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Abstract. We consider a differential model describing neuro-physiological contrast percep-
tion phenomena induced by surrounding orientations. The mathematical formulation relies
on a cortical-inspired modelling [10] largely used over the last years to describe neuron inter-
actions in the primary visual cortex (V1) and applied to several image processing problems
[12,19,13]. Our model connects to Wilson-Cowan-type equations [23] and it is analogous to
the one used in [3,2,14] to describe assimilation and contrast phenomena, the main novelty
being its explicit dependence on local image orientation. To confirm the validity of the model,
we report some numerical tests showing its ability to explain orientation-dependent phenom-
ena (such as grating induction) and geometric-optical illusions [21,16] classically explained
only by filtering-based techniques [6,18].

Keywords: Orientation-dependent cortical modelling · Wilson-Cowan equations · Primary
Visual Cortex · Contrast Perception · Variational modelling

1 Introduction

Many, if not most, popular vision models consist in a cascade of linear and non-linear (L+NL)
operations [15]. This happens for models describing both visual perception – e.g., the Oriented
Difference Of Gaussians (ODOG) [6] or the Brightness Induction Wavelet Model (BIWaM) [18]
– and neural activity [9]. However, L+NL models, while suitable in many cases for retinal and
thalamic activity, are not adequate to predict neural activity in the primary visual cortex area
(V1). In fact, according to [9], such models have low predictive power (indeed they can explain less
than 40% of the variance of the data). On the other hand, several vision models are not in the
form of a cascade of L+NL operations, such as those describing neural dynamics via Wilson-Cowan
(WC) equations [23,8]. These equations describe the state a(x, θ, t) of a population of neurons with
V1 coordinates x ∈ R2 and orientation preference θ ∈ [0, π) at time t > 0 as

∂

∂t
a(x, θ, t) = −αa(x, θ, t) + ν

∫ π

0

∫
R2

ω(x, θ‖x′, θ′)σ(a(x′, θ′, t)) dx′ dθ′ + h(x, θ, t). (1)

Here, α, ν > 0 are fixed parameters, ω(x, θ‖x′, θ′) is an interaction weight, σ : R → R is a sigmoid
saturation function and h represents the external stimulus. In [3,4,2] the authors show how orienta-
tion independent WC-type equations admit a variational formulation through an associated energy
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functional which can be linked to histogram equalisation, visual adaptation and efficient coding
theories [17].

In this paper, we consider a generalisation of this modelling and introduce explicit orientation
dependence via a lifting procedure inspired by neuro-physiological models of V1 [10,12,19]. Inter-
estingly, the Euler-Lagrange equations associated with the proposed functional yield orientation-
dependent WC-type equations analogous to (1). We then report some numerical evidence showing
how the proposed model is able to better reproduce some visual perception phenomena in compar-
ison to both previous orientation-independent WC-type models and state-of-the-art ODOG [6] and
BIWaM [18] L+NL models.

In particular, we firstly test our model on orientation-dependent Grating Induction (GI) phe-
nomena (generalising the ones presented in [6, Figure 3], see also [16]) and show a direct dependence
of the processed image on the orientation, which cannot be reproduced via orientation-independent
models, but which is in accordance with the reference result provided by the ODOG model. We
then test the proposed model on the Poggendorff illusion, a geometrical optical effect where a mis-
alignment of two collinear segment is induced by the presence of a surface [21,22], see Figure 6.
For this example our model is able to reconstruct the perceptual bias better than all the reference
models considered.

2 Orientation-independent variational models

Let Q ⊂ R2 be a rectangular image domain with and let f : Q → [0, 1] be a normalised image on
Q. Let further ω : Q × Q → R+ be a given positive symmetric weighting function such that for
any x ∈ Q, ω(x, ·) ∈ L1(Q). For a fixed parameter α > 1 we consider the piece-wise affine sigmoid
σα : R→ [−1, 1] defined by

σα(ρ) := min{1,max{αρ,−1}}, (2)

and we consider Σα to be any function such that Σ′α = σα. Observe that Σα is convex and even.
In [3,2,14] the authors consider the following energy as a variational model for modelling contrast

and assimilation phenomena, defined in terms of a given initial image f0:

E(f) :=
1

2

∫
Q

(f(x)− µ(x))
2
dx+

λ

2

∫
Q

(f(x)− f0(x))
2
dx

− 1

4M

∫
Q

∫
Q

ω(x, y)Σα
(
f(x)− f(y)

)
dx dy. (3)

Here, µ : Q→ R is the local mean of the initial image f0. Such term can encode a global reference
to the “Grey-World” principle [3] (in this case µ(x) = 1

2 for any x ∈ Q) or a filtering around x ∈ Q
computed either via a single-Gaussian convolution [2] or a sum of Gaussian filters [14], consistently
with the modelling of the multiple inhibition effects happening at a retinal-level [24]. Finally, the
parameter M ∈ (0, 1] stands for a normalisation constant, while λ > 0 represents a weighting
parameter enforcing the attachment of the solution f to the given f0.

The gradient descent associated with E is the following equation corresponds to a Wilson-
Cowan-type equation similar to (1), where the visual activation is assumed to be independent of
the orientation, as discussed in [7]. The parameters α and ν are set α = 1 and ν = 1

2M and the
time-invariant external stimulus h is equal to µ+ λf0:

∂

∂t
f(x, t) = −(1 + λ)f(x, t) + (µ(x) + λf0(x)) +

1

2M

∫
T2

ω(x, y)σα
(
f(x, t)− f(y, t)

)
dy. (4)
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Note that in [14] the authors consider in (2) a convolution kernel ω which is a convex combination
of two bi-dimensional Gaussians with different standard deviations. While this variation of the
model is effective in describing assimilation effects, the lack of dependence on the local perceived
orientation in the Wilson-Cowan-type equation (2) makes such modelling intrinsically not adapted
to explain orientation-induced contrast and colour perception effects similar to the ones observed
in [18,20,6]. Up to our knowledge, the only perceptual models capable to explain these effects are
the ones based on oriented Difference of Gaussian filtering coupled with some non-linear processing,
such as the ODOG and the BIWaM models described in [6,5] and [18], respectively.

3 A cortical-inspired model

Let us denote by R > 0 the size of the visual plane and let DR ⊂ R2 be the disk DR := {x2
1 + x2

2 ≤
R2}. Fix R > 0 such that Q ⊂ DR. In order to exploit the properties of the roto-translation group
SE(2) on images, we now consider them to be elements in the set:

I =
{
f ∈ L2(R2, [0, 1]) such that supp f ⊂ DR

}
.

We remark that fixing R > 0 is necessary, since contrast perception is strongly dependent on the
scale of the features under consideration w.r.t. the visual plane.

In the following, after introducing the functional lifting under consideration, which follows well-
established ideas contained, e.g., in [10,12,19], we present the proposed cortical-inspired extension
of the energy functional (2), and discuss the numerical implementation of the associated gradient
descent. We remark that the resulting procedure thus consists of a linear lifting step combined with
WC-type evolution, which is non-linear due to the presence of the sigmoid σα, see (2).

3.1 Functional lifting

Each neuron ξ in V1 is assumed to be associated with a receptive field (RF) ψξ ∈ L2(R2) such that
its response under a visual stimulus f ∈ I is given by

F (ξ) = 〈ψξ, f〉L2(R2) =

∫
R2

ψξ(x)f(x) dx. (5)

Motivated by neuro-phyisiological evidence, we will assume that each neuron is sensible to a pre-
ferred position and orientation in the visual plane, i.e., that ξ = (x, θ) ∈ M = R2 × P1. Here, P1

is the projective line that we represent as [0, π]/ ∼, with 0 ∼ π. Moreover, in order to respect the
shift-twist symmetry [8, Section 4], we will assume that the RF of different neurons are “deducible”
one from the other via a linear transformation. Let us explain this in detail.

The double covering of M is given by the Euclidean motion group SE(2) = R2 oS1, that we
consider endowed with its natural semi-direct product structure

(x, θ) ? (y, ϕ) = (x+Rθy, θ + ϕ), ∀(x, θ), (y, ϕ) ∈ SE(2), Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

In particular, the above operation induces an action of SE(2) onM, which is thus an homogeneous
space. Observe that SE(2) is unimodular and that its Haar measure (which is the only left and
right-invariant measure up to scalar multiples) is simply dxdθ.
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We now denote by U(L2(R2)) ⊂ L(L2(R2)) the space of linear unitary operators on L2(R2) and
let π : SE(2) → U(L2(R2)) be the quasi-regular representation of SE(2) which associates to any
(x, θ) ∈ SE(2) the unitary operator π(x, θ) ∈ U(L2(R2)), i.e., the action of the roto-translation
(x, θ) on square-integrable functions on R2. Namely, the operator π(x, θ) acts on ψ ∈ L2(R2) by

[π(x, θ)ψ](y) = ψ((x, θ)−1y) = ψ(R−θ(y − x)), ∀y ∈ R2.

Moreover, we let Λ : SE(2) → U(L2(SE(2))) be the left-regular representation, which acts on
functions F ∈ L2(SE(2)) as

[Λ(x, θ)F ](y, ϕ) = F ((x, θ)−1 ? (y, ϕ)) = F (R−θ(y − x), ϕ− θ), ∀(y, θ) ∈ SE(2).

Letting now L : L2(R2) → L2(M) be the operator that transforms visual stimuli into cortical
activations, one can formalise the shift-twist symmetry by requiring that

L ◦ π(x, θ) = Λ(x, θ) ◦ L, ∀(x, θ) ∈ SE(2).

Under mild continuity assumption on L, it has been shown in [19] that L is then a continuous wavelet
transform. That is, there exists a mother wavelet Ψ ∈ L2(R2) satisfying π(x, θ)Ψ = π(x, θ+π)Ψ for
all (x, θ) ∈ SE(2), and such that

Lf(x, θ) = 〈π(x, θ)Ψ, f〉, ∀f ∈ L2(R2), (x, θ) ∈M. (6)

Observe that the operation π(x, θ)Ψ above is well defined for (x, θ) ∈M thanks to the assumption
on Ψ . By (3.1), the above representation of L is equivalent to the fact that the RF associated with
the neuron (x, θ) ∈M is the roto-translation of the mother wavelet, i.e., ψ(x,θ) = π(x, θ)Ψ .

Remark 1. Letting Ψ∗(x) := Ψ(−x), the above formula can be rewritten as

Lf(x, θ) =

∫
R2

Ψ(R−θ(y − x))f(y) dy =
[
f ∗ (Ψ∗ ◦R−θ)

]
(x),

where f ∗ g denotes the standard convolution on L2(R2).

Notice that, although images are functions of L2(R2) with values in [0, 1], it is in general not
true that Lf(x, θ) ∈ [0, 1]. However, from (3.1) we deduce the following result, which guarantees
that L is a bounded operator. (See [19, Section 2.2.3].)

Proposition 1 The operator L : L2(R2) → L2(M) is continuous and, therefore, bounded. In
particular, for any f ∈ L2(R2) the function Lf is a continuous bounded function on M , with
|Lf | ≤ ‖Ψ‖L2(R2)‖f‖L2(R2). Moreover, if f takes values in [0, 1] and Ψ ∈ L1(R2), we have |Lf | ≤
‖Ψ‖L1(R2).

Neuro-physiological evidence shows that a good fit for the RFs is given by Gabor filters, whose
Fourier transform is simply the product of a Gaussian with an oriented plane wave [11]. However,
these filters are quite challenging to invert, and are parametrised on a bigger space thanM, which
takes into account also the frequency of the plane wave and not only its orientation. For this reason,
in this work we chose to consider as wavelets the cake wavelets introduced in [1]. These are obtained
via a mother wavelet Ψ cake whose support in the Fourier domain is concentrated on a fixed slice,
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which depends on the number of orientations one aims to consider in the numerical implementation.
To recover integrability properties, the Fourier transform of this mother wavelet is then smoothly
cut off via a low-pass filtering, see [1, Section 2.3] for details. Observe, however, that in order to
lift to M and not to SE(2), we consider a non-oriented version of the mother wavelet, given by
ψ̃cake(ω) + ψ̃cake(eiπω), in the notations of [1].

An important feature of cake wavelets is that, in order to recover the original image, it suffices
to consider the projection operator defined by

P : L2(M)→ L2(R2), PF (x) :=

∫
P1

F (x, θ) dθ, F ∈ L2(M) (7)

Indeed, by construction of cake wavelets, Fubini’s Theorem shows that (P ◦ L)f = f for all f ∈ I.

3.2 WC-type mean field modelling

The natural extension of (2) to the cortical setting introduced in the previous section is the following
energy on functions F ∈ L2(M):

E(F ) =
1

2
‖F −G0‖2L2(M) +

λ

2
‖F − F0‖2L2(M)

− 1

4M

∫
M

∫
M
ω(x, θ‖x′, θ′)Σα

(
F (x, θ)− F (x′, θ′)

)
dxdθ dx′dθ′. (8)

Here, G0 is the lift Lµ of the local mean appearing in (2), and F0 is the lift Lf0 of the given
initial image f0. The constant M ∈ (0, 1] will be specified later. Furthermore, ω : M×M → R+

is a positive symmetric weight function and, as in [3], we denote by ω(x, θ‖x′, θ′) its evaluation
at ((x, θ), (x′, θ′)). A sensible choice for ω would be an approximation of the heat kernel of the
anisotropic diffusion associated with the structure of V1, as studied in [10,12]. However, in this
work we chose to restrict to the case where ω(x, θ‖x′, θ′) = ω(x−x′, θ− θ′) is a (normalised) three-
dimensional Gaussian in M, since this is sufficient to describe many perceptual phenomena not
explained by the previous 2D model (2). A possible improvement could be obtained by choosing
ω as the sum of two such Gaussians at different scales in order to better describe, e.g., lightness
assimilation phenomena.

Thanks to the symmetry of ω and the oddness of σ, computations similar to those of [3] yield
that the gradient descent associated with (3.2) is

∂

∂t
F (x, θ, t) = −(1 + λ)F (x, θ, t) +G0(x, θ) + λF0(x, θ)

+
1

2M

∫
M
ω(x, θ‖x′, θ′)σα

(
F (x, θ, t)− F (x′, θ′, t)

)
dx′dθ′. (9)

This is indeed a Wilson-Cowan-like equation, where the external cortical stimulus is h = G0 +λF0.

We observe that in general there is no guarantee that rngL is invariant w.r.t. the evolution
t 7→ F (·, ·, t) given by (3.2). That is, in general, although F0 = Lf0, if t > 0 there is no image
f(·, t) ∈ L2(R2) such that F (·, ·, t) = Lf(·, ·, t). We will nevertheless assume that the perceived
image for any cortical activation is given by the projection operator (3.1).
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3.3 Discretisation via gradient descent

In order to numerically implement the gradient descent (3.2), we discretise the initial (square) image
f0 as an N ×N matrix. (Here, we assume periodic boundary conditions.) We additionally consider
K ∈ N orientations, parametrised by k ∈ {1, . . . ,K} 7→ θk := (k − 1)π/K.

The discretised lift operator, still denoted by L, then transforms N×N matrices into N×N×K
arrays. Its action on an N ×N matrix f is defined by

(Lf)n,m,k = F−1
(
(Ff)� (RθkFΨ cake)

)
n,m

∀n,m ∈ {1, . . . , N}, k ∈ {1, . . . ,K},

where � is the Hadamard (i.e., element-wise) product of matrices, F denotes the discrete Fourier
transform, Rθk is the rotation of angle θk, and Ψ cake is the cake mother wavelet.

After denoting by F 0 = Lf0, and by G0 = Lµ where µ is a Gaussian filtering of f0, we find that
the explicit time-discretisation of the the gradient descent (3.2) is

F `+1 − F `

∆t
= −(1 + λ)F ` +G0 + λF 0 +

1

2M
RF ` , ∆t� 1, ` ∈ N.

Here, for a given 3D Gaussian matrix W encoding the weight ω, and an N ×N ×M matrix F , we
let, for any n,m ∈ {1, . . . , N} and k ∈ {1, . . . ,K},

(RF )n,m,k :=

N∑
n′,m′=1

K∑
k′=1

Wn−n′,m−m′,k−k′σ(Fn,m,k − Fn′,m′,k′).

We refer to [3, Section IV.A] for the description of an efficient numerical approach used to compute
the above quantity in the 2D case and that can be translated verbatim to the 3D case under
consideration.

After a suitable number of iterations ¯̀of the above algorithm (measured by the criterion ‖F `+1−
F `‖2/‖F `‖2 ≤ τ , for a fixed tolerance τ � 1), the output image is then found via (3.1) as

f̄n,m =

K∑
k=1

F
¯̀
n,m,k.

4 Numerical results

In this section we present results obtained by applying the cortical-inspired model presented in the
previous section to a class of well-established phenomena where contrast perception is affected by
local orientations.

We compare the results obtained by our model with the corresponding Wilson-Cowan-type 2D
model (2)-(2) for contrast enhancement considered in [14,2]. For further reference, we also report
comparisons with two standard reference models based on oriented Gaussian filtering. The former
is the ODOG model [6] where the output is computed via a convolution of the input image with
oriented difference of Gaussian filters in six orientations and seven spatial frequencies. The filtering
outputs within the same orientation are then summed in a non-linear fashion privileging higher
frequencies. The latter model used for comparison is the BIWaM model, introduced in [18]. This
is a variation of the ODOG model, the difference being the dependence on the local surround
orientation of the contrast sensitivity function6.

6 For our comparisons we used the ODOG and BIWaM codes freely available at https://github.com/

TUBvision/betz2015_noise.

https://github.com/TUBvision/betz2015_noise
https://github.com/TUBvision/betz2015_noise
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(a) Relative orientation θ = π/2. (b) Relative orientation θ = π/3.

Fig. 1: Grating inductions with varying background orientation used in the experiments.

Parameters. All the considered images are 200 × 200 pixel. We always consider lifts with K = 30
orientations. The relevant cake wavelets are then computed following [1] for which the frequency
band bw is set to bw = 4 for all experiments. In (3.2), we compute the local mean average µ and the
integral term by Gaussian filtering with standard deviation σµ and σω, respectively. The gradient
descent algorithm stops when the relative stopping criterion defined in Section 3.3 with a tolerance
τ = 10−2 is verified.

4.1 Grating induction with oriented relative background

Grating induction (GI) is a contrast effect which has been first described in [16] and later studied,
e.g., in [6]. In this section we describe our results about GI with relative background orientation, see
Figure 1. Here, when the background has different orientation from the central grey bar, a grating
effect, i.e. an alternation of dark-grey/light-grey patterns within the central bar is produced and
perceived by the observer. This phenomenon is contrast dependent, as the intensity of the induced
grey patterns (dark-grey/light-grey) is in opposition with the background grating. Moreover, it is
also orientation-dependent as the magnitude of the phenomenon increase or decrease based on the
background orientation, and is maximal when the background bars are orthogonal to the central
grey bar.

Discussion on computational results. We observe that model (3.2) predicts in accordance with
visual perception the appearance of a counter-phase grating in the central grey bar, see Figures 4b
and 4d. The same result is obtained by the ODOG model, see Figures 2a and 4a. In particular,
Figures 3 and 5 show higher intensity profile when the background gratings are orthogonal to the
central line, while the effect diminishes if the angle of the background decrease from π/2 to π/3, see
orange and green dashed line. On the other hand, the BIWaM model and the WC-type 2D model
for contrast enhancement do not appear suitable to describe this phenomenon. See for comparison
the red and blue dashed lines in Figures 3 and 5.

4.2 Poggendorff illusion

The Poggendorff illusion (see Figure 6b) consists in the super-position of a surface on top of a
continuous line, which then induces a misalignment effect. This phenomenon has been deeply in-
vestigated [21,22] and studied via neuro-physical experiments, see, e.g., [21]. Here, we consider a
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(a) ODOG result. (b) BIWaM result. (c) 2D WC-type model. (d) 3D WC-type model.

Fig. 2: Model outputs of input Figure 1a. Parameters for (d): σµ = 10, σω = 5, λ = 0.5.

(a) ODOG and BIWaM. (b) 2D VS 3D algorithm.

Fig. 3: Middle line-profiles of outputs in Figure 2.

variation of the Poggendorff illusion, where the background is constituted by a grating pattern, see
Figure 6a. Figure 6b contains the classical Poggendorff illusion, extracted from figure 6a.

Discussion on computational results. The result obtained by applying the model (3.2) to Figure 6a
is presented in Figure 6c. Similarly as in the previous example, we observe an alternation of oblique
bands of different grey intensities within the central grey surface. However, the question here is
whether it is possible to reconstruct numerically the perceived misalignment between a fixed black
stripe in the bottom part of Figure 6a and its collinear prosecution lying in the upper part. Note
that the perceived alignment differs from the actual geometrical one: for a fixed black stripe in the
bottom part, one would in fact perceive the alignment of the corresponding collinear top stripe
slightly flushed left, as it is clear from Figure 6b where single stripes have been isolated for better
visualisation. To answer this question, let us look at the reconstruction provided in Figure 6c and
mark by a continuous green line a fixed black stripe in the bottom part of the image. In order to
find the stripe in the upper part which is perceived to be collinear with the marked one, one would
need to follow how the model propagates the marked stripe across the central surface. By drawing
a dashed line in correspondence with such propagation, we can thus find the stripe in the upper
part of the image corresponding to the marked one and observe that, as expected, this does not
correspond to its actual collinear prosecution. This can be clearly seen in Figure 6d where the two
stripes have been isolated for better visualisation.
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(a) ODOG result. (b) BIWaM result. (c) 2D WC-type model. (d) 3D WC-type model.

Fig. 4: Model outputs of input Figure 1b. Parameters for (d): σµ = 10, σω = 5, λ = 0.5.

(a) ODOG and BIWaM. (b) 2D VS 3D algorithm.

Fig. 5: Middle line-profiles of outputs in Figure 4.

This example shows that the proposed algorithm computes an output in agreement with our
perception. Comparisons with reference models are presented in Figures 7 and 8. We observe that
the results obtained via the proposed 3D-WC model cannot be reproduced by the BIWaM nor the
WC-type 2D model, which moreover induce non-counter-phase grating in the central grey bar. On
the other hand, the result obtained by the ODOG model is consistent with ours, but presents a
much less evident alternating grating within the central grey bar. In particular, the induced oblique
bands are not visibly connected throughout the whole grey bar, i.e. their induced contrast is very
poor and, consequently, the induced edges are not as sharp as the ones reconstructed via our model,
see Figure 8 for one example on the middle-line profile.

5 Conclusions

We presented a cortical-inspired setting extending the approach used in [3,2] to describe contrast
phenomena in images. By mimicking the structure of V1, the model explicitly takes into account
information on local image orientation and it relates naturally to Wilson-Cowan-type equations
introduced in [23] to study the evolution of neurons in V1. The model can be efficiently imple-
mented via convolution with appropriate kernels and discretised via standard explicit schemes. The
additional information on the local orientation allows to describe contrast/assimilation phenomena
as well as notable orientation-dependent illusions outperforming the models introduced in [3,2].
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(a) Original image, a variation of the Poggen-
dorff illusion. The presence of the grey cen-
tral surface induces a misalignment of the back-
ground lines.

(b) The classical Poggendorff illusion, extracted
from the previous image. The grey surface is su-
perposed on top of the black line, creating a mis-
alignment effect.

(c) Model output.
(d) The perceived alignment is reconstructed
and isolated after processing.

Fig. 6: Poggendorff illusion. Parameters: σµ = 3, σω = 10, λ = 0.5.

Furthermore, the performance of the introduced mean field model is competitive with the results
obtained by applying some popular orientation-dependent filtering such as the ODOG and the
BIWaM models [6,18].

Further investigations should address a more accurate modelling reflecting the actual structure
of V1. In particular, this concerns the lift operation where the cake wavelet filters should be replaced
by Gabor filtering, as well as the interaction weight ω which could be taken to be the anisotropic
heat kernel of [10] instead of the isotropic Gaussian currently employed. Finally, extensive numerical
experiments should be performed to assess the compatibility of the model with psycho-physical tests
measuring the perceptual bias induced by these and other phenomena such as the tilt illusion [20].
This would provide insights about the robustness of the model in reproducing the visual pathway
behaviour.
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