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A series ofnon-crosslinked biobased polyesters were prepared from pentaerythritol and aliphatic dicar­
boxylic acids, including fatty acids grafted as side-chains to the backbone of the polymer. The strategy 
utilized tends to create linear polymers by protecting two of the hydroxyl groups in pentaerythritol 
by esterification with fatty acids before the polymerization reaction. The solvent-free syntheses were 
performed under vacuum and catalyzed by the ion-exchange resin Amberlyst 70. The maximum yield 
was around 98%. Pristine polyesters had average molecular weights of about 104 g/mol according to 
SEC-MALLS analysis. Melting temperatures and extent of crystallinity were determined by differential 
scanning calorimetry. By using relatively short fatty acids, such as lauric acid, soft materials were obtained 
with low crystallinity and a melting point below room temperature, whereas longer side-chains, such 
as behenic acid, gave brittle polymers with higher melting temperatures and crystallinity. The use of a 

short chain dicarboxylic acid, such as succinic acid, resulted in doser side-chains and promoted higher 
crystallinity and melting temperatures. In order ta improve the thermal properties of these materials, 
a series of copolyesters were designed by developing synthetic methods to approach a random- and a 

block-copolymerization. A wide range of properties was thus obtained according ta the composition of 
these navel copolyesters. 

1. Introduction

ln the general context related to the dwindling of fossil 

resources, it is urgent to find new materials based on biomass and 

renewable resources to replace petroleum-based counterparts. A 

large number of monomers and polymers are available for a more 

sustainable chemistry, including poly(lactic acid), lignins, furan 

derivatives, sugars (Belgacem and Gandini, 2008; Gandini, 2011), 

and fatty acids derivatives (Montera de Espinosa and Meier, 2011; 

Xia and Larock, 201 O; Meier et al., 2007). Sorne polyesters based on 

sucrase fatty acid esters or ricinoleic acid-lactic acid copolyesters 

are being developed as mild and non-toxic emulsifiers for food, 

cosmetics and pharmaceuticals (Akoh, 2002; Slivniak et al., 2006). 

Other biodegradable polyesters, based on glycerol, sorbitol or pen­

taerythritol have been widely studied for their adhesive properties 

(Kricheldorf and Behnken, 2008) or for medical applications (Kline 

et al., 1998; Kumar et al., 2003) or for their good water solubility 

(Zhao et al., 2009). Given the multifunctional nature of such polyols 

* Corresponding author at: UMR 1010 INRA/INPT-ENSIACET, Laboratoire de 
Chimie Agro-industrielle, 4 allée Emile Monso, BP 44362, 31030 Toulouse cedex 
4, France. Tel.: +33 5 34 32 35 04; fax: +33 5 34 32 35 97. 

E-mail address: sophie.thiebaudroux@ensiacet.fr (S. Thiebaud-Roux).

https:/ /doi.org/10.1016/j.indcrop.2012.07.027 

(glycerol or pentaerythritol), the preparation of homogeneous 

non-crosslinked polyesters by polycondensation using diesters or 

dicarboxylic acids as monomers is a complex task because their 

numerous hydroxyl groups result in the creation of networks 

(Kricheldorf and Behnken, 2008; Murillo et al., 2009; de Meireles 

Brioude et al., 2007). Therefore, such syntheses may require a 

multistep reaction pathway including protection and deprotection 

of monomer units. In this context, some researchers reported a 

simple strategy to prepare aliphatic poly(butylene succinate-co­

butylene maleate) and polybutylene tartrate (Zhang et al., 2003; 

Hao et al., 2005). Shibata and Takasu (2009) proposed a one-step 

bulk synthesis of polyesters with pendent hydroxyl groups under 

mild conditions using rare-earth catalysts. Other chemical routes 

to produce polyester by condensation polymerization were devel­

oped from vegetable oils derivatives: ring-opening polymerization 

of lactones, polycondensation between a diacid (or diester) and a 

diol ( or monoglycerides) or polycondensation of hydroxy-acids or 

esters (Xia and Larock, 201 O; Bakare et al., 2006). For example, high 

molecular weight linear polyesters can be obtained by three steps: 

ozonolysis and reduction of castor oil followed by methanolysis 

and then, transesterification of the obtained hydroxy methyl ester 

for polymerization (Petrovic et al., 2010). 

In recent years, enzyme-catalyzed syntheses have emerged as 

interesting green alternatives (Meier et al., 2007; Kelly and Hayes, 



2006; Uyama and Kobayashi, 2006), allowing to limit branching and 
obstruct cross-linking reactions (Yang et al., 2011 ). Thus, immobi­
lized lipases (Novozyme 435) were used for a one pot synthesis 
to prepare both linear and hyperbranched copolymers containing 
glycerol (Kulshrestha etal., 2005 ). In the presence oftoluene, lipase­
catalyzed polycondensation of unsaturated dicarboxylic acids with 
diols Ied to polyesters containing carbon-carbon double bonds 
(Yang et al., 2010). In similar conditions, the polymerization of 
bio-based diols and di-carboxylic acids via cyclic oligomers was 
performed by Yagihara and Matsumura (2012). However, these 
syntheses were carried out under a reduced pressure or nitrogen 
atmosphere and required very long reaction times (between 42 and 
48 h), as the temperature should not exceed 60 °c to preserve the 
activity and the stability oflipases. Therefore, Korupp et al. (2010) 
have mentioned that the mechanical stability of enzyme towards 
energy input brought by the mixture might be a major problem for 
a scale-up. 

To synthesize biobased polyesters according to a green 
approach, we have considered esterification methods using hetero­
geneous catalysis through ion-exchange resins (Park et al., 2010; 
Pouilloux et al., 1999). Thus, Pouilloux et al. (1999) esterified oleic 
acid with glycerol at 90 °C with different Amberlyst resins that can 
be readily removed from the final product. Amberlyst 31 gave the 
highest yield (50%) and the selectivity to monooleyl glyceride was 
over 90%. Under some conditions, ion-exchange resins suffer from 
poor thermal stability, which restricts their use to 150 °C and a rel­
atively low acid strength. Amberlyst 70 shows a higher thermal 
stability compared with that of other resins, and a high resistance 
to desulfonation, even at 190 °C (Siri! et al., 2007). 

The purpose of this work was to synthesize polyesters using 
pentaerythritol, a dicarboxylic acid and different length fatty acids 
as pendant chains to obtain selectively bifunctional compounds 
and to promote the synthesis oflinear polymers. Solvent-free syn­
thesis of the polyesters was carried out in order to obtain either 
statistical or block co-polyesters in two or three steps. In order to 
limit crosslinking, esterification was first conducted between fatty 
acids and polyalcohol to produce expected bifunctional monomers 
( depending of the ratio of alcohol and acid functions ). The obtained 
polyol fatty acid esters were then used as monomers in a second 
step to be polymerized with dicarboxylic acids. An experiment 
design was applied to reach the optimum yield and selectivity. 
Then, the influence of the nature of the fatty acid in the side-chains 
and of the dicarboxylic acid in the polymer backbone on the thermal 
properties of the ensuing polyesters was studied. 

2. Materials and methods

2.1. Materials 

Pentaerythritol (POH), glycerol (GOH) and lauric acid (AL, C12:0) 
were purchased from Sigma Aldrich, stearic acid (AS, C18:0) 
and adipic acid (AD, HOOC(CH2 )4COOH) from Acros, sebacic acid 
(ASeba, HOOC(CH2 )8COOH) from Merck and succinic acid (ASuc, 
HOOC(CH2)zCOOH) from Carlo Erba. Ali chemicals were obtained 
in the highest purity available. Technical grade (purity over 80%) 
triglycerol (TriGOH) and behenic acid (AB, C22:0) were purchased 
from Sigma Aldrich. Ali monomers were used without any further 
purification. Amberlyst 70 was kindly provided in the form of wet 
beads by Rohm and Haas. Prior to any esterification, the resin was 
washed and dried under vacuum at 40 °C for 24 h. 

2.2. Measurements 

FfIR spectra were obtained with KBr disks using a ]ASCO FfIR-
460 plus spectrometer. The 1 H NMR spectra were performed on a 

Bruker Advance 300 MHz spectrometer. The molecular weights of 
the polyesters were measured by size exclusion chromatography­
multiangle light scattering (SEC-MALLS) using a Dionex HPLC 
system equipped with a PS80 pump, an ASI 100 autosampler, a 
Crococil oven, a Iota-2 refractometer and a multiangle laser light 
scattering photometer Wyatt-miniDawn TREOS. A three-column 
set PLgel 5 µm, from Polymer La bora tories, of pore size 1000 A, 
500 A and 100 A in series, was used to analyze the samples. A 
polystyrene standard (Polymer Laboratories) with a molecular 
weight of 30,000 g/mol were used to calibra te the Wyatt minidawn 
TREOS. The relative molecular weight of the pre-polymers were 
measured using polyethylene glycol standards (Polymer Laborato­
ries) with molecular weight range from 600 g/mol to 20,000 g/mol 
to calibrate the refractometer. Tetrahydrofuran (THF), at 30 °C, 
with a flow rate of 0.8 mL min-1 was used as eluent. The specific 
refractive index increments (dn/dc) in THF at 30 °C were measured 
with a Onde 2010 PSS refractometer at 620 nm. Differential scan­
ning calorimetry (DSC) was performed on a Perkin Elmer Pyris 1. 
In order to provide the same thermal history, each sample was 
preheated from room temperature to 100 °c at a heating rate of 
10 °C min-1 then cooled down to -40 °C at the same rate. The 
DSC scan was then recorded by heating from -40 °C to 150 °C at 
4 °c min-1 in a nitrogen atmosphere. The cation exchange capacity 
of the dried resin (2.34 mmol g-1) was determined by percolating 
an aqueous NaCI solution, followed by titration with a 0.1 N NaOH 
solution. 

2.3. Preparation of polymers 

Ali polymers were prepared by bulk polymerization, catalyzed 
with the ion exchange resin Amberlyst 70 (0.05 eq W /mol pen­
taerythritol). In order to prevent crosslinking or gelation, synthesis 
were conducted in two or three steps. The two-steps reaction led 
to random copolymers, whereas the three-steps process tends to 
yield block-like configuration. 

To produce random copolymers, fatty acids were esterified 
with pentaerythritol to give the corresponding esters. In order 
to enhance the miscibility of pentaerythritol in the fatty acid, a 
small amount of triglycerol (10 mol% compared to pentaerythri­
tol) or glycerol (33 mol%) had to be added. In a typical formulation, 
a mixture of pentaerythritol (1 g, 7.35 mmol), triglycerol (0.176 g, 
0.74 mmol), stearic acid (3.07 g, 10.80 mmol), Iauric acid (0.24 g, 
1.20 mmol) and 0.1 7 g of Amberlyst 70 was introduced in a cylin­
drical glass reactor equipped with a magnetic stirrer, gas-inlet and 
gas-outlet tubes. The system was heated at 160 °C and atmospheric 
pressure for 1 h and at reduced pressure ( 40 mbar) for one more 
hour. It was then heated to 180 °C and the pressure Iowered to 
20 mbar for 4 more hours. After 30 min under these conditions, 
the mixture became a clear monophasic liquid. In the second step, 
a dicarboxylic acid was added in stoichiometric conditions and 
polymerization occurred. For example, 1.18 g (8.09 mmol) of adipic 
acid was added and the bulk polymerization continued for 5 h. The 
ensuing product was cooled to approximately 60 °C and filtered to 
remove the resin. The light-yellow random copolymer was homo­
geneous and showed no gel particles. 

To prepare block-copolyesters containing long fatty acids in one 
block (i.e. behenic and stearic acid) and short fatty acids (i.e. Jau­
rie acid) in the other block, we proceeded in three steps. The first 
step was identical to the synthesis of random copolyesters and pro­
vided blends of pentaerythritol (and glycerol, or triglycerol) fatty 
acid esters; some blocks are obtained from lauric acid and oth­
ers from a mixture of stearic and behenic acids. Then, 60% of the 
total amount of dicarboxylic acid was first added and the remaining 
quantity after 4 h of pre-polymerization. This last step of polymer­
ization was carried out for 3.5 h. The ensuing product was filtered 
and the copolymer was analyzed without further purification. 
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Fig. 1. Examples oftarget ideal structures ofrandom copolymers from pentaerythritol, glycerol, fatty acids (lauric or stearic acids) and adipic acid. 

3. Results and discussion appeared in very low concentration. The highest contents of di­

substituted alcohols were expected to favor linear polyester in 

the next step of the polymerization. These compositions were 

assessed by SEC. Fig. 4 shows the SEC chromatograms of blends 

arising from several experiments involving a molar ratio pen­

taerythritol :glycerol of 1 :0.33 and variable amounts of stearic 

acid, according to reaction time. With this experimental design, 

we estimated by SEC that the highest yield (94%) and selectivity 

(around 40% of di-substituted alcohol) were obtained with a fatty 

acid/polyol molar ratio of 1 .45 and a reaction time of 5.25 h, as sum­

marized in Table 1. These conditions were then applied to ail the 

other syntheses discussed here. 

The synthetic strategy used to prepare the polyesters as much 

linear as possible by polycondensation from dicarboxylic acids and 

pentaerythritol is the protection by esterification with fatty acids 

of some hydroxyl groups in pentaerythritol before the polymeriza­

tion reaction itself. Due to the insolubility of pentaerythritol in the 

fatty acid medium, the former was mixed with glycerol or triglyc­

erol. The branched statistical or block co-polyesters targeted are 

represented in Figs. 1 and 2. They were produced by polyconden­

sation between diacids (such as adipic acid) and fatty acid esters 

of pentaerythritol and (glycerol or triglycerol), which were firstly 

synthesized by polyol esterification (Fig. 3). 

3.1. Analysis ofthefirst step product 

The first step of esterification using fatty acids and polyalco­

hols as starting materials led to a mixture of mono-, di-, and 

tri-substituted alcohols assessed by SEC. The tetra-derivatives 

AS AS AS AL AL 

In order to compare the influence of the fatty acid, pen­

taerythritol laurate esters, pentaerythritol stearate esters and 

pentaerythritol behenate esters were synthesized. Fig. 5 shows the 
1 H NMR spectrum of the behenic acid esterified by pentaerythri­

tol and triglycerol (10:1 mol). The chemical shifts of the protons of 

the CH2 groups in ex-positions of ester or alcohol functions are dif­

ferent for mono, di and tri-substituted pentaerythritols. Therefore, 

AL
n 

Fig. 2. Example of a block-copolymer (with AL lauric, AS stearic or AB behenic esters as side-chains). 
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Fig. 3. Mono- and polysubstituted polyols (pentaerythritol and glycerol based fatty acid esters) likely ta be obtained at the first reaction step. 

the proportions of mono-, di- and tri-substituted alcohols could be 

calculated by either 1 H NMR or SEC. For the chromatographie anal­

yses, we considered that the response factors are similar for the 

mono-, di- and tri-substituted pentaerythritols, which can explain 

the slightly different results compared to those obtained by 1 H 

NMR (Table 2). The NMR yield was the lowest for pentaerythri­

tol monolaurate, which means that lauric acid reacted faster than 

the longer fatty acids. These results are explained by lower steric 

hindrance and viscosity of Cl 2 chains promoting their reactiv­

ity. Tetra-substituted pentaerythritols were found in very small 

amounts, obviously because of steric hindrance. Tri-substituted 

pentaerythritol may constitute dead chain ends when they react 

with the dicarboxylic acid in the second step. The mono-substituted 

�.75h,r .. Qj 

l25h,r = 0_5 

23 25 

tru.ubstitued alcohol clisubstitued akohol 

27 29 31 

Retention time (min) 

33 

Fig. 4. Size exclusion chromatograms of the polyesters from stearic acid 
obtained with a molar ratio pentaerythritol:glycerol = 1 :0.33. (r = molar ratio fatty 
acid/polyol). 

Table 1 

Results of the design of experiments from stearic acid and a mixture of pentaery-
thritol and glycerol [1:0.33] (mol). 

Run AS:polyol Time(h) Yield"% Selectivityb % 

0.5 3.25 75.7 22.7 

2 0.5 5.75 82.8 12.1 

3 2 80.7 22.5 

4 4.5 92.1 37.8 

5 7 95.7 31 

6 1.5 3.25 92.2 38.2 

7 1.5 5.75 96.2 39.5 

8 1.4 5.8 96.2 39.7 

9 1.45 5.25 94.0 40.6 

a Yield = [1 -(area of the residual monomer/total area)] x 100 (areas were mea­
sured by SEC analysis ). 

b Selectivity = [ area ofbifunctional alcohol/total area] x 100 ( areas were measured 
by SEC analysis after the esterification offatty acid with alcohol). 

pentaerythritol may cause branching on the polymer backbone and 

even cause cross-linking between the polymer chains. Therefore, 

equimolar ratio polyol/dicarboxylic acid was used for the polymer­

ization step in order to prevent the polyol tri-substitution and the 

gelation as described by Kricheldorf and Behnken (2008) for the 

polycondensation of pentaerythritol and dimethyl sebacate. 

Table2 

Percentages of mono-, di- and tri-substituted alcohols determined by 1 H NMR 
and SEC analyses under the following conditions: molar ratios pentaerythri­
tol:triglycerol = [ 1 O: 1 ], fatty acid: polyol = [ 1.45: 1] with lauric, stearic or behenic acid 
as fatty acid. 

Laurie acid Stearic acid Behenic acid 

SEC 1 HNMR SEC 1 HNMR SEC 1 HNMR 

% mono-substituted 31 28 20 30 29 33 

% di-substituted 39 45 33 45 34 39 

% tri-substituted 29 27 46 25 36 28 
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Fig. 5. 1 H NMR spectrum of the compound resulting from the esterification ofbehenic acid with a mixture of pentaerythritol and triglycerol [10:1] (mol) in CDC!s.

3.2. Characteristics of the random copolymer 

After esterification of the fatty acid by pentaerythritol and 

glycerol (or triglycerol), polymers and copolymers were synthe­

sized by the addition of the dicarboxylic acid such as adipic acid 

(HOOC(CH2 )4COOH), succinic acid (HOOC(CH2)zCOOH) or sebacic 

acid (HOOC(CH2 )8COOH). 

3.2.1. Influence of the fatty acid 

Table 3 gives the results of experiments based on the polycon­

densation of the polyol fatty acid esters and diacids. The average 

content of unreacted hydroxyl groups was measured by 1 H NMR

and ranged between 9 and 13%. This result was confirmed by 

FTIR spectroscopy: a peak around 3400 cm-1 corresponds to the 

stretching vibrations of hydroxyl groups and the other characteris­

tic signais of polyesters were found at 1731 cm-1 for the stretching 

vibrations of C=O bonds and at 1150-1050 cm-1 for C -O-C link­

ages. Pentaerythritol grafted with long side-chains, like those from 

behenic acid, were less reactive than pentaerythritol grafted with 

lauric acid, anticipating a lower yield for the behenic-based poly­

mer. This was indeed confirmed by the results (Table 3, entry 1 to 

3), which indicated that when the length of the hydrocarbon side­

chain increased, both reaction yield and average molecular weight 

decreased. 

Concerning the thermal properties, polymers with long side­

chains showed higher melting enthalpy and melting temperature. 

No glass transition temperature was observed for these polyesters. 

For the copolymers, increasing the amount of long fatty acids (i.e. 

behenic or stearic acid) enhanced the melting temperature and 

the crystallinity. In Table 3, polymer 9, with the lowest stearic 

acid content ([AS:AL] = [6:4] mol), showed lower melting temper­

ature (27 °C), compared with those of polymers 7 and 8. When 

behenic acid (C22:0) (5% molar compared to the total amount of 

fatty acids) was added, the melting temperature rose from 28 °C 

to 30 °C (Table 3, polymers 10, 11 ). When behenic acid completely 

replaced stearic acid in the formulation, the melting temperature 

increased to 50 °c (Table 3, entry 12). The obtained melting tem­

peratures are most likely due to side-chain crystallization if these 

branched chains are long enough. This phenomenon was shown to 

depend on the degree of chain branching and the branch length 

(Watanabe et al., 1994; Jin et al., 2000; McI<ee et al., 2005). Above a 

given branch length depending of the polyester, the melting tem­

perature tends to increase, due to ordering and crystallization of 

the side-chains. Crystals can also incorporate overlapping or inter­

digitated side-chains from neighboring main chains. It has been 

demonstrated in other type of polymers, especially in cellulose 

derivatives with fatty chains longer than octanoic (Sealey et al., 

1996). The global consequence is an increase of crystallinity and a 

higher melting temperature. 

3.2.2. Influence of the dicarboxylic acid 

In the backbone of the polymer, sebacic acid, adipic acid and 

succinic acid as dicarboxylic acids were used. The increase of the 

hydrocarbon chain length resulted in a lower melting tempera­

ture. The melting temperature was 31 °C for succinic acid, 28 °C for 

adipic acid and reached 21 °C for sebacic acid (Table 3, entries 14, 

1 O and 13 ). Fig. 6 shows the DSC curves of the three polymers. The 

main peaks reflect the melting temperature of the polymers, white 

secondary peaks were attributed to fraction of oligomers or tri­

and tetra-substituted pentaerythritols. Once again, crystallization 

of the side-chains is involved. A shorter dicarboxylic acid makes 

the side-chains cl oser, and thus crystallinity increases. As expected, 

polymers built with succinic acid were brittle, whereas sebacic acid 

based counterparts were soft. 



Table3 

Composition and characterization ofrandom copolyesters: average Mn and Mw measured by SEC-MALLS analysis, melting temperature and melting enthalpy, measured by 
DSC analysis. 

Run Polyolsa Fatty acidb Dicarboxylic acid' Yield% Mn (g/mol) Mw (g/mol) Tm (°C) L',.HU/g) 

1 POH:TriGOH [10:1] AB AD 89 3.84 X 103 7.46 X 103 63 129 
2 POH:TriGOH [10:1] AS AD 90 2.28 X 105 2.85 X 106 41 79 
3 POH:TriGOH [10:1] AL AD 96 3.77x104 1.48 X 105 25 51 
4 POH:TriGOH [10:1] AS:AL [9:1] AD 92 1.41 X 104 2.02 X 105 41 77 
5 POH:TriGOH [10:1] AS:AL[7:3] AD 90 1.47x104 1.01 X 105 37 57 
6 POH:TriGOH [10:1] AB:AS:AL [0.5:6:3.5] AD 89 3.39 X 104 1.96 X 105 32 36 
7 POH:GOH [10:3] AS:AL [9:1] AD 95 3.35 X 104 1.71 X 105 36 60 
8 POH:GOH [10:3] AS:AL[7:3] AD 94 1.40x104 1.01 X 105 31 47 
9 POH:GOH [10:3] AS:AL[6:4] AD 96 1.67 X 104 6.68 X 104 27 44 

10 POH:GOH [10:3] AS:AL [6.5:3.5] AD 98 1.61x104 6.66 X 104 28 54 
11 POH:GOH [10:3] AB:AS:AL [0.5:6:3.5] AD 90 1.78x104 1.03 X 105 30 52 
12 POH:GOH [10:3] AB:AL [6.5:3.5] AD 89 1.62x104 1.19 X 105 50 124 
13 POH:GOH [10:3] AS:AL [6.5:3.5] Aseba 94 9.37x103 2.43 X 104 21 43 
14 POH:GOH [10:3] AS:AL [6.5:3.5] Asuc 93 1.3 X 104 4.6 X 104 31 40 
15 POH:GOH [10:3] AS:AL[7:3] Aseba 92 2.92 X 103 8.62 X 103 23 51 

a POH: pentaerythritol; GOH: glycerol; TriGOH: triglycerol. 
b AL: lauric acid; AS: stearic acid; AB: behenic acid (molar ratio fatty acid:polyol = 1.45:1). 
c AD: adipic acid; Aseba: sebacic acid; Asuc: succinic acid (molar ratio dicarboxylic acid:polyol = 1: 1 ). 
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Fig. 6. DSC thermograms ofrandom copolyesters based on succinic acid, adipic and sebacic acid (obtained under the experimental conditions given in Table 3, for Run 14, 
10 and 13). 

3.3. Characteristics of the block copolyesters 

The block copolyesters were prepared by copolymerization of 

two blocks synthesized separately with one of the three diacids. 

Each black was obtained in a previous step by pre-polymerization 

of the same dicarboxylic acid and one kind ofpentaerythritol fatty 

acid esters (prepared from polyols mixture and lauric acid for the 

first block, or stearic acid, associated or not to behenic acid, for 

the second block). The results relative to the black copolyesters are 

summarized in Table 4. 

Table4 

Formulation and characterization of black copolyesters. 

Polymers of Table 3, entry 9, and Table 4 entry 16, shared the 

same monomers in the same proportions. Yet the black copolyester 

showed a melting temperature of 34 °C and that of the random one 

was only 27 °C. The random copolymer of Table 3, entry 6, showed a 

melting temperature of 32 °c, while that of the corresponding black 

copolymer of Table 4, entry 19, was 36 °c. When succinic acid was 

used in the backbone instead of adipic acid, the melting tempera­

ture increased from 33 °C to 39 °C (Table 4, entries 17 and 18). These 

results showed that the micro-crystallinity is higher in these black 

structures because of the intra- and inter-molecular stackings of 

Run Polyols Fatty acid Dicarboxylic acid Mn (g/mol) Mw(g/mol) Tm (°C) L',.HQ/g) 

16 POH:GOH [10:3] AS:AL[6:4] AD 1.29 X 104 2.58 X 104 34 52 
17 POH:TriGOH [10:1] AS:AL [6.5:3.5] AD 1.48 X 104 4.41 X 104 33 50 
18 POH:TriGOH [10:1] AS:AL [6.5:3.5] Asuc 8.26 X 104 1.01 X 105 39 61 
19 POH:TriGOH [10:1] AB:AS:AL [0.5:6:3.5] AD 3.91 X 104 3.56 X 104 36 40 



side-chains involved in these polymers. Thus, the synthesis ofblock 

copolyesters is a performing method to increase the melting point. 

4. Conclusion

In this study, we described the bulk synthesis of polyesters 

with fatty acid side-chains, using an ion exchange resin as cat­

aiyst. Amberlyst 70 allowed to obtain a maximum yieid as high 

as 98% and was easy to remove from the final product. The co­

polyalcohol, i.e. glycerol or trigiycerol, prevented the use of organic 

soivent and enabled a better contact between pentaerythritoI and 

the fatty acids in a one-pot system with sequential addition of 

the reactants. We showed that longer side-chains increased the 

crystallinity and rose the melting temperature, due to side-chain 

crystallization. Shortening the length of dicarboxylic acid in the 

backbone produced an increase in both crystallinity and meiting 

temperature. In ail the cases, the block copolyesters showed higher 

melting temperature than the random ones. 
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