appearing in Lemma 5.7 are then the natural maps
s = i ◦ δ and d in the long cohomology sequence associated to (15)

0 > H0(S,C(L)) > H0(S,L)
d
> H0(S, dO(L))

δ
> H1(S,C(L)) > H1(S,L)

H0(S,Ω1 ⊗ L)

i

wwww
One then deduces (a) from the vanishing of H0(S,L) and H1(S,L) (using
Lemma 3.2 and Riemann-Roch) and the fact that if L = Lα for a closed
complex-valued 1-form α, the deRham-Weil theorem gives

Hk(S,C(L)) ∼= Hk
−α(S,C).

Similarly, using that H0(S,C(L)) = {0} for a non-trivial holomorphic line
bundle L (as a parallel section of L is either identically zero or never van-
ishes), (b) follows from the injectivity of d and Lemma 5.4. �

Proof of Theorem 5.6. Using Lemma 2.2(b), we can assume without loss of
generality that S = S0 is a minimal complex surface, i.e. it is in the class
VII+

0 . As we have already observed, then S does not admit non-constant
meromorphic functions, thus for any L ∈ Pic0(S) we have dimC H

0(S,L) =
0, 1.

Case 1: There exists a non-trivial L ∈ Pic0(S), such that dimC H
0(S,L) = 1.

By Theorem 5.2, S is an Enoki surface so that Theorem 5.6 follows from
Lemma 5.5.

Case 2: For any non-trivial L ∈ Pic0(S), dimCH
0(S,L) = 0. We thus need to

show that in this case H0(S,Ω1 ⊗ L) = {0} for any non-trivial L ∈ Pic0(S).
Suppose for contradiction that H0(S,Ω1 ⊗ L) 6= {0}. Let α be a closed

complex valued 1-form α such that L = Lα, so we have H0(S,Ω1 ⊗ L) ∼=
H1,0

∂̄−α
(S,C), see Sect. 2. Let β 6= 0 be a (1, 0)-form on S such that ∂̄−αβ = 0.

By Lemma 5.7, β satisfies d−αβ = 0. Let p : S̃ → S be the universal covering
space of S, α̃ = p∗α, β̃ = p∗β and Φ̃ : S̃ → S̃ a biholomorphism such that
S = S̃/Γ where Γ ∼= Z is the infinite cyclic fundamental group of S generated
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by Φ̃. The forms α̃ and β̃ are invariant by the action of Φ̃ as they are pull-
backs of forms on S. As α̃ is closed on S̃ (and S̃ is simply connected), there
exists a complex-valued function f̃ on S̃, such that α̃ = df̃ . The invariance
of α̃ under Φ̃ then means d(f̃ ◦ Φ̃− f̃) = 0, so there exists a constant C ∈ C
such that

(17) f̃ ◦ Φ̃− f̃ = C.

Notice that the constant C cannot be zero as then f would be Γ-invariant
and would descend to S to define a primitive of α which contradicts the
assumption that L = Lα 6= O.

As d(ef̃ β̃) = ef̃ (d−α̃β̃) = 0, the (1, 0)-form ef̃ β̃ is closed and therefore
exact on S̃. Thus, there exists a complex-valued smooth function g̃ on S̃,
such that ef̃ β̃ = dg̃. Considering bi-degree, ∂̄g̃ = 0 i.e. g̃ is holomorphic.
Using that β̃ is Φ̃ invariant and (17), it follows that

Φ̃∗dg̃ = eCdg̃,

i.e. there exists a constant K ∈ C such that

g̃ ◦ Φ̃ = eC g̃ +K.

Setting h̃ := g̃ + K
eC−1 , we obtain a non-zero holomorphic function on S̃ sat-

isfying Φ̃∗h̃ = eC h̃. Thus, h := e−f̃ h̃ is a smooth complex-valued function on
S̃ which is Γ-invariant and satisfies ∂̄−α̃h = 0. It follows that h descends to
S to define a non-zero section of H0(S,L), a contradiction. �

Remark 5.9. There are no known examples of class VII+
0 surfaces whose

fundamental group is not isomorphic to Z. In general, as the first Betti
number of any class VII+

0 surface S is equal to 1, S admits a unique infinite
cyclic cover S̃. The arguments in the proof of Theorem 5.6 extend under the
(a priori weaker) assumption H1(S̃,R) = {0}. �

5.3. Proof of Theorem 1.5

We recall the following vanishing result obtained in [20].

Lemma 5.10. [20] Let S be a compact complex surface diffeomorphic to
(S1 × S3)] nCP 2, n ∈ N∗, and L = Lα, [α] 6= 0 ∈ H1

dR(S,R) a non-trivial
flat real line bundle. Then for k 6= 2, Hk

dL
(S,L) = 0.
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Proof. As Hk
dL

(S,L) depend only upon the smooth structure of S, we can
assume without loss that S is a complex surface obtained by a diagonal Hopf
surface S0 by blowing up n points. By (9) and Lemma 2.2, it is enough to
consider the case n = 0, i.e. S ∼= S1 × S3. It is well-known (see e.g. [32]) that
this smooth manifold admits a complex structure and a compatible Vaisman
product metric with a parallel Lee form α0. Applying [20, Thm 4.5], we
conclude that the cohomology Hk

tα0
(S,R) vanishes for each t 6= 0. As b1(S) =

1, it follows that there exists t 6= 0 such that Hk
dL

(S,L) ∼= Hk
tα0

(S,R) = {0}.
�

We then have

Lemma 5.11. Let S be a compact complex surface whose minimal model
is in the class VII+

0 . If there exists a non-trivial flat real line bundle L =
Lα, [α] 6= 0 ∈ H1

dR(S,R), such that H1
dL

(S,L) 6= {0}, then H0(S,Ω1 ⊗ L) 6=
{0}.

Proof. Let L = Lα ⊗ C be the corresponding flat holomorphic line bundle.
We first show thatH0(S,L) = {0}. Indeed, ifH0(S,L) 6= {0}, then by Corol-
lary 5.3, S must be obtained by blowing up an Enoki surface, and thus S
must be diffeomorphic to (S1 × S3)]nCP 2, n ∈ N∗ (see e.g. [25]). This con-
tradicts H1

dL
(S,L) 6= {0} (according to Lemma 5.10).

Thus, H0(S,L) = {0} and by Lemma 5.7 and (5) we have

dimRH
1
dL(S,L) = dimRH

1
−α(S,R)

= dimCH
1
−α(S,C)

= dimCH
0(S,Ω1 ⊗ L).

�

We can now prove Theorem 1.5 (which in turn generalizes Lemma 5.10):
As noticed in [12], by (7), (9), and (8), it is enough to show H1

dL
(S,L) = {0}.

By Lemma 2.2, we can assume that S is minimal whereas by Theorem 3.1,
Lemma 4.3, and the fact that the fundamental group of Inoue–Bombieri
surfaces is not isomorphic to Z, we can also assume that S is in the class
VII+

0 .
If H1

dL
(S,L) 6= {0}, by Lemma 5.11 we will have H0(S,Ω1 ⊗ L) 6= {0}

whereas Theorem 5.6 implies that S must be an Enoki surface, and therefore
S must be diffeomorphic to (S1 × S3)] nCP 2 (see e.g. [25]). According to
Lemma 5.10, this contradicts the assumption H1

dL
(S,L) 6= {0}. �
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