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TOPOLOGICAL PROPERTIES OF

WAŻEWSKI DENDRITE GROUPS

by Bruno Duchesne

Abstract. — Homeomorphism groups of generalized Ważewski dendrites act on the infinite
countable set of branch points of the dendrite and thus have a nice Polish topology. In this
paper, we study them in the light of this Polish topology. The group of the universal Ważewski
dendrite D∞ is more characteristic than the others because it is the unique one with a dense
conjugacy class. For this group G∞, we explore and prove some of its topological properties
like the existence of a comeager conjugacy class, the Steinhaus property, automatic continuity,
the small index subgroup property and characterization of the topology. Moreover, we describe
the universal minimal flow of G∞ and of point-stabilizers. This enables us to prove that point-
stabilizers in G∞ are amenable and to give a simple and completely explicit description of the
universal Furstenberg boundary of G∞.

Résumé (Propriétés topologiques des groupes d’homéomorphismes des dendrites de Ważewski)
Les groupes d’homéomorphismes des dendrites de Ważewski généralisées agissent sur l’en-

semble des points de branchement de la dendrite et possèdent ainsi une topologie de groupe
polonais agréable. Dans cet article, nous étudions ces groupes à la lumière de cette topologie
polonaise. Le groupe d’homéomorphismes de la dendrite universelle de Ważewski D∞ est re-
marquable puisque c’est le seul avec une classe de conjugaison dense. Pour ce groupe, G∞, nous
explorons et prouvons certaines de ses propriétés topologiques comme l’existence d’une classe
de conjugaison comaigre, la propriété de Steinhaus, la propriété de continuité automatique,
la propriété des groupes de petit indice et une caractérisation de la topologie. De plus, nous
décrivons le flot minimal universel de G∞ et des stabilisateurs de points de D∞. Cela nous
permet de montrer que les stabilisateurs de points de D∞ sont des groupes moyennables et de
donner une description simple et explicite du bord de Furstenberg universel de G∞.
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1. Introduction

A dendrite is a continuum (i.e., a connected metrizable compact space) that is
locally connected and such that any two points are connected by a unique arc (see
[Nad92] for background on continua and dendrites). The group of a dendrite is sim-
ply its homeomorphism group. Dendrites are tame topological spaces that appear
in various domains as Berkovich projective line or Julia sets for examples. Groups
acting by homeomorphisms on dendrites share some properties with groups acting
by isometries on R-trees (see e.g. [DM18]) but some dendrite group properties are
very far from properties of groups acting by isometries on R-trees, for example some
have the fixed-point property for isometric actions on Hilbert spaces (the so-called
property (FH)).

In [DM19], some structural properties of dendrite groups were studied and it was
observed that two natural topologies on dendrite groups actually coincide. If X is a
dendrite without free arc (i.e., any arc contains a branch point) then the uniform con-
vergence on X and the pointwise convergence on the set of branch points Br(X) yield
the same topology on Homeo(X). Since Br(X) is countable, this yields a topological
embedding

Homeo(X) −→ S∞,

where S∞ is the group of all permutations of the integers with its Polish topology,
which is given by the pointwise convergence. The image of this embedding being
closed, this means that Homeo(X) is a non-archimedean Polish group and it becomes
natural to discover which topological properties this group enjoys. For a nice survey on
topological and dynamical properties of non-archimedean groups, we refer to [Kec13].

For a non-empty subset S ⊂ N>3 = {3, 4, 5, . . . ,∞}, the generalized Ważewski
dendrite DS is the unique (up to homeomorphism) dendrite such that any branch
point of DS has order in S and for all n ∈ S, the set of points of order n is arcwise-
dense (i.e., meets the interior of any non-trivial arc). We denote GS = Homeo(DS)

and if S = {n}, we simply denote Dn and Gn for the dendrite and its group. These
dendrites DS are very homogeneous, for example, the closure of any connected open
subset of DS is homeomorphic to DS itself [DM19, Lem. 2.14].

1.1. Generic elements. — The aim of this paper is to study some topological proper-
ties of the Polish group GS (endowed the non-archimedean topology described above).
Let us first start with a proposition that separates dramatically D∞ from the other
Ważewski dendrites.
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Topological properties of Ważewski dendrite groups 433

Proposition 1.1. — The Polish group GS has a dense conjugacy class if and only if
S = {∞}.

So, this shows that G∞ is remarkable among groups of Ważewski dendrites and
the remaining of the paper is essentially devoted to G∞.

An element in a Polish group is generic if its conjugacy class is comeager, that is,
contains a countable intersection of dense open subsets. The Polish group G∞ has
generic elements. This property is sometimes called the Rokhlin property [GW08].

Theorem 1.2. — The Polish group G∞ has a comeager conjugacy class.

Our proof of this theorem relies on Fraïssé theory and G∞ appears as the auto-
morphism group of some Fraïssé structure. In Section 3, we detail this Fraïssé struc-
ture and some of the properties needed to prove Theorem 1.2 relying on results in
[Tru92, KR07].

1.2. Automatic continuity. — A Polish group has the automatic continuity property
if any abstract group homomorphism to any separable topological group is actually
continuous. This property is quite common for large Polish groups and we refer to
[Ros09] for a survey. Automatic continuity is a consequence of the following property.

Definition 1.3. — A topological group G has the Steinhaus property if there is k ∈ N

such that for any symmetric subset W ⊂ G such that there is (gn)n∈N with⋃
n∈N

gnW = G

then W k is a neighborhood of the identity.

Theorem 1.4. — The Polish group G∞ has the Steinhaus property.

In particular, we obtain the following corollary (see [RS07, Prop. 2]).

Corollary 1.5. — The Polish group G∞ has the automatic continuity property.

It is well known that automatic continuity implies uniqueness of the Polish group
topology. So we have another proof of a particular case of a result due to Kallman.
Actually, the uniqueness of the Polish group topology for GS (with any S ⊆ N>3) is
a direct application of [Kal86, Th. 1.1]. So, we can speak about the Polish topology
on GS without any ambiguity.

Remark 1.6. — The proofs use intrinsically that Aut(Q, <) is Steinhaus. Moreover,
G∞ has the Bergman property (any isometric action on a metric space has bounded
orbits) but contrary to Aut(Q, <) [RS07, Cor. 7], G∞ is far to have the fixed point
property for (non-necessarily continuous) actions on compact metrizable spaces. For
example, the action of G∞ on the dendrite D∞ is minimal [DM19].
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434 B. Duchesne

Corollary 1.5 means that the Polish topology on G∞ is maximal among separable
group topologies on this space. The following theorem goes in the other direction
and shows that the Polish topology on GS is a least element among Hausdorff group
topologies on GS for any S. See Section 5 for details.

Theorem 1.7. — For any S ⊂ N>3, the Polish group GS is universally minimal.

Combining Corollary 1.5 and Theorem 1.7, we obtain the following characterization
of the Polish topology on G∞.

Corollary 1.8. — There is a unique separable Hausdorff group topology on G∞.

If a Polish group has ample generics then it has the Steinhaus property. So, ex-
hibiting ample generics is a common way to prove the Steinhaus property (see [KR07,
§1.6]). In our situation, this is not possible.

Proposition 1.9. — The Polish group G∞ does not have ample generics.

Actually, the diagonal action of G∞ on G∞×G∞ by conjugation does not have any
comeager orbit. Our proof relies on the same result for Aut(Q, <) due to Hodkinson
(see [Tru07]).

1.3. Small index property. — A Polish group has the small index property if any
subgroup of small index, i.e., of index less than 2ℵ0 , is open.

Theorem 1.10. — The Polish group G∞ has the small index property.

By definition of the topology of pointwise convergence on branch points, a basis of
neighborhoods of the identity is given by pointwise stabilizers of finitely many branch
points. The number of branch points being countable, these subgroups have countable
index. So, Theorem 1.10 shows that subgroups of small index contains the pointwise
stabilizer of some finite set of branch points and thus have countable index.

Let us point out that the property that subgroups of countable index are open
is equivalent to the fact that any homomorphism to S∞ is continuous. This last
property is a particular case of the automatic continuity property.

This theorem enlightens the idea that the Polish topology on G∞ is indeed an
algebraic datum: it can be recovered by subgroups of small index.

1.4. Universal minimal flows. — The group G∞ is the automorphism group of a
countable structure, the set of branch points with the betweenness relation, and it
is also a group of dynamical origin since it comes with its action on the compact
spaceD∞. So, it is natural to try to understand possibleG∞-flows, that are continuous
actions of G∞ on compact spaces.

Remark 1.11. — The group of homeomorphisms of a metrizable compact space (en-
dowed with the topology of uniform convergence) is separable. So, Theorem 1.5 implies
that any action of G∞ on a metrizable compact space by homeomorphisms is actually
continuous.
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Topological properties of Ważewski dendrite groups 435

Let G be a topological group. A G-flow is minimal if every orbit is dense. It is a
remarkable fact there is a minimal G-flow which has the following universal property:
Any other minimal G-flow is a continuous equivariant image of this largest flow. It is
called the universal minimal flow of G (see for example [Gla76] for details).

Usually, this universal G-flow is very large and not explicit at all. For G∞, we
identify this universal minimal flow with a subset of the compact space of linear
orders on the set of branch points. This subset consists of linear orders that are
converging and convex. They reflect the dendritic nature of D∞. We refer to Section 7
for definitions.

Theorem 1.12. — The universal minimal flow of G∞ is the set of convex converging
linear orders on the set of branch points of D∞.

While we were working on this topic, a more general result was proved in [Kwi18]
but the description is a bit different. Our point is to show that the stabilizer of
some generic converging convex linear order is actually extremely amenable, i.e., has
the fixed point property on compacta. Following [KPT05], this is equivalent to the
Ramsey property for the underlying structure. For this Ramsey property, we rely on
[Sok15].

We also obtain a description of the universal minimal flow of end stabilizers and this
knowledge enables us to obtain amenability results in a non-usual way. Let us observe
that for a locally finite tree, the amenability of stabilizers of vertices or end points
is easy but for dendrites it is not clear whether stabilizers of points are amenable in
general.

Theorem 1.13. — For any point x in D∞, the stabilizer of x in G∞ is an amenable
topological group.

Conversely, it is known that an amenable group acting continuously on a dendrite
stabilizes a subset with at most two points [SY17].

This amenability result enables us to identify the universal Furstenberg boundary
of G∞, that is, the universal strongly proximal minimal G∞-flow. Let ξ be some end
point of D∞ and Gξ its stabilizer. Let us denote by Ĝ∞/Gξ the completion of G∞/Gξ
for the uniform structure coming from the right uniform structure on G∞. We obtain
a first description of the universal Furstenberg boundary.

Theorem 1.14. — The universal Furstenberg boundary of G∞ is Ĝ∞/Gξ.

Even if the set of end points is a dense Gδ-orbit in D∞, the natural map Ĝ∞/Gξ →
D∞ is not a homeomorphism (Proposition 8.10) and thus D∞ is a Furstenberg bound-
ary of G∞ but not the universal one. This result should be compared to the fact that
the universal Furstenberg boundary of Homeo(S1) is S1 itself.

At the end of this paper, we give another description of this universal Furstenberg
boundary. It appears as a closed subset of a natural countable product of totally dis-
connected compact spaces. The description is simple and shows that it is a countable
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collection of G∞-orbits. This universal Furstenberg boundary is the space K that
appears in Subsection 8.3.

Acknowledgements. — This paper greatly benefited from the participation to the
conference Geometry and Structure of Polish Groups held in Casa Mathemática
Oaxaca, Mexico in June 2017. The author thanks the organizers for the invita-
tion and people he had pleasure to speak with and who helped to improve this
paper: E.Glasner, A.Kwiatkowska, F. Le Maître, J.Melleray, L.Nguyen Van Thé,
C.Rosendal, T.Tsankov and P.Wesolek. This paper would not have existed without
previous works with N.Monod. It is pleasure to thank him for insightful discussions.

2. Ważewski dendrites and their homeomorphism groups

2.1. Ważewski dendrites. — A dendrite is a connected metrizable compact space
that is locally connected and such that any two points x, y are connected by a unique
arc [x, y]. Simple examples are given by compactifications of locally finite simplicial
trees. Some examples are more complicated. For example, the Julia set of the polyno-
mial map z 7→ z2 + i of the complex line C is a dendrite (See Figure 1). A subdendrite
is a closed and connected subset S of a dendrite D. It is a dendrite on its own and
there is a retraction πS : D → S such that for any x ∈ D and y ∈ S, πS(x) ∈ [x, y].
This retraction is also called the first-point map to S.

In a dendrite X, there are three types of points x ∈ X, according to the cardinal
of Cx, the space of connected components ofXr{x}. This number is at most countable
and is called the order of x.

– If the complement X r {x} remains connected, x belongs to the set Ends(X) of
end points.

– If x separates X into two components, it is a regular point.
– Otherwise, it is at least 3 and x belongs to the set Br(X) of branch points.
Let X be a dendrite and c : X3 → X be the center map, that is, c(x, y, z) =

[x, y]∩[y, z]∩[z, x], which is reduced to a unique point. Let us make a few observations:

Figure 1. The Julia set of z 7→ z2 + i. Picture realized with Mathematica.
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– c is symmetric,
– c(x, y, z) = z if and only if z ∈ [x, y],
– if c(x, y, z) /∈ {x, y, z}, c(x, y, z) is a branch point
– and in particular, Br(X) is c-invariant, i.e., c(Br(X)) = Br(X).

In Bowditch’s terminology, (X, c) is a median space [Bow99]. For two points x 6= y

in a dendrite X, we denote by D(x, y) the connected component of X r {x, y} that
contains ]x, y[. Let us say that a subset Y of X is c-closed if for any x, y, z ∈ Y ,
c(x, y, z) ∈ Y . For Y ⊂ X, we define the c-closure of Y to be c(Y 3), which happens
to be the smallest c-closed subset of X containing Y .

Lemma 2.1. — For any Y ⊂ X, c(Y 3) is c-closed.

Proof. — Let x1, x2, x3 ∈ c(Y 3) and m = c(x1, x2, x3). If m ∈ {x1, x2, x3} then
we are done. Otherwise, for each i = 1, 2, 3, one can find a point yi ∈ Y that is
not in Cxi(m), the connected component of X r {xi} that contains m. Thus m =

c(y1, y2, y3) ∈ c(Y 3). �

Let S be a non-empty subset ofN>3 = {3, 4, 5, . . . ,∞}. TheWażewski dendrite DS

is the unique (up to homeomorphism) dendrite such that all orders of branch points
belong to S and for any n ∈ S, the set of points of orders n is arcwise-dense. See
[DM18, §12] for a few historical references and a reference to the proof of this char-
acterization. With this characterization, it easy to see that the closure of any open
connected subset in DS is actually homeomorphic to DS . We denote by GS the home-
omorphism group of DS . If S = {n}, we simply denote Dn and Gn for the dendrite
and its group. For example, D∞ appears to be homeomorphic to the Berkovich pro-
jective line over Cp. See [HLP14, Fig. 1] for explanations and a nice picture of this
dendrite.

Let us recall some properties of the groups GS = Homeo(DS) proved in [DM19,
§§6&7]. The first one shows how homogeneous the dendrite DS is. To any finite
subset F of the dendrite DS , we associate a finite vertex-labeled simplicial tree 〈F 〉
as follows. The sub-dendrite [F ], i.e., the smallest subdendrite containing F , is a
finite tree in the topological sense, i.e., the topological realization of a finite simplicial
tree. Such a simplicial tree is not unique because degree-two vertices can be added
or removed without changing the topological realization. We choose for 〈F 〉 to retain
precisely one degree-two vertex for each element of F which is a regular point of the
dendrite [F ]. Thus, 〈F 〉 is a tree whose vertex set contains F . Finally, we label the
vertices of 〈F 〉 by assigning to each vertex its order in DS .

Proposition 2.2 ([DM19, Prop. 6.1]). — Given two finite subsets F, F ′ ⊆ DS, any
isomorphism of labeled graphs 〈F 〉 → 〈F ′〉 can be extended to a homeomorphism
of DS.

This simple proposition has strong corollaries for GS . For example, GS acts
2-transitively on the set of points of a given order. Moreover, GS is a simple group
and if S is finite then the action of GS on the set of branch points (which is countable)
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is oligomorphic [DM19, Cor. 6.7]. For an introduction to oligomorphic groups, we refer
to [Cam09].

The structure of the group GS completely determines the dendrite DS : if GS
and GS′ are isomorphic then S = S′ and an automorphism of GS is always given by
a conjugation [DM19, Cor. 7.4 & 7.5].

Since the action on the set of branch points Br(DS) completely determines the
action, GS embeds as a closed subgroup of S∞. With this topology, if S is finite then
the Polish group GS has the strong Kazhdan property (T) [DM19, Cor. 6.9]. Without
the assumption of finiteness of S, the discrete group GS has Property (OB) (every
action by isometries on a metric space has bounded orbits) [DM19, Cor. 6.12].

We will need to construct global homeomorphisms from patches of partial homeo-
morphisms. This is possible thanks to the following lemma [DM19, Lem. 2.9].

Lemma 2.3 (Patchwork lemma). — Let U be a family of disjoint open connected sub-
sets of a dendrite X and let (fU )U∈U be a family of homeomorphisms fU ∈ Homeo(U)

for U ∈ U . Suppose that each fU can be extended continuously to the closure U by
the identity on the boundary U r U .

Then the map f : X → X given by fU on each U ∈ U and the identity everywhere
else is a homeomorphism.

2.2. Dynamics of individual elements. — Let g be a homeomorphism of a den-
drite X. An arc [x, y] ⊂ X is austro-boreal for g if x 6= y are fixed and there is
no fixed-point in ]x, y[. Observe that in this case, the restriction of the action of g on
]x, y[ is conjugated to an action by a non-trivial translation on the real line.

For a non-trivial arc [x, y], we denote by D(x, y) or D([x, y]) the connected com-
ponent of X r {x, y} that contains ]x, y[. We denote by D(g) the union of all D(I),
where I is an austro-boreal arc for g and by K(g) its complement in X.

The following proposition [DM18, Prop. 10.6] describes the dynamics of a homeo-
morphism of a dendrite.

Proposition 2.4. — The decomposition X = D(g)tK(g) has the following properties.
(i) D(g) is a (possibly empty) open g-invariant set on which g acts properly dis-

continuously. In particular, K(g) is a non-empty compact g-invariant set.
(ii) K(g) is a disjoint union of subdendrites of X. Moreover, g preserves each such

subdendrite and has a connected fixed-point set in each.

The subdendrites that appear in (ii) in the above proposition are actually the
connected component of K(g). Let us precise the action of g on these connected
components.

Lemma 2.5. — If C is a connected component of K(g), then g permutes the connected
components of CrFix(g), where Fix(g) is the set of fixed points of g. Moreover, none
of these connected components of C r Fix(g) is invariant.
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Proof. — The connected component C, which is a subdendrite, is g-invariant by
Proposition 2.4 and contains at least one fixed point by the fixed point property
for dendrites (See for example [DM18, Lem. 2.5]). So g permutes the connected com-
ponents of CrFix(g). Let C ′ be a connected component of CrFix(g). Its closure C ′
is a subdendrite. Let x ∈ C ′ and y ∈ C ′ be distinct points. There is a sequence (xn)

converging to y such that xn ∈ C ′ for all n ∈ N. Since C ′ is connected [x, xn] ⊂ C ′

for all n ∈ N. For all z ∈ ]x, y[ and n large enough, z ∈ [x, xn]. Thus [x, y[ ⊂ C ′. For
y′ ∈ C ′ r C ′ such that y′ 6= y, the point c(x, y, y′) ∈ C ′ separates y and y′. Since
Fix(g) ∩ C is connected, C ′ contains exactly one fixed point. This fixed point is an
end point of the subdendrite C ′ because C ′ is connected. Assume C ′ is g-invariant.
Then by [DM19, Lem. 4.8], if g fixes an end point then g has at least two fixed points.
So, g has two fixed points in C ′ and we have a contradiction. �

Let X be a dendrite and g ∈ Homeo(X). It will be useful for us to decide where a
point x ∈ X lies in the decomposition X = K(g) tD(g) from Proposition 2.4, using
only finitely many points in the g-orbit of x.

Lemma 2.6. — Let g ∈ Homeo(X) and x ∈ X. Then,
– x is in the interior of some austro-boreal arc if and only if g(x) ∈ ]x, g2(x)[,
– x ∈ D(g) if and only if

c(g(x), g2(x), g3(x)) ∈ ]c(x, g(x), g2(x)), c(g2(x), g3(x), g4(x)[,

– x ∈ K(g) if and only if [x, g(x)] ∩ Fix(g) 6= ∅.

Proof. — Let us start with elements in the interior of some austro-boreal arc. Let
[y, z] be some austro-boreal arc for g. If x ∈ ]y, z[ then g(x) ∈ ]x, g2(x)[ because
the action of g on ]y, z[ is conjugated to an action on the real line by translation.
Conversely, if g(x) ∈ ]x, g2(x)[ then for any n ∈ Z, gn(x) ∈ ]gn−1(x), gn+1(x)[ and
thus

⋃
n∈Z[gn(x), gn+1(x)] is an austro-boreal arc.

If x ∈ D(y, z) for some austro-boreal arc [y, z], let p be the image of x under the
first-point map to [y, z]. The point p lies in ]y, z[, so gp = c(x, g(x), g2(x)) belongs to
]y, z[ and satisfies the first item of the lemma, and thus

gc(x, g(x), g2(x)) ∈ [c(x, g(x), g2(x)), g2c(x, g(x), g2(x))]

by equivariance of the map c. That is, c(g(x), g2(x), g3(x)) belongs to

]c(x, g(x), g2(x)), c(g2(x), g3(x), g4(x)[ .

Conversely, if

c(g(x), g2(x), g3(x)) ∈ ]c(x, g(x), g2(x)), c(g2(x), g3(x), g4(x)[,

then by the first part this means that c(g(x), g2(x), g3(x)) lies in some austro-boreal
arc. Let y, z be the ends of this arc. Then, by construction, x ∈ D(y, z).

Let x ∈ K(g), let C be its connected component inK(g) and let C0 be its connected
component in C r Fix(g). By Lemma 2.5, gC0 ∩ C0 = ∅ and thus there is a fixed
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point p in [x, g(x)]. Conversely, if there is a fixed point p in [x, g(x)] then x /∈ D(g)

since the action of g on D(g) is properly discontinuous. �

The decomposition X = K(g) tD(g) is not really a group invariant for the cyclic
group 〈g〉 generated by g. Each part is 〈g〉-invariant but the decomposition is not the
same for every element of 〈g〉. Let us illustrate this phenomenon.

Example 2.7. — Let us fix ξ± two end points of the Ważewski dendrite D3. Let x be
some regular point of D3 and let C1, C2 be the two connected components of D3r{x}.
Let ϕi be an homeomorphism from D3 r {ξ+} to Ci. Let γ be some homeomorphism
of D3 such that [ξ−, ξ+] is austro-boreal for γ. We define an homeomorphism g of D3

fixing x and such that g|C1
= ϕ2 ◦ ϕ−1

1 and g|C2
= ϕ1 ◦ γ ◦ ϕ−1

2 . The map g is well-
defined thanks to Lemma 2.3. By construction, we have K(g) = D3 and D(g) = ∅
but K(g2) = {x} and D(g2) = C1 ∪ C2.

Nonetheless, we have the following inclusions.

Lemma 2.8. — Let X be a dendrite and g∈Homeo(X). For any n∈N, D(g)⊂D(gn)

and K(gn) ⊂ K(g).

Proof. — It suffices to prove the first inclusion and pass to the complement to get the
other one. If an arc is austro-boreal for g, it is austro-boreal for any of its non-trivial
power and thus D(g) ⊂ D(gn). �

3. Fraïssé theory and generic elements

We use the notations of [KR07] and denote by K the Fraïssé structure associated
to the action of GS on the countable set Br(DS) (see [KR07, §1.2]) and by K the
Fraïssé class of finite substructures of K. In particular, K is the Fraïssé limit of K

and Aut(K) = GS . Let us briefly explain what is this structure. The structure K is
the set Br(DS) with the all relations Ri,n ⊂ Br(DS)n given by orbits of the diagonal
actions of GS on Br(DS)n.

Let us briefly recall what it means to be a Fraïssé class. The class K is a countable
class of finite structures over some fixed countable signature that enjoys the following
properties:

(1) Hereditary property. For any B ∈ K and A 6 B (i.e., A can be embedded
in B), A ∈ K .

(2) Joint embedding property. For any A,B ∈ K , there is C such that A,B 6 C.
(3) Amalgamation property. For A,B,C ∈ K , if f : A → B and g : A → C are

embeddings then there is D ∈ K and embeddings r : B → D, s : C → D such that
r ◦ f = s ◦ g.
The structure K, the Fraïssé limit of K , is the countable structure over the same
signature such that any finite substructure belongs to K andK is ultra-homogeneous:
any partial isomorphism between finite substructures extends to a global isomorphism.
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Remark 3.1. — The structure K is, a priori, given by Br(DS) (as underlying set)
and infinitely many relations corresponding to orbits in Br(DS)n for n ∈ N. But
actually,GS can be realized as the automorphism group of a structure given by Br(DS)

and a unique relation: the betweenness relation B, where B(z;x, y) ⇔ z ∈ [x, y].
A bijection of Br(DS) that preserves the betweenness relation is actually given by a
homeomorphism of DS [DMW19, Prop. 2.4].

A betweenness relation B is of positive type if for any x, y, z there is w such that
B(w;x, y)∧B(w; y, z)∧B(w; z, x). Moreover, a finite set with a betweenness relation
with positive type (as it is the case for finite subsets of Br(D∞) closed under the center
map) has a tree structure [AN98, Lem. 29.1] and thus embeds in the set of branch
points of the universal dendrite D∞. We refer to [AN98] for details about betweenness
relations and being of positive type. By Proposition 2.2, any isomorphism between
two finite subtree of Br(D∞) can be realized as the restriction of some element of G∞.
This way Br(D∞) with the betweenness relation is the Fraïssé limit of the class of
finite betweenness structures with positive type.

Let us observe that the center map can be defined only in terms of the betweenness
relation. Actually, c(x, y, z) = w is equivalent to B(w;x, y) ∧B(w; y, z) ∧B(w; z, x).

We also denote by Kp the class of systems S = 〈A, ϕ : B → C〉, where B,C ⊆ A

are finite substructures of K and ϕ is an isomorphism between these substructures.
Let S = 〈A, ϕ : B → C〉 and T = 〈D, ψ : E → F 〉 be two systems of Kp. An
embedding of S into T is an embedding of structures f : A → D that induces an
embedding of B in E, an embedding of C in F and such that f ◦ ϕ ⊆ ψ ◦ f . In that
case, we also say that T is an extension of S . This notion of embeddings allows us to
speak about the joint embedding property (JEP) or the amalgamation property (AP)
for Kp. A subclass L of Kp is cofinal if for any system S ∈ Kp, there is T ∈ L

and an embedding of S into T . For a system S = 〈A, ϕ : B → C〉 and g ∈ GS ,
we say that g induces ϕ if there is A ⊂ Br(DS) and an isomorphism f : A→ A such
that ϕ = f−1gf . In this case, by an abuse of notation, we consider A as a subset of
Br(DS) and forget about f .

3.1. Existence of a dense conjugacy class. — The following proposition shows that
G∞ is remarkable among all the Ważewski groups.

Proposition 3.2. — The Polish group GS has a dense conjugacy class if and only if
S = {∞}.

Proof. — Thanks to [KR07, Th. 1.1], it suffices to show that Kp satisfies (or not) the
joint embedding property.

Assume that S contains n 6=∞. Choose a point x ∈ DS of order n and x1, . . . , xn
in distinct connected components of DS r {x} such that there exists g ∈ GS with
gxi = xi+1 (i ∈ Z/nZ). We set A = B = C = {x, x1, . . . , xn}, ϕ to be the restriction
of g on B and S = 〈A, ϕ : B → C〉. Let T = 〈D, ψ : E → F 〉, where D = E = F
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are two points and ψ is the identity. Now, S and T do not have a joint embedding
because any extension of ϕ in Homeo(DS) has a unique fixed point, namely x.

Now, assume S = {∞}. We claim that a partial isomorphism between finite sub-
structures can be extended to a homeomorphism of D∞ fixing a branch point and
fixing pointwise a connected component of the complement of this fixed point.

Assume the claim holds true. Let S = 〈A, ϕ : B → C〉 and T = 〈D, ψ : E → F 〉
be elements of Kp. Thanks to the claim, we assume that ϕ is induced by f ∈ G∞
that fixes a point x ∈ Br(D∞) and ψ is induced by g ∈ G∞ that fixes a point
y ∈ Br(D∞). Moreover, conjugating g with some element of G∞ if necessary, we
may assume that y (resp. x) is in a component of Cx (resp. Cy) pointwise fixed by f
(resp. g). Now, define h to be the identity on D(x, y), acts like f on the support of f
and like g on the support of g. This h yields a joint extension of ϕ and ψ.

Let us prove the claim. Any g ∈ G∞ has a fixed point x ∈ D∞ and thus permutes
the components of D∞r {x}. These components are all homeomorphic to D∞r {ξ},
where ξ is some end point. If x is a branch point, we may glue a new copy D of D∞ by
identifying some end point in D with x. If x is not a branch point, we glue countably
many copies of D∞. The new dendrite is D∞ once again and x is a branch point. One
obtains a new dendrite homeomorphic to D∞ and one can extend g by the identity
on the new copies of D∞. �

3.2. Existence of a comeager conjugacy class. — Let us recall that for a dendrite X
and two points x, y ∈ X, we denote by D(x, y) the connected component of Xr{x, y}
that contains ]x, y[.

For the remaining of this section, we consider only the dendrite D∞ and its asso-
ciated Fraïssé class K . In [Tru92], Truss introduced a general way to prove existence
of generic elements in automorphism groups of countable structures. To prove this
existence, it suffices to show that Kp has the joint embedding property (JEP) and
the amalgamation property (AP) defined above. Actually, a cofinal version of (AP)
is sufficient. In [KR07], a weaker condition, the weak amalgamation property (WAP)
has been shown to be the necessary and sufficient amalgamation condition.

Remark 3.3. — The class Kp does not have (AP). Let us consider the simple example
S = 〈A, ϕ : B → C〉, where x, y are two distinct points of Br(D∞), B = {x},
C = {y}, A = {x, y} and ϕ(x) = y. Actually, ϕ can be realized by an automorphism g1

that fixes a point p in [x, y[ or by an element g2 such that [x, y] is included in some
austro-boreal arc for g2. If ϕ is extended by ϕ1 the restriction of g1 on {x, p} and
by ϕ2 the restriction of g2 on {x, y}, it is not possible to amalgamate ϕ1 and ϕ2

over ϕ. Actually, if ψ is an amalgamation, it is given by an element g ∈ G∞ that has
a fixed point in [x, y] because of ϕ1 and simultaneously such that [x, y] is included in
some austro-boreal arc for g because of the first point in Lemma 2.6. Thus we have a
contradiction.

Below, we define a subclass L of Kp for which we show cofinality and the amal-
gamation property. As explained in Remark 3.1, we consider the structure K with
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the betweenness relation and the associated center map c and for a finite structure
of positive type A ∈ K (that is, a c-closed subset of K) and points x, y, z ∈ A,
we write x ∈ [y, z] if c(x, y, z) = x that is, B(x; y, z). For x, y ∈ A, we define
D(x, y) = {z ∈ A, c(x, y, z) /∈ {x, y}}. Let us observe that if A is embedded in
Br(D∞) then these definitions are consistent with the ones in D∞. For a system
〈A, ϕ : B → C〉 ∈ Kp and x ∈ B, we write ϕn(x) for n ∈ N if ϕ(x), . . . , ϕn−1(x) ∈ B

and define ϕn(x) to be ϕ(ϕn−1(x)). In particular, when this notation is used it im-
plies implicitly that ϕ(x), . . . , ϕn−1(x) are well-defined and belong to B. If there is
n ∈ N such that ϕn(x) = x then we say that x is ϕ-periodic. In that case, its period
is inf{n > 0, ϕn(x) = x}.

Let S = 〈A, ϕ : B → C〉 ∈ Kp be a system. We define a ϕ-orbit to be an
equivalence class under the equivalence relation on B ∪ C generated by x ∼ϕ y ⇔
y = ϕ(x) or x = ϕ(y).

Definition 3.4. — We consider the subclass L ⊆Kp of systems

S = 〈A, ϕ : B−→C〉 ∈ Kp

with A,B and C of positive type and that satisfy the following conditions. There
exists B0 ⊂ B such that

(1) for any y ∈ B, there is an x ∈ B0 and k non-negative integer such that
y = ϕk(x).

(2) For any x ∈ B0, x is ϕ-periodic or there exists n ∈ N such that

c
(
ϕn(x), ϕ2n(x), ϕ3n(x)

)
∈
]
c
(
x, ϕn(x), ϕ2n(x)

)
, c
(
ϕ2n(x), ϕ3n(x), ϕ4n(x)

)[
.

(3) For any x ∈ B such that x is not ϕ-periodic, there exist ϕ-periodic points
y, z ∈ B such that x ∈ D(y, z).

(4) For any x, y ∈ B0 such that there exist n,m ∈ N with ϕn(x) ∈ ]x, ϕ2n(x)[ and
ϕm(y) ∈ ]y, ϕ2m(y)[.

– if the ϕn-orbit of x and the ϕm-orbit of y are separated (i.e., no point of one
of the orbit is between two points of the other) then there exists a ϕ-periodic
point z ∈ B such that z ∈ [x, y],

– in the other case there exist x0, y0 ∈ B0 and k ∈ N such that
• the ϕ-orbit of x is {x0, . . . , ϕ

k(x0)}, the ϕ-orbit of y is {y0, . . . , ϕ
k(y0)},

• y0 ∈ [x0, ϕ
`(x0)] or x0 ∈ [y0, ϕ

`(y0)], where ` is the minimum such that
ϕ`(x0) ∈ ]x0, ϕ

2`(x0)[ or ϕ`(y0) ∈ ]y0, ϕ
2`(y0)[

• and k is a multiple of `.
(5) If x ∈ B and y, z ∈ B are ϕ-periodic points such that x ∈ D(y, z) then the

size of the ϕ-orbits of x and of c(x, y, z) are the same.
(6) The set A is the c-closure of B and C. That is, for any x ∈ A, there exist

x1, x2, x3 ∈ B ∪C such that x = c(x1, x2, x3).

Let us explain this definition. The first point means that there is some initial setB0

such that any point of B lies in some positive ϕ-orbit of B0. For the second point, it
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means that any point of B0 is a fixed point of gn or lies in D(gn) for any g ∈ G∞ that
induces ϕ (Lemma 2.6). This removes the indeterminacy that appears in Remark 3.3.
More precisely, these conditions imply that no extension of such a system can merge
distinct ϕ-orbits (Lemma 3.13). The third point means that if x belongs to D(gn),
where g induces ϕ, then it lies in the connected component between two fixed points
of gn. Condition (4) means that if x, y lie in some austro-boreal part for some power
of g inducing ϕ and the orbits under these powers do not intertwine, then they are
separated by some periodic point.

Lemma 3.5. — The class of systems S = 〈A, ϕ : B → C〉 ∈ Kp such that there is
x0 ∈ B with ϕ(x0) = x0 is cofinal in Kp.

Proof. — Since Br(D∞) is a Fraïssé limit, we know that for any system S =

〈A, ϕ : B → C〉, we may identify A with a subset of Br(D∞) and ϕ with some
restriction to A of an automorphism g ∈ Homeo(D∞). Since dendrites have the fixed
point property, g has a fixed point x in D∞. If this point x is a branch point, it
suffices to add it to A,B and C (and possibly the finitely many points c(x, y, z)
for y, z ∈ A,B or C) and to extend ϕ with ϕ(x) = x (or by the value of g on the
points c(x, y, z) for y, z ∈ B). If x is not a branch point then we can reduce to the
situation where x is a fixed branch point by the following construction. We glue
infinitely many copies of D∞ to x by identifying a branch point of each copy with x.
We extend g on the new branches around x by the identity (which is possible thanks
to the patchwork lemma). The new dendrite is homeomorphic to D∞ once again and
we are back in the situation where g has a fixed branch point. �

Let S = 〈A, ϕ : B → C〉 ∈ Kp be a system with a fixed point x0 ∈ B. We
define a branch around x0 to be an equivalence class in Ar {x0} under the relation
x ∼x0

y ⇔ ¬B(x0;x, y). For two branches around x0, we write D1 ∼ϕ D2 if there is
x ∈ D1∩B such that ϕ(x) ∈ D2. Observe that for another y ∈ B∩D1 then ϕ(y) ∈ D2

because ϕ preserves the betweenness relation. In that case, we write ϕ(D1) = D2 even
if this equality is not true for the underlying sets (we only have ϕ(D1∩B) ⊂ D2). We
also take the liberty to write recursively ϕn(D1) for ϕ(ϕn−1(D1)) if ϕn−1(D1)∩B 6= ∅.
We still denote by ∼ϕ the equivalence relation generated by this relation. A ϕ-orbit
of branches is an equivalence class of branches under this equivalence relation.

Lemma 3.6. — For any ϕ-orbit of branches E around x0, there is a branch D and
n ∈ N with D ∩B 6= ∅ such that E = {D,ϕ(D), . . . , ϕn−1(D)}.

Proof. — Let us first prove that if D and D′ are two branches around x0 such that
ϕ(D) = ϕ(D′) then D = D′. In fact, if x ∈ D, y ∈ D′ with ¬B(x0;ϕ(x), ϕ(y)) then
¬B(x0;x, y) and thus D = D′.

If D,D′ are in E then there is chain D0, . . . , Dk such that D0 = D, Dk = D′ and
ϕ(Di) = Di+1 or ϕ(Di+1) = Di for each i = 0, . . . , k − 1. One shows by induction on
the length of the chain that D = ϕk(D′) or D′ = ϕk(D).
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Now, let {D,ϕ(D), . . . , ϕn−1(D)} be a maximal such chain with distinct elements
(which exists since E is finite). Let D′ ∈ E. Then there is a minimal k ∈ N such that

ϕk(D) = D′ or ϕk(D′) = D.

In the first case, by maximality of {D,ϕ(D), . . . , ϕn−1(D)},

k 6 n− 1 and D′ ∈ {D,ϕ(D), . . . , ϕn−1(D)}.

In the second case, by maximality again, one has

{D′, ϕ(D′), . . . , ϕn−1+k(D′)} = {D, . . . , ϕn−1(D)}.

Thus E = {D,ϕ(D), . . . , ϕn−1(D)}. �

Observe that in Lemma 3.6, it is possible that ϕn−1(D)∩B 6= ∅ and ϕn(D) = D.
Let E be a ϕ-orbit of branches and E the union of its branches (which is c-closed).
We define SE = 〈AE , ϕE : BE → CE〉, where AE = (A∩E)∪{x0}, BE = B ∩AE ,
CE = C ∩AE and ϕE is the restriction of ϕ to BE . Observe that SE ∈ Kp and if
S ∈ L then S ∈ L as well.

Lemma 3.7. — Let S = 〈A, ϕ : B → C〉 ∈ Kp be a system with a fixed point x0 and
points x1, . . . , xk ∈ A such that x1, . . . , xk−1 ∈ B, x1 /∈ C, [xi+1, x0] ⊂ [xi, x0] and
ϕ(xi) = xi+1 for all i 6 k − 1. Let

B1 = {x ∈ B r {x1}, x1 ∈ [x0, x] and x1 ∈ [x0, ϕ(x)]}.

Then there exists an extension S ′ = 〈A′, ϕ′ : B′ → C ′〉 of S such that A′ = A∪{y},
B′ = B ∪ {y}, C ′ = C ∪ {y} and ϕ′(y) = y. Moreover, for any b ∈ B1, b

′ ∈ B rB1,
y ∈ [b, b′].

Proof. — Let us identify A with a subset of Br(D∞) and let g ∈ G∞ such that ϕ is
the restriction of g on B. By construction, x1 belongs to the interior of an austro-
boreal arc I of g. This arc is contained in the union of two connected components of
D∞r {x1}. Let U be the one that does not contain x0. By definition of B1, B1 ⊂ U .
Let choose a branch point y in the interior of I and in U such that for any b ∈ B1,
y ∈ [x1, b] and gy 6= x1 ∈ [x1, y]. By construction, no element of B lies in D(y, g(y)).
Choose a slightly larger arc [z, z′] in the interior of I containing [gy, y] and such that
the preimage in B ∪ C of [z, z′] by the first point map to I is empty. Let h be a
homeomorphism of D(z′, z) such that h(g(y)) = y and fixing z, z′. Let us extend h

to an element of G∞ by setting h to be trivial outside D(z, z′). Now, let g′ = h ◦ g
and ϕ′ to be its restriction on B′ = B ∪ {y}. �

Proposition 3.8. — The class L is cofinal in Kp.

Proof. — Let S = 〈A, ϕ : B → C〉 ∈ Kp. Thanks to Lemma 3.5, we may assume
that ϕ has a fixed point x0. Moreover, if g ∈ G∞ induces ϕ, one can replace B by the
c-closure of B∪(ArB ∪C), C by the image of this new B by g and A the c-closure
of B ∪C. Thanks to the patchwork lemma, we may reduce to the case where ϕ has
a unique orbit of branches E around x0 and thus S = SE . Actually, we can deal
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with each orbit of branches separately and patch them together at the end. So let us
assume that S = SE and let D be given by Lemma 3.6.

The proof will be done thanks to different reductions and inductions.

Case A. — The orbit of branches E is reduced to D, that is, n = 1 in Lemma 3.6.
On Ar{x0}, we define a partial order x 6 y ⇔ x ∈ [x0, y]. This is a semi-linear order
(see [DM19, §5]) and thus, since B′ = Br{x0} and C ′ = Cr{x0} are c-closed, they
have a unique minimum that we denote respectively by b0 and c0. Since ϕ preserves
betweenness, we know that ϕ(b0) = c0. We set F = B ∪C ∪ {c(x0, b0, c0)}.

Subcase A.1: c(x0, b0, c0) /∈ {b0, c0}. — In this case, no point of B′ is between points
of C ′ and vice versa. In particular, they are disjoint. We can define an extension
〈A, ψ : F → F 〉, where ψ|B = ϕ, ψ(c(x0, b0, c0)) = c(x0, b0, c0) and for c ∈ C,
ψ(c) = b ∈ B is the unique point b ∈ B such that ϕ(b) = c. This extension belongs
to Kp and it satisfies Definition 3.4 with F 0 = B ∪ {c(x0, b0, c0)}. Actually, for any
b ∈ F 0, ψ2(b) = b and thus Condition (2) is satisfied. Conditions (3) & (4) are empty
and A is still the c-closure of F .

Subcase A.2: c(x0, b0, c0) = c0. — Observe that for any g ∈ G∞ that induces ϕ, b0
belongs to an austro-boreal arc for g because [b0, x0] is mapped to [c0, x0] and thus
c0 = g(b0) belongs to [b0, g

2(b0)]. Let us denote by x1, . . . , xk the ϕ-orbit of b0 such
that ϕ(xi) = xi+1 (in particular b0 = xk−1 and c0 = xk). Let

B1 = {x ∈ B, x1 /∈ ]x, ϕ(x)[ and x1 ∈ ]x, x0[}.

Thanks to Lemma 3.7, we may assume that ϕ has a fixed point y ∈ B1 between x1

and any other point of BrB1. Let C1 to be ϕ(B1) and A1 to be {y} and the union
of the branches in A around y that do not contain b0. In particular, A1 is c-closed,
contains B1 ∪ C1. We define S1 = 〈A1, ϕ1 : B1 → C1〉, where ϕ1 is the restriction
of ϕ to B1. By an induction on the number of ϕ1-orbits which is less than the number
of ϕ-orbits, we may assume that S1 embeds in S ′1 ∈ L .

Let us define A2 = (A r A1) ∪ {y}, B2 = B ∩ A2, C2 = C ∩ A2 and let ϕ2

be the restriction of ϕ on B2. Let choose g ∈ G∞ that induces ϕ. We set B′2 to
be B2 and we add successively points to this set. For any point x in B2 ∩ ]y, x0[, we
know that x > b0 and g(x) 6 x1. We add to B′2 all points gm(x), gm+1(x), . . . , g`(x),
where m is the maximal integer such that gm(x) > x1 and ` is the minimal integer
such that g`(x) > b0. For z ∈ B2 not in [y, x0], let xz ∈ ]y, x0[ be c(z, x0, y) ∈ B2.
Let m, ` be the corresponding integers for xz. We add {gmz, . . . , g`z} to B′2 in order
to guarantee Condition (5). Finally, we replace B′2 by its c-closure (this adds only
finitely many points). Let C ′2 = g(B′2). Let us define (B′2)0 =

(
B′2∩D(y, x1)

)
∪{x0}.

Up to adding gi((B′2)0) to B′2 for i = 1, 2, 3, 4 (and gi((B′2)0) to C ′2 for i = 2, 3, 4, 5)
we may assume that `−m > 4. Now, let A′2 be the c-closure of A2 ∪B′2 ∪C

′
2 and ϕ′2

be g|B′2 . The system 〈A2, ϕ2 : B2 → C2〉 embeds in S ′2 = 〈A′2, ϕ′2 : B′2 → C ′2〉 ∈ Kp.
Moreover, the latter one satisfies Condition (2) in Definition 3.4 with n = 1 for all
points. Actually, Condition (1) is obtained by construction of (B′2)0, x0 and y are
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fixed points and all the other points of (B′2)0 are in D(g) thus Conditions (2) & (3)
follow. For Condition (4), any two points of B′ that lie in ]y, x0[ have intertwined
ϕ-orbit and the last possibility of Condition (4) occurs. So S ′2 ∈ L .

By the patchwork lemma, there exists g ∈ D∞ inducing ϕ′1 and ϕ′2. Thus, if ϕ′ is
the restriction of g on B1 ∪B2 S ′ = 〈A1 ∪A′2, ϕ′ : B1 ∪B′2 → C1 ∪C ′2〉 ∈ L is an
extension of S .

Subcase A.3: c(x0, b0, c0) = b0. — This subcase is very similar to Subcase A.2 and we
only indicate what should be modified. The points x1, . . . xk are the ϕ-orbit of b0 but
this time x1 = b0 and xi+1 = ϕ(xi). Let

B1 = {x ∈ B, xk /∈ ]x, ϕ(x)[ and xk ∈ ]x0, x[}.

Thanks to Lemma 3.7 applied to 〈A, ϕ−1 : C → B〉, we may assume that ϕ
has a fixed point y ∈ B1 between xk and any other point of B r B1. Let C1 to
be ϕ(B1) and A1 to be {y} and the union of the branches in A around y that
do not contain b0. In particular, A1 is c-closed and contains B1 ∪ C1. We define
S1 = 〈A1, ϕ1 : B1 → C1〉, where ϕ1 is the restriction of ϕ to B1. By an induction on
the number of ϕ1-orbits, we may assume that S1 embeds in some S ′1 ∈ L , where ϕ1

is the restriction of ϕ on B1.
Let us define A2 = ArA1 ∪ {y}, B2 = B ∩A2, C2 = C ∩A2 and let ϕ2 be the

restriction of ϕ on B2. Let choose g ∈ G∞ that induces ϕ. We set B′2 to be B2 and
we add successively points to this set. For any point x in B2 ∩ ]y, x0[, we know that
x > b0 and x 6 xk. We add to B′2 all points gm(x), gm+1(x), . . . , g`(x) such that `
is the minimal integer such that gm(x) > xk and ` is the minimal integer such that
g`(x) > b0. For z ∈ B2 not in [y, x0], let xz ∈ ]y, x0[ be c(z, x0, y) ∈ B2. Let m, ` be
the corresponding integers for xz, we add {gmz, . . . , g`z} toB′2. Finally, we replaceB′2
by its c-closure (this adds only finitely many points). Let C ′2 = g(B′2). Let us define
(B′2)0 =

(
B′2∩D(x1, x2)

)
∪{x0}. Up to adding gi((B′2)0) to B′2 for i = 1, 2, 3, 4 (and

gi((B′2)0) to C ′2 for i = 2, 3, 4, 5) we may assume that ` − m > 4. Now, let A′2 be
the c-closure of A2 ∪B′2 ∪C ′2 and ϕ′2 be the g|B′2 . The system 〈A2, ϕ2 : B2 → C2〉
embeds in S ′2 = 〈A′2, ϕ′2 : B′2 → C ′2〉 ∈ Kp and S ′2 ∈ L for the same reasons as
above. We conclude similarly as in Subcase A.2.

Case B. — The integer n is larger than 1. The idea is then to reduce to Case A by
making a precise definition for ψ = ϕn and apply Case A to ψ.

Subcase B.1: ϕn−1(D) ∩ B = ∅. — This case is quite similar to Subcase A.2. Let
us identify A with a subset of Br(D∞) and ϕ with the restriction of some g ∈
Homeo(D∞). Let D̃ be the connected component of D∞ r {x0} that contains the
points of D. Let B0 be the c-closure of D̃ ∩

(⋃
06k<n−1 g

−k(B)
)
∪ {x0}. This is

a finite set. Let C ′ = B′ =
⋃

06k<n−1 g
k(B0). We define ϕ′ to coincide with g on⋃

06k<n−1 g
k(B0) and g−(n−1) on gn−1(B0). The class S ′ = 〈A′, ϕ : B′ → C ′〉 which

is an extension of S belongs to L with this integer n and all points ofB0 are ϕn-fixed
points.
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Subcase B.2: ϕn(D) ∩ B 6= ∅. — So ϕn(D) = D. Up to choosing g ∈ G∞ and
add points in each ϕ-orbits, we may assume that all ϕ-orbits start, finish in D and
have all the same length that is, at least 4n. That is, we may assume that B0 =

D ∩ B satisfies
⋃

06k6`n−1 ϕ
k(B0) = B with ` > 4 and B0 is c-closed. This will

guarantee the very last point of Condition (4) in Definition 3.4. We define the system
T = 〈A ∩ D ∪ {x0}, ψ :

⋃
06k6`−1 ϕ

kn(B0) →
⋃

06k6`−1 ϕ
(k+1)n(B0)〉, where ψ is

the restriction of ϕn to
⋃

06k6`−1 ϕ
kn(B0). Observe that the number of ψ-orbits is

at most the same number of ϕ-orbits. Now, T ∈ Kp and falls in Case A. So we
can find an embedding of T in some T ′ = 〈A′, ψ′ : B′ → C ′〉 ∈ L . Let us define
B′′ =

⋃
06i<n g

i(B′) and ϕ′ to be g on
⋃

06i<n−1 g
i(B′) and ψ′◦g−(n−1) on gn−1(B′).

Let C ′′ = ϕ′(B′′) and A′′ = A′ ∪ B′′ ∪ A. The system S ′ = 〈A′′, ϕ′ : B′′ → C ′′〉
lies in Kp and contains an embedding of S . Moreover, S ′ ∈ L because T ′ ∈ L .
Actually, if B0 is the initial set for T ′ as in Definition 3.4 then it is also an initial set
for S ′ and for x ∈ B0 and n′ ∈ N is as in Definition 3.4.(2) for T ′, so nn′ satisfies
Conditions (2)–(4) for x and ϕ′. Condition (5) is satisfied since it is satisfied for T ′.

Before the subdivision into cases A and B, Condition (6) was guaranteed and during
the extension that we did in cases A and B, no point outside the c-closure of B ∪C

was added to A and thus Condition (6) is still satisfied at the end. �

Proposition 3.9. — The class L has the amalgamation property.

To prove this proposition, we rely on a few lemmas.

Lemma 3.10. — Let S = 〈A, ϕ : B → C〉 ∈ L and S → T = 〈D, ψ : E → F 〉 be
an embedding, where ψ is induced by g ∈ G∞. If x, y ∈ B are ϕ-periodic points with
periods n 6 m. Assume that ]x, y[ ∩B does not contain any periodic point then the
components gk(D(x, y)) are disjoint for 0 6 k < m and for any z ∈ D, ψ-periodic
point with z ∈ ]x, y[, the period of z is m.

Proof. — Let g ∈ G∞ inducing ψ. We claim that for all gk(D(x, y)) are disjoint for
0 6 k < m and m is a multiple of n. This implies that the period of z is at least m.
Now, we have gm(]x, y[) =]x, y[. If the period of z is not m then gm(z) ∈ ]z, g2m(z)[

and z ∈ D(gm). Thanks to Lemma 2.6 and 2.8, this leads to a contradiction.
It remains to prove the claim. If m = 1, the claim is straightforward. So let us

assume that m > 1. Since S ∈ L , g has some fixed point p ∈ B. Since m > 1,
y is not in the element of Cx that contains p. So, if k is not a multiple of n, then
c(p, x, gk(x)) separates D(x, y) and gk(D(x, y)). Thus D(x, y) and gk(D(x, y)) are
disjoint. Now, if D(x, y) and gk(D(x, y)) are not disjoint then the point c(x, y, gk(y))

is necessarily a non-periodic point because otherwise it would belong to B which is
c-closed. By assumption there is no such point. �

Lemma 3.11. — Let g ∈ G∞, let x, y be g-fixed points in D∞ and let M be some finite
set in ]x, y[. There are z ∈ ]x, y[ such that M ⊂]x, z[, q ∈ ]z, y[ and g′ ∈ G∞ that is
equal to g on D∞ rD(z, y) and that fixes q.

J.É.P. — M., 2020, tome 7



Topological properties of Ważewski dendrite groups 449

Proof. — Since M is finite, one can find z ∈ ]x, y[ such that M ⊂]x, z[. Now, choose
q ∈ ]z, y[ ∩ ]gz, y[ ⊂]x, y[. Find a homeomorphism f from D(z, y) to D(gz, y) fixing
q, y and such that f(z) = g(z) (this is possible thanks to [DM19, Prop. 6.1]). Now,
define, g′ to be f on D(z, y) and g elsewhere. �

Lemma 3.12. — Let S = 〈A, ϕ : B → C〉 ∈ L and S → T = 〈D, ψ : E → F 〉 be an
embedding. Let x, y ∈ B be ϕ-periodic points. Assume that ]x, y[∩B does not contain
any periodic point. Then there is an embedding T → T ′ = 〈D′, ψ′ : E′ → F ′〉 such
that there is q ∈D′ with D′ = D ∪ {q}, E′ = E ∪ {q}, F ′ = F ∪ {q}, q ∈ ]x, y[, z is
ψ′-periodic and ]q, y[ ∩D = ∅.

Proof. — Let h ∈ G∞ that induces ψ and let us consider D as a subset of Br(D∞).
As in the proof of Lemma 3.10, let m be the maximal period of x and y. So, the
subsets hk(D(x, y)) are disjoint for 0 6 k < m. Let us set g = hm. So, x and y are
g-fixed points. Let us apply Lemma 3.11 with g = hm and M =]x, y[∩D. One get g′
that fixes some point q such that D(q, y)∩D = ∅ and g coincides with g on E. Now,
thanks to the patchwork lemma, let us define h′ ∈ G∞ to be h on D∞rhm−1(D(x, y))

and g′ ◦ h1−m on D(x, y). Then h′ coincides with h on E and q is h′-periodic. We
define ψ′ to be the restriction of h′ on E ∪ {q}. �

Lemma 3.13. — Let S = 〈A, ϕ : B → C〉 ∈ L and S → T = 〈D, ψ : E → F 〉 be
an embedding. Any ψ-orbit contains at most one ϕ-orbit.

Proof. — For a contradiction, let us assume there are x, y ∈ B such that their ϕ-orbits
are distinct but lie in the same ψ-orbit. Thanks to Condition (1) in Definition 3.4, we
may assume that x, y ∈ B0. Observe that these points are not ϕ-periodic (and thus
not ψ) because the ψ-orbit of a periodic point is equal to its ϕ-orbit.

The points x, y belong respectively to someD(x1, x2), D(y1, y2), where x1, x2, y1, y2

are ϕ-periodic points and we may assume that D(x1, x2), D(y1, y2) do not contain
ϕ-periodic points. Thus, the ϕ-orbits of D(x1, x2), D(y1, y2) are disjoint or equal and
this is a fortiori the same for ψ. So, under our current assumption, these two orbits
are the same. Let x′ = c(x, x1, x2) and y′ = c(y, y1, y2). Because of Condition (5),
x′, y′ ∈ B0. By Condition (2) of Definition 3.4, there exists n (that we can assume
to be minimal) such that for any g ∈ G∞ that induces ϕ, gn is austro-boreal on
D(x1, x2)∩B and on D(y1, y2)∩B. So x′, z′ satisfy Condition (4) and their ϕn-orbits
are not separated by ϕn-fixed point. As a consequence, by the second point of Con-
dition (4), x′ ∈ [y′, ϕn(y′)] or y′ ∈ [x′, ϕn(x′)]. Since ψ commutes with the center
map, x′ and y′ are in the same ψn-orbit. This is impossible because the ψn-iterates
of [y′, ψn(y′)[ (respectively of [x′, ψn(x′)[) are distinct. �

Proof of Proposition 3.9. — Let S = 〈A, ϕ : B → C〉 ∈ L and two embeddings
ιi : S → Si = 〈Ai, ϕi : Bi → Ci〉, where Si ∈ L for i = 1, 2. We will construct two
embeddings ji : Ai → Br(D∞) and g ∈ G∞ such that j1◦ι1 = j2◦ι2 and ji◦ϕi = g◦ji
for i = 1, 2. So, the restriction of g on j1(B1) ∪ j2(B2) will yield an amalgamation
of ϕ1 and ϕ2 over ϕ.
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First, we fix, an embedding j : A → Br(D∞) and g ∈ G∞ such that g induces ϕ
on j(B). For simplicity, we write A instead of j(A), so we think to A as a subset of
Br(D∞). We define ji on ιi(A) to be j ◦ ι−1

i and it remains to define ji on Air ιi(A).
For a point x ∈ Bi rB there are three exclusive cases:
(A) The ϕi-orbit of x contains a ϕ-orbit of a point in B.
(B) The ϕi-orbit of x does not contain a ϕ-orbit of a point in B but there are

points y, z ∈ B ∪C such that x ∈ D(y, z).
(C) The ϕi-orbit of x does not contain a ϕ-orbit of a point in B and there are no

points y, z ∈ B ∪C such that x ∈ D(y, z).
Let us observe that if the ϕi-orbit of x contains a ϕ-orbit of a point y ∈ B then

this point y satisfies the second possibility in Condition (2) of Definition 3.4. That is,
it lies in D(hn) for some n ∈ N and any h ∈ G∞ that induces ϕi. Moreover, thanks
to Lemma 3.13, in this situation the ϕi-orbit of x contains exactly one ϕ-orbit.

We first deal with points in cases (A) & (B). These points in Bi rB lie in some
D(y, z), where y, z are ϕ-periodic points and thanks to point (3) in Definition 3.4,
there is n ∈ N such that ϕn(y) = y and ϕn(z) = z.

Case A. — Let B0,i be the sets given by Definition 3.4 for Si. Let x ∈ B0,i be such
that its ϕi-orbit contains the ϕ-orbit of some y ∈ B0. So, there is k ∈ N such that
ϕki (x) = y. We define ji(x) = g−k(y). For z ∈ Bi in the ϕi-orbit, there is ` ∈ N such
that z = ϕ`i(x) and we define ji(z) = g`(ji(x)). Since all points in Bi r B are in
ϕi-orbit of some point in B0,i, we are done with points that fall in case (A).

Case B. — We consider now points x in Bi that are not in Case A but lie in some
D(y, z) for some y, z ϕ-periodic points. Let us fix y, z ϕ-periodic points such that
[y, z] does not contain any other ϕ-periodic point. In particular, any two points in
B0 ∩ ]y, z[ satisfy the second property of Condition (4) in Definition 3.4.

The components D(gi(y), gi(z)), for i ∈ Z, are disjoint or equal and because of
Lemma 3.10. Among them, at most one meets B0 (and similarly for B0,1 and B0,2).
If none meets B0 then D(gk(y), gk(z))∩B = ∅ for any k. Because of Condition (2) in
Definition 3.4, any ϕi-orbit that meets D(y, z) ⊂ Bi meets D(ϕki (y), ϕki (z)) as well.
So, in case D(y, z) ∩B 6= ∅, we may assume that D(y, z) is the one that meets B0.

Let us treat the case where D(y, z)∩B = ∅ first. In that case, we may assume there
is a branch point t ∈ ]y, z[ that is g-periodic by Lemma 3.12. For i = 1, 2, we choose
some hi : Ai → Br(D∞) that coincides with j on A and an element gi ∈ D∞ that
induces ϕi on Bi. Thanks to Lemma 3.12, we may assume there are ti ∈ ]y, z[ such
that h1(A1) ∩D(y, z) ⊂ D(y, t1), h2(A2) ∩D(y, z) ⊂ D(t2, z) and ti are ϕi-periodic
points. By Lemma 3.10, the periods of t, t1 and t2 are the maximum of the periods
of y and z. Let n be this period.

We may assume that D(y, z) is the component that meets B0,1 among all its ϕ-
iterates. Let us fix a homeomorphism `1 : D(y, t1)→ D(y, t). For k = 0, . . . , n− 1, on
B1 ∩D(ϕk(y), ϕk(z)), we define j1 to be gk ◦ `1 ◦ h1. Finally, on D(gk−1(y), gk−1(t)),
we replace the restriction of g by `1 ◦ ϕn1 ◦ `−1

1 ◦ g1−n. This way, the embedding j1
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is well defined on
⋃

06k6n−1D(ϕk(y), ϕk(z)) ∩ B1 and we have j1 ◦ ϕ1 = g ◦ j1 by
construction.

We proceed similarly to embed points of
⋃

06k6n−1D(ϕk(y), ϕk(z)) ∩ B2 to
Br(D∞). We fix a homeomorphism `2 : D(t2, z) → D(t, z). For k = 0, . . . , n − 1, on
B2 ∩D(ϕk(y), ϕk(z)), we define j2 to be gk ◦ `2 ◦ h2. Finally, on D(gk−1(t), gk−1(z)),
we replace the restriction of g by `2 ◦ ϕn2 ◦ `−1

2 ◦ g1−n. This way, the embedding j2
is well defined on

⋃
06k6n−1D(ϕk(y), ϕk(z)) ∩ B2 and we have j2 ◦ ϕ2 = g ◦ j2 by

construction.
Now, we assume that D(y, z) ∩B 6= ∅ and continue with n being the maximum

of the period of y and z. We may assume that D(x, y) does not contain ϕ-periodic
points, considering D(y, z) minimal for inclusion with the property D(y, z) ∩B 6= ∅
if necessary. For x ∈ D(x, y) ∩ Bi, we have three exclusive subcases that cover all
possibilities.

(1) The ϕi-orbit of x contains a point in some D(y′, z′), where y′, z′ ∈ B ∩D(y, z)

and D(y′, z′) ∩B = ∅.
(2) The ϕi-orbit of x does not contain a point in some D(y′, z′), where y′, z′ ∈

B∩D(y, z) and D(y′, z′)∩B = ∅ but this ϕi-orbit contains a point in some D(y′, z′),
where y′, z′ ∈ (B ∩D(y, z)) ∪ {y, z}, D(y′, z′) ∩B = ∅.

(3) There is no point in the ϕi-orbit of x that lies in some D(y′, z′), where y′, z′ ∈
(B ∩D(y, z)) ∪ {y, z}.

Subcase B.1. — Let y′, z′ be such points. We will define the embedding of the whole
ϕi-orbit of x and thus, we may assume that x ∈ B0,i. We continue with the em-
beddings hi defined above. We choose branch points t, t1, t2 ∈ ]y′, z′[ such that
h1(A1) ∩ D(y′, z′) ⊂ D(y′, t1), h2(A2) ∩ D(y′, z′) ⊂ D(t2, z

′). We fix homeomor-
phisms `1 : D(y′, t1)→ D(y′, t) and `2 : D(t2, z

′)→ D(t, z′). We define ji to be `i ◦ hi
on D(y′, z′)∩Bi. For elements x ∈ Bi such that ϕki (x) ∈ D(y′, z′) for some k ∈ Z, we
define ji(x) to be gk ◦ `i ◦ hi ◦ϕ−ki (x). Thus we have defined ji for all elements whose
ϕi-orbit meets D(y′, z′) and for those points we have ji ◦ ϕi = g ◦ ji by construction.

Subcase B.2. — In that case, {y, z} ∩ {y′, z′} is a point because [y, z] contains points
in B. Let us assume, y = y′. The other possibilities are treated mutatis mutandis.
Thanks to Lemma 3.12, we may assume that there are s, t ∈ ]y, z[ such that s ∈
]y, t[ and s, t are g-periodic points. By Lemma 3.10, the periods of these points are
necessarily the maximum of the ones of y and z, that is, n. Moreover, t is such that
B ∩D(y, z) ⊂ D(t, z). Let us use the embeddings hi from above. From Condition (4)
in Definition 3.4, we know that there is a ϕi-periodic point ti ∈ ]y, z[ such that all
points that fall in this second subcase with y′ = y have a ϕi-orbit that meets D(y, ti).

We fix a homeomorphism `1 : D(y, h1(t1)) → D(y, s) and define j1 to be `1 ◦ h1

on D(y, t1) ∩ B1. For k = 0, . . . , n − 1, on B1 ∩ D(ϕk1(y), ϕk1(t1)), we define j1
to be gk ◦ `1 ◦ h1. Finally, on D(gk−1(y), gk−1(s)), we replace the restriction of g
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by `1 ◦ ϕn1 ◦ `−1
1 ◦ g1−n. This way, the embedding j1 is well-defined on⋃

06k6n−1

D(ϕk1(y), ϕk1(t1)) ∩B1

and we have j1 ◦ ϕ1 = g ◦ j1 on this subset by construction.
We may also assume that ϕ2 has a periodic point s2 ∈ ]y, t2[ such that

D(y, s2) ∩B2 = ∅.

We fix a homeomorphism `2 : D(h2(s2), h2(t2)) → D(s, t) and define j2 to be `2 ◦ h2

on D(s2, t2)∩B2. For k = 0, . . . , n− 1, on B2 ∩D(ϕk2(s2), ϕk2(t2)), we define j2 to be
gk ◦ `2 ◦ h2. Finally, on D(gk−1(s), gk−1(t)), we replace the restriction of g by

`2 ◦ ϕn2 ◦ `−1
2 ◦ g1−n.

This way, the embedding j2 is well defined on
⋃

06k6n−1D(ϕk2(s2), ϕk2(t2)) ∩B2 and
we have j2 ◦ ϕ2 = g ◦ j2 on this subset by construction.

Subcase B.3. — In this last subcase, for such an x, there is a unique point
p ∈ B ∩D(y, z) such that for any r ∈ B, p ∈ [r, x[. Moreover, this point is necessarily
a ϕ-periodic point because of Condition (3) in Definition 3.4. Let m be this period.
Once again, we use the embeddings hi : Ai → Br(D∞). Let Ci,1, . . . , Ci,mi , for
i = 1, 2, be the connected components of D∞ r {p} that contains points of hi(Bi)

but no point of B (x is necessarily in such a component). Each of these components
contain a gi-periodic point. Thus for any i = 1, 2 and j 6 mi, there is ki,j such that
g
ki,j
i (Ci,j) = Ci,j .
We glue copies of the Ci,j ’s to p and similarly we glue copies of gki (Ci,j) to gk(p)

for k < m to obtain a new dendrite which again homeomorphic to D∞. We extend g
by the restriction of gi on the copies of gki (Ci,j). Let define ji to be these gluings on⋃

06k6n−1 g
k
i (Ci,j).

Case C. — This last case is treated in the same way as Subcase B.3 because for any
point x that fall in this case, there is a unique point p such that for any r ∈ B,
p ∈ [r, x[ and this point p is periodic.

To conclude this proof, we define B′ to be the c-closure of h1(B1)∪h2(B2), C ′ to
be g(B′), ϕ′ to be the restriction of g on B′ and A′ to be the c-closure of B′∪C ′. �

We can now conclude that G∞ has generic elements.

Proof of Theorem 1.2. — The class Kp has JEP (Proposition 3.2) and WAP (Propo-
sition 3.8 and Proposition 3.9) thus the theorem is a consequence of [Tru92] (see also
[KR07, §3]). �

Checking JEP and WAP conditions, we show similarly the existence of comeager
conjugacy classes for the basic clopen subgroups.

Theorem 3.14. — Let F ⊂ Br(D∞) be a finite subset. The group VF = Fix(F ) has a
comeager conjugacy class.
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Proof. — We consider systems S = 〈A, ϕ : B → C〉, where ϕ is induced by an
element g ∈ VF . The joint embedding and weak amalgamation properties are proved
as for G∞. �

Remark 3.15. — Let us conclude this section by some observations. Let A be the
subgroup of G∞ fixing a pair of points in Ends(D∞) and let B be the stabilizer of
some branch point in D∞. Notice that VF ∼= An × Bm, where n is the number of
edges in 〈F 〉 and m is the number of vertices in 〈F 〉 (see Section 2 for the definition
of 〈F 〉).

Once we identify the set of branch points in an open arc in D∞ with Q, we can
also observe that A is a permutational wreath product over B:

A ' B oQ Aut(Q, <) ' BQ o Aut(Q, <).

The subgroup B has itself a permutational wreath product decomposition where E
is the stabilizer of an end point in D∞:

B ' EN o S∞.

We refer to [DM19, Lem. 7.1] for more explanations. Observe that intuitively this
shows that G∞ is somehow built from the classical Polish groups S∞, Aut(Q, <)

and E which is the automorphism group of some semi-linear order on the set of
branch points ([DM19, Cor. 5.21]).

4. Automatic continuity

Our proof of the automatic continuity relies on the Steinhaus property. To prove
this property, we use the same techniques as in the proof [RS07, Th. 15] which states
that the Polish group Aut(Q, <) has the Steinhaus property. Let us recall that a
topological group G has the Steinhaus property (Definition 1.3) if there is k ∈ N such
that for any symmetric and σ-syndetic subset W , W k contains a neighborhood of the
identity.

So, our goal is to prove that the Polish group G∞ has the Steinhaus property
(Theorem 1.4). Before proving the theorem, let us set up a few things. Set simply
G = G∞. Let W be a symmetric σ-syndetic subset of G∞ (i.e., there is (gn)n∈N
with

⋃
n∈N gnW = G). Since W is not meager, W 2 = W−1W is dense in some open

neighborhood of the identity U = Fix(F ), where F is a finite subset of Br(D∞). Let
us denote by T = [F ] the tree (i.e., subdendrite) generated by F .

Let V (⊃ F ) be the set of vertices of T and E be its set of edges. For v ∈ V ,
we denote Gv = {g ∈ Fix(v), Supp(g) ⊂ ∪Ui}, where {Ui} are the connected com-
ponents of D∞ r {x} that do not intersect T . For e = {x, y} ∈ E , we denote by
Ge = {g ∈ G, Supp(g) ⊂ D(x, y)}. Thanks to the patchwork lemma, we have

U =

(∏
v∈V

Gv

)
×
(∏
e∈E

Ge

)
.

If we set V =
∏
v∈V Gv and E =

∏
e∈E Ge, that is, U = V ×E, it suffices to show

the following two lemmas to prove Theorem 1.4.
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Lemma 4.1. — The subgroup V is contained in W 140.

Lemma 4.2. — The subgroup E is contained in W 96.

We can now conclude that G∞ has the Steinhaus property.

Proof of Theorem 1.4. — We have U = V × E ⊂W 140 ·W 96 = W 236. �

Proof of Lemma 4.1. — For v ∈ V , let C T
v be the set of all connected components of

D∞ r {v} that do no intersect T . We define a moiety of
⋃
v∈V C T

v to be a collection
X = (Xv)v∈V such that for each v ∈ V , Xv is a moiety of C T

v , that is, Xv ⊂ C T
v is

infinite and co-infinite. For such a moiety, we denote by V (X) the subgroup of V of
elements supported on

⋃
v∈V

⋃
C∈Xv C ⊂ D∞.

Let (Xn) be a sequence of disjoint such moieties. Let (kn) ∈ GN be such that⋃
n∈N knW = G. There is n such that V (Xn) is full for some knW , that is, for any

g ∈ V (Xn), there exists h ∈ knW such that g and h coincide on Xn. Otherwise, there
would exist gn ∈ V (Xn) such that no element of knW coincides with gn on Xn. For
each n ∈ N, let gn ∈ V (Xn). Thanks to the patchwork lemma, there is a well-defined
element g ∈ V that coincides with each gn on its support. Thus the element g is not
in
⋃
n∈N knW and we get a contradiction with g ∈

⋃
knW .

For the remaining of the proof, we fix n such that V (Xn) is full for some knW .
This implies that V (Xn) is full for W 2 = (knW )−1knW as well.

Observe that V (Xn) ' BV , where B is stabilizer of a branch point in G. Since B
has a comeager conjugacy class (Theorem 3.14), V (Xn) has also a comeager conjugacy
class C. There exists n1 ∈ N such that kn1

W is not meager in V (Xn). Hence W 2 =

W−1 ·W = W−1k−1
n1
kn1W is not meager in V (Xn) and there exists f ∈ C∩W 2. Now,

for any g ∈ V (Xn), there exists h ∈W 2 such that g and h coincide on Xn. Since f is
trivial outside Xn,

gfg−1 = hfh−1 ∈W 6.

The product of two comeager subsets being everything, V (Xn) ⊂W 12.
For brevity, let us denote Y = Xn and Z =

⋃
v∈V

⋃
C∈CT

v
C. Thanks to a famous

theorem of Sierpinski [Sie28], one can find a continuum of moieties (Y α) such that
Y α ⊂ Y for any α and Y αv ∩ Y βv is finite for every v ∈ V and all α 6= β. Since
|Y αv | = |C T

v r Y |, one can find an involution gα ∈ V such that gα(Y αv ) = C T
v r Y

and gα fixes pointwise Yv r Y αv for all v ∈ V .
By the pigeonhole principle, there are α 6= β and n2 ∈ N such that gα, gβ ∈ kn2W ,

and thus g−1
β gα ∈W 2. Let us denote g = g−1

β gα and Y ′ = gY . One has Y ′ = ZrgβY α.
Thus

Y ∪ Y ′ = Z r gβ(Y α ∩ Y β)

Y ∩ Y ′ = Z r gβ(Y α ∪ Y β).and

Thanks to the proof of the first lemma in [DNT86],

V (Y ∪ Y ′) ⊂ V (Y )V (Y ′)V (Y ) ∪ V (Y ′)V (Y )V (Y ′).
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Since V (Y ′) = gV (Y )g−1 ⊂W 16, V (Y ∪ Y ′) ⊂W 44. By density of W 2 in V and the
finiteness of Yα ∩ Yβ , one can find h ∈ W 2 ∩ V such that h(Z r (Y ∪ Y ′)) ⊂ Y ∪ Y ′.
If Y ′′ = h(Y ∪ Y ′) then Y ∪ Y ′ ∪ Y ′′ = Z. So V (Y ′′) = hV (Y ∪ Y ′)h−1 ⊂W 48 and as
above V = V ((Y ∪ Y ′) ∪ Y ′′) ⊂W 140. �

Proof of Lemma 4.2. — We rely on the proof of the Steinhaus property for Aut(Q, <)

[RS07, Th. 15] and use close notations. For an edge e = {x, y} ∈ E , the group Ge is
isomorphic to A, the subgroup of G fixing two end points. We also denote D(x, y)

by D(e).
We now define a moiety for

⋃
e∈E D(e). We define a linear order 6 on [x, y] that is

Ge-invariant by s 6 t⇔ s ∈ [x, t]. We choose increasing sequences (xei )i∈Z of regular
points in [x, y] such that xei → y when i → +∞ and xei → x when i → −∞. The
moiety associated to this family of sequences is

X =
⋃
e∈E
n∈Z

D(xe2n, x
e
2n+1).

For such a moiety X, we denote by A(X) the subgroup of E supported on X. As in
[RS07, Lem. 16], we have

E =
⋃

X,Y ∈D
A(X)A(Y ),

where D is the set of moieties of
⋃
e∈E D(e).

We claim that for any X ∈D, A(X) ⊂W 48, which is sufficient to prove the lemma.
Let us fix some moiety X and for simplicity, let us write Ien = D(xe2n, x

e
2n+1). Thus

X =
⋃
e∈E
n∈Z

Ien.

A sub-moiety of X is a moiety of the form⋃
e∈E
n∈Z

Ieϕ(n),

where ϕ : Z→ Z is injective. Using countably many disjoint sub-moieties of X, with
a similar argument as in Lemma 4.1, one get the existence of a sub-moiety X0 such
that A(X0) ⊂ W 12. Now, choose a continuum (Xα) of almost disjoint sub-moieties
of X0. As above, the existence of such almost disjoint sub-moieties is a consequence
of [Sie28].

Writing
Xα =

⋃
e∈E
n∈Z

Ieϕα(n),

we set

Jeα,2n = Ieϕα(n) = D
(
xe2ϕα(n), x

e
2ϕα(n)+1

)
and Jeα,2n+1 = D

(
xe2ϕα(n)+1, x

e
2ϕα(n+1)

)
.

This way, each D(e) is the union
⋃
n∈Z J

e
α,n and two consecutive Jeα,n have a unique

common point that is a non-branch point. One can find gα ∈ E such that for all
e ∈ E , gα(Jen,α) = Jen+1,α. There exist α 6= β and k ∈ G such that gα, gβ ∈ kW and
thus g−1

β gα, g
−1
α gβ ∈W 2.
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If Ien is not in the moiety Xα (i.e., Ien ⊂ Jeα,2m−1 for some m ∈ Z) then gα(Ien) ⊂
Jeα,2m. By almost disjointness, for all but finitely many m, Jeα,2m ⊂ X r Xβ and
thus g−1

β (Jeα,2m) ⊂ Xβ . So for all n such that Ien /∈ Xα except a finite number,
g−1
β gα(Ien) ⊂ Xβ . Similarly, for all n such that Ien /∈ Xβ except a finite number,
g−1
α gβ(Ien) ⊂ Xα. Moreover, there are only finitely many n such that Ien ∈ Xα ∩Xβ .
In conclusion, for all but finitely many n,

(4.1) g−1
β gα(Ien) ⊂ Xβ or g−1

α gβ(Ien) ⊂ Xα.

Let n1(e), . . . , nk(e) be the indices such that Condition (4.1) is not satisfied. By density
of W 2 in E, one can find he ∈W 2 such that h(Ien1(e)∪· · ·∪I

e
nk(e)) ⊂ X

0 for all e ∈ E .
Let X1 be the union of all Ien such that g−1

β gα(Ien) ⊂ Xβ , X2 the union of all Ien such
that g−1

α gβ(Ien) ⊂ Xα and X3 =
⋃
e∈E I

e
n1(e) ∪ · · · ∪ I

e
nk(e). Since X = X1 ∪X2 ∪X3,

A(X) = A(X1)A(X2)A(X3).

Moreover, each A(Xi) is included in a conjugate of A(X0) by g−1
β gα, g−1

α gβ or he,
that are elements of W 2. So, A(Xi) ⊂W 16 and A(X) ⊂W 48. �

Remark 4.3. — A closed subgroup of S∞ has the automatic continuity property
as soon as the stabilizer of some point has the same property. So, to get only the
automatic continuity property for G∞, it is easier to prove that the stabilizer of a
branch point is Steinhaus, which is a slightly simpler version of Lemma 4.1.

In a Polish group G, an element is generic if its conjugacy class is comeager.
A groupG has ample generics if for any n ∈ N, the diagonal conjugacy actionGy Gn

has a comeager orbit. An element in Gn whose orbit is comeager is also called generic.
The existence of ample generics is a very strong property and it implies the Steinhaus
property [KR07]. Even if the group G∞ has the Steinhaus property, it does not have
ample generics. Here is a more precise version of Proposition 1.9.

Proposition 4.4. — There is no comeager orbit in the diagonal conjugacy action
G∞ y G∞ ×G∞

In [KR07, §§3 & 6], a framework for the existence of generic elements and ample
generics is introduced. The notion of turbulence plays a key role. Let us recall the
definition in the particular case of non-archimedean Polish groups. Let G be a closed
subgroup of S∞ acting continuously on some Polish space X. A point x ∈ X is
turbulent if for any open subgroup V 6 G, x ∈ Int

(
V · x

)
, that is, x lies in the

interior of the closure of its V -orbit. This notion is important for us because of the
following.

Proposition 4.5 ([KR07, Prop. 1.4]). — Let G be a closed subgroup of S∞ and sup-
pose G acts continuously on the Polish space X. Then the following are equivalent for
any x ∈ X:

(1) the orbit Gx is a dense Gδ-subset;
(2) the orbit Gx is dense and x is turbulent.
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Proof of Proposition 4.4. — We prove that the existence of a generic pair (f, g) ∈ G2
∞

under the diagonal conjugacy action would yield a generic pair in Aut(Q, <) and thus
would contradict [Tru07, Th. 2.4].

Let (f, g) be such a generic pair. Let x, y be distinct branch points in D∞ and let
us denote U = Fix(x, y). By density, we may assume that (f, g) ∈ U2. Let us fix some
identification

ι : Br(D∞) ∩ ]x, y[ −→ (Q, <).

This yields a continuous and open surjective homomorphism

Π: U −→ Aut(Q, <).

Let us denote (ϕ,ψ) the image of (f, g) by Π× Π. Any open subgroup of Aut(Q, <)

contains some open subgroup V = Fix(x1, . . . , xn) with x1, . . . , xn ∈ Q. Let us set
the subgroup Ṽ = Π−1(V ), that is, Fix(x, ι−1(x1), . . . , ι−1(xn), y). By turbulence of
(f, g), we know that (f, g) ∈ Int

(
Ṽ · (f, g)

)
and thus (ϕ,ψ) ∈ Int

(
V · (ϕ,ψ)

)
. So (ϕ,ψ)

is turbulent.
It remains to show that the orbit of (ϕ,ψ) is dense. The orbit G · (f, g) is comeager

and since U has countable index in G, U · (f, g) is non-meager. Moreover, this orbit
is included in U2, so it is non-meager in U2. Thus, there is a (non-empty) basic open
set Ṽx,y,z of U2 such that U · (f, g) is dense in Ṽx,y,z, where

Ṽx,y,z =
{

(f ′, g′) ∈ U2; f ′(xi) = yi, g
′(xi) = zi, ∀i ∈ {1, . . . , n}

}
and

x = (x1, . . . , xn) ∈ (Br(D∞) r {x, y})n ,
y = (y1, . . . , yn) ∈ (Br(D∞) r {x, y})n ,
z = (z1, . . . , zn) ∈ (Br(D∞) r {x, y})n .

Now, a basis of open subsets of Aut(Q, <)2 is given by subsets

Vp,q,r =
{

(ϕ′, ψ′); ϕ′(pi) = qi, ψ
′(pi) = ri, ∀i ∈ {1, . . . ,m}

}
,

where p, q, r are m-tuples of distinct points in Q. Let z ∈ ]x, y[ such that ]z, y[ does
not contain any image of elements of x, y, z by the retraction D∞ → [x, y]. Conjugate
by an element of U if necessary, we may assume that

{ι−1(pi), ι
−1(qi), ι

−1(ri), ; i ∈ {1, . . . ,m}}

is included in ]z, y[ and thus Ṽx,y,z ∩ Ṽι−1(p),ι−1(q),ι−1(r) is a non-empty open subset
that meets U · (f, g). This implies that the orbit of (ϕ,ψ) meets Vp,q,r. �

5. Universal minimality of the topology

Let us recall that on any set X, the set of topologies is partially ordered by refine-
ment. For two topologies τ1, τ2, τ1 < τ2 (τ2 is finer than τ1) if and only if τ1 ⊆ τ2
(as subsets of 2X).

For a Hausdorff topological group (G, τ), one says that the group is minimal if τ
is minimal among Hausdorff group topologies on G and the topological group is
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universally minimal if it is a least element. The goal of this section is to show that GS
with its natural topology is universally minimal. By the natural topology, we mean the
compact-open topology associated to the action on the dendrite. Let us recall that it
coincides with the non-archimedean one coming from the action on the set of branch
points. For this natural topology, the stabilizers of branch points are open subgroups
and generate the topology.

Let us fix S ⊆ N>3 and let us denote by U the collection of all D(x, y), the unique
connected component of DS r {x, y} that contains ]x, y[, where x and y are distinct
branch points. For U, V ∈ U , set

O(U, V ) = {g ∈ GS , g(U) ∩ V 6= ∅}.

Let us fix some Hausdorff group topology τ on GS . For the remainder of this
section, any topological property on GS is with respect to τ . The starting point is the
standard fact that centralizers CG(g) of any element g are closed in any Hausdorff
topological group G.

Lemma 5.1. — For any U, V ∈ U , O(U, V ) is open.

Proof. — The complement of O(U, V ) is C(U, V c) = {g ∈ GS , g(U) ⊆ V c}. Following
an observation due to Kallman [Kal86, Th. 1.1], C(U, V c) is closed. Actually, we claim
that

C(U, V c) =
⋂
g,h

{f ∈ GS , fgf−1 ∈ CGS (h)},

where g ranges over all elements with support in U (equivalently in U) and h ranges
over all elements with support in V .

Let k ∈ GS . Assume there is x ∈ V such that k(x) 6= x, then one can find
h ∈ GS with support on V , fixing k(x) and not x. Thus, an element k commutes with
all elements h supported on V if and only if Supp(k) ⊂ V c. Since Supp(fgf−1) =

f(Supp(g)), f ∈ C(U, V c) if and only if for all g supported on U , f(Supp(g)) ⊂ V c,
that is, f(U) ⊂ V c. �

Proof of Theorem 1.7. — It suffices to show that for any x ∈ Br(DS), Fix(x) is open.
Let us fix some branch point x and let Ux,3 be the subset of {U = (U1, U2, U3) ∈ U 3}
such that the Ui’s lie in distinct components ofDSr{x}. Observe that if U ∈ Ux,3 and
g ∈ Fix(x) then g(U1), g(U2), g(U3) lie in 3 distinct components ofDSr{x}. Moreover,
the following converse holds: if for some U ∈ Ux,3 and each i, g(Ui) intersects some
Vi ∈ U with Vi ∈ Ux,3, then g ∈ Fix(x). To see this, choose xi ∈ f−1(Vi) ∩ Ui for
each i then x, the center of [x1, x2, x3] is also the center of [f(x1), f(x2), f(x3)] and
thus f(x) = x. So now, Fix(x) is open because

Fix(x) =
⋃

U,V ∈Ux,3

O(U1, V1) ∩O(U2, V2) ∩O(U3, V3). �
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6. Small index subgroups

Let us recall that a Polish group has the small index property if any subgroup of
small index, i.e., of index less than 2ℵ0 , is open. For example S∞ and Aut(Q, <) have
this property.

Let us start with an example that will be useful for us. Let us denote by Gξ the
stabilizer in G∞ of some end point ξ ∈ D∞.

Proposition 6.1. — The Polish group Gξ has the small index subgroup property.

Proof. — This is a consequence of [DHM89, Th. 4.1]. This theorem states that the
automorphism group of a countable 2-homogeneous tree which is a meet-semilattice
has the small index property.

Let us consider the countable set Br(D∞) endowed with the order x 6ξ y ⇔ x ∈
[ξ, y]. As it appears in [DM19, Exam. 5.2], (Br(D∞),6ξ) is dense semi-linear order
and it is a meet semi-lattice, where the meet of a, b ∈ Br(D∞), that is, the infimum
of {a, b}, is a ∧ b = c(a, b, ξ) ∈ Br(D∞). Moreover, it is 2-homogeneous, that is,
any isomorphism between two subsets with 2 elements extends to an isomorphism of
(Br(D∞,6ξ). Actually, for a, b, a′, b′ ∈ Br(D∞), if ({a, b},6ξ) and ({a′, b′},6ξ) are
isomorphic then the labeled graphs 〈{a, b, ξ}〉 and 〈{a′, b′, ξ}〉 are isomorphic and one
can find g ∈ G∞ that induces this partial isomorphism by Proposition 2.2.

Now, by [DM19, Cor. 5.21], Aut(Br(D∞),6ξ) ' Gξ and thus Gξ has the small
index property. �

Let Ω be a countable infinite set with full permutation group S∞. For a group G,
we denote by G oS∞ the (unrestricted permutational) wreath product GΩoS∞. The
action of S∞ on GΩ is by permutation of the coordinates. If σ ∈ S∞ and (gω)ω ∈ GΩ

then
σ · (gω) = (gσ−1ω)ω.

If the role of Ω has to be emphasized, we denote the above wreath product G oΩ S∞.
In the particular case where G is a closed subgroup of S∞ acting on a countable

set Λ and another copy of S∞ acts as above on the countable set Ω, the wreath
product G oS∞ acts on Λ × Ω with the imprimitive action. This action is given by
the following formula:

((gω), σ) · (λ, ω′) =
(
gσ(ω′)λ, σ(ω′)

)
.

This action embeds G oS∞ as a closed subgroup of the symmetric group of Λ × Ω

and thus it has a natural Polish topology and we will consider this group with this
topology.

Theorem 6.2. — Let G be a closed subgroup of S∞ with a comeager conjugacy class
and the small index property. The wreath product W = G oS∞ is a Polish group with
the small index property.
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Lemma 6.3. — Let G be some closed subgroup of S∞. The group G has the small
index property if and only if the stabilizer of any point in G has the small index
property.

Before proving Theorem 6.2 and Lemma 6.3, let us see how they imply Theo-
rem 1.10, that is, G∞ has the small index property.

Proof of Theorem 1.10. — Thanks to Lemma 6.3, we know that G∞ has the small
index property if and only if the stabilizer Gb of some branch point b has the same
property. Since Gb is isomorphic Gξ oCb S∞ (see [DM19, Lem. 7.1]), the theorem is a
consequence of Theorem 6.2 and Proposition 6.1. �

Proof of Lemma 6.3. — Let H be a subgroup of small index of G and Gx be the
stabilizer of some point x ∈ Ω. One has |Gx : H ∩ Gx| 6 |G : H| < 2ℵ0 . So if Gx has
the small index property then H ∩ Gx is open in Gx so H ∩ Gx is open in G and
thus H is open in G.

Conversely, let H be a subgroup of small index of Gx. By the index formula,

|G : H| = |G : Gx| |Gx : H|.

Since Ω is countable |G : Gx| 6 ℵ0 and thus |G : H| < 2ℵ0 . So H is open in G and
thus in Gx. �

Lemma 6.4. — Let G be a Polish group with a comeager conjugacy class. If N is a
normal subgroup of small index then N = G.

Proof. — Let C be the comeager conjugacy class. It suffices to show that C ∩N 6= ∅.
Otherwise, by normality, C ⊂ N and thus G = C · C ⊂ N .

Since N has small index then N is not meager [HHLS93, Th. 4.1] (see also [KR07,
Lem. 6.8] for a very short proof), so N ∩ C 6= ∅ and we are done. �

Our proof that G oS∞ has the small index subgroup property borrows the original
ideas that lead to prove the property for S∞ [DNT86, Th. 1]. We not only use the
result but also the proof itself and thus reproduce some of the arguments there. Let
us recall that a moiety of Ω is a subset Σ that is infinite and co-infinite.

Proof of Theorem 6.2. — Let H be a subgroup of W of small index. Let (Σi) be an
infinite collection of disjoint moieties of Ω. Let Wi = G oΣi Sym(Σi) 6 Sym(Λ×Ω) be
the subgroup of permutations supported on Λ× Σi. More precisely, ((gω), σ) ∈Wi if
Supp(σ) ⊂ Σi and gω = e for ω /∈ Σi. By disjointness of the supports, for i 6= j,Wi∩Wj

is trivial and these two subgroups commute. Let P be the subgroup Sym(Λ × Ω)

isomorphic to
∏
iWi. Let Hi be the projection of H ∩ P on Wi. We have∏

i

|Wi : Hi| =
∣∣∣P :

∏
i

Hi

∣∣∣ 6 |P : H ∩ P | 6 |W : H| < 2ℵ0 .

This implies that for all but finitely many, Wi = Hi. We fix such an i and simply
note Σ = Σi and W ′ = Wi. We denote by GΣ the subgroup of G oS∞ with elements
of the form ((gω), e) and gω = e for ω /∈ Σ. Let g ∈ H ∩ GΣ and g′ ∈ GΣ. There
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exists h ∈ H ∩ P such that πi(h) = g′, where πi : P → Wi is the projection. One has
g′g(g′)−1 = hgh−1 ∈ H∩GΣ. So, the subgroup H∩GΣ is a normal subgroup of GΣ of
small index. The group GΣ has a comeager conjugacy class because of [RS07, Lem. 11]
and the fact that G has a comeager conjugacy class. By Lemma 6.4, H ∩GΣ = GΣ.

We denote by Sym(Σ) the subgroup of G oS∞ of elements of the form ((gω), σ),
where gω = e for all ω ∈ Ω and Supp(σ) ⊂ Σ. Since Sym(Σ) ∼= S∞ and the non-trivial
normal subgroups of S∞ are the finitary symmetric and alternating subgroups, which
are of index 2ℵ0 , we know that for H ∩ Sym(Σ) = Sym(Σ). Now, W ′ = G oΣ Sym(Σ)

is generated by GΣ and Sym(Σ). Thus H >W ′.
Following the proof of [DNT86, Th. 1], we choose a continuum of almost disjoint

moieties (Σα) of Σ and an involution gα ∈ S∞ exchanging Σα with ΩrΣ and fixing
pointwise Σ r Σα. By the pigeonhole principle, for some α 6= β, gα and gβ are in
the same H-class and thus g = g−1

β gα is in H. Let Σ′ = g(Σ), then G oΣ′ Sym(Σ′) =

gW ′g−1 6 H. Since Σ ∪ Σ′ = Ω r gβ(Σα ∩ Σβ) and Σ ∩ Σ′ = Ω r gβ(Σα ∪ Σβ) are
infinite, the first lemma of [DNT86] shows that H0 = G oΣ∪Σ′ Sym(Σ ∪ Σ′) ⊂ H.

Let us denote by F the finite set gβ(Σα∩Σβ). For f ∈ F , let Gf 6 G oΩ S∞ be the
corresponding copy of G acting on Λ × {f}. The subgroup Hf = H ∩ Gf has small
index and thus is open in Gf . Now

H > (Πf∈FHf )×H0.

The right-hand side being open (containing the pointwise stabilizer of a finite number
of points), H is open as well. �

7. Universal minimal flow

The goal of this section is to identify, in Theorem 7.16, the universal minimal flow
of G∞. For a general topological group G (for example a locally compact group), this
universal minimal flow M(G) is a huge compact space, often non-metrizable. After
[Pes98, GW02, KPT05] a general framework emerged to identify universal minimal
flows of some Polish groups. The reader may have a look to [Pes06] for a survey.

Let us recall that a Hausdorff topological group is extremely amenable if any con-
tinuous action on a compact space has a fixed point. The idea to identify the universal
minimal is to find an extremely amenable subgroup G∗ of the Polish group G and to
consider the completion Ĝ/G∗ (for the quotient of the right uniform structure on G)
of G/G∗. The extreme amenability of G∗ can be obtained thanks to a Ramsey prop-
erty. We recommend [MVTT15, BYMT17] for more details about this strategy and
for relations between the existence of a comeager orbit inM(G) and the metrizability
of M(G).

We follow this strategy and we introduce the tools we use below.

Definition 7.1. — Let X be a dendrite. A linear order ≺ is on Br(X) is converging
if for any x, y, z ∈ Br(X), y ∈ ]x, z[⇒ y ≺ x or y ≺ z.
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x0

c

a

b

a′

b′

Figure 2. The simple dendrite D with a converging but not convex
linear order ≺.

The meaning of the adjective converging appears in the following lemma: minimiz-
ing sequences converge to a unique point.

Lemma 7.2. — Let X be a dendrite and ≺ be a converging linear ordering on Br(X).
There exists a unique point x0 ∈ X which is the limit of any minimizing sequence.
Moreover, for any a, b ∈ Br(X), if a ∈ [x0, b] then a � b.

Proof. — Let (xn) be a minimizing sequence (i.e., for any x ∈ Br(X), there exists N
such that for any n > N , xn � x). By compactness, this sequence has at least one
adherent point in X. Assume there are two adherent points, that is, we have two
subsequences xϕ(n), xψ(n) converging respectively to xϕ and xψ. Let x ∈ ]xϕ, xψ[.
For n large enough, x ∈ ]xϕ(n), xψ(n)[ and thus x ≺ xϕ(n) or x ≺ xψ(n). So we have
a contradiction and (xn) converges to some point x0. Replacing (xϕ(n)) and (xψ(n))

by any two minimizing sequences, the same argument shows that the limit point x0

is independent of the choice of the minimizing sequence.
Now, let a, b ∈ Br(X) with a ∈ [x0, b]. For n large enough, a � xn and a ∈ [xn, b],

thus a � b. �

The point x0 is called the root of the converging linear order ≺.

Definition 7.3. — Let X be a dendrite and ≺ a converging linear order with root x0.
The order ≺ is convex if for all a, b ∈ Br(X), c = c(a, b, x0), a′ ∈ [a, c] and b′ ∈ [b, c],

a ≺ b =⇒ a′ ≺ b′.

Remark 7.4. — Let us observe that a general converging linear order is not necessarily
convex. Let us consider the simple dendrite D in Figure 2 with the converging linear
order ≺ such that

– x0 is the root,
– c ≺ a, a′, b, b′,
– a, a′ ≺ b, b′,
– a ≺ a′,
– b′ ≺ b.
The conditions a ≺ a′ and b′ ≺ b show that this order is not convex.
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We denote by CCLO(X) the set of convex converging linear orders on Br(X). It is
clear from the definition that CCLO(X) is a metrizable Homeo(X)-flow since it is a
closed invariant subspace of the space of all linear orders LO(Br(X)) on Br(X) which
is compact for the pointwise convergence.

We observe that a convex converging linear order ≺ induces a linear order ≺x on
the connected components around a given point x.

Lemma 7.5. — Let x ∈ X, ≺ ∈ CCLO(X) with root x0. Let C,C ′ ∈ Cx distinct and
that do not contain the root. Then,

(∀c ∈ C, ∀c′ ∈ C ′, c ≺ c′) ∨ (∀c ∈ C, ∀c′ ∈ C ′, c � c′).

Proof. — Let y0 be the image of the root x0 by the first point map to the subdendrite
C ∪ {x} ∪ C ′. Since x0 /∈ C ∪ C ′, y0 = x.

Choose a ∈ C and b ∈ C ′. Assume that a ≺ b. Now, by convexity of the order, for
any k ∈ C and k′ ∈ C ′, let a′ = c(k, a, x) and b′ = c(b, k′, x). By convexity, a′ ≺ b′

and thus k ≺ k′. �

In the first case, we write C ≺x C ′ and otherwise we write C ′ ≺x C. This defines
a linear order on Cx if x = x0 and on Cx r Cx(x0) if x 6= x0.

Remark 7.6. — Let us observe that convex and converging linear orders have the
following stability property: If ≺ ∈ CCLO(X) and Y is a subdendrite of X then
≺|Br(Y ) ∈ CCLO(Y ). If x0 is the root of ≺ then πY (x0) is the root of ≺ |Br(Y ).

We will see in Theorem 7.16 that the universal minimal G∞-flow is CCLO(D∞).
For the remaining of this section, we fix some ξ ∈ Ends(D∞). For a branch point c,
let us denote by Cc,ξ the space Cc r Cc(ξ).

Lemma 7.7. — For each branch point c, fix a linear order ≺c on the set Cc,ξ that is
isomorphic to Q with its standard linear order <. Then there is a convex converging
linear order ≺0 on D∞ such that the root is ξ and for any branch point c, the linear
order induced on the components of Cc,ξ is ≺c.

Proof. — We define ≺0 in the following way: for a 6= b ∈ Br(D∞), if c(a, b, ξ) = a

then a ≺0 b (and b ≺0 a if c(a, b, ξ) = b). If c = c(a, b, ξ) 6= a, b then a ≺0 b ⇔
Cc(a) ≺c Cc(b).

Let us check it is a convex converging linear order. Totality and antisymmetry are
immediate. Let a, b, c ∈ Br(D∞) such that a ≺0 b ≺0 c and let us note d = c(a, b, ξ)

and e = c(b, c, ξ). There are three (mutually exclusive) possibilities: e ∈ ]ξ, d[, d = e

or e ∈ ]d, b]. In the first case a ∈ Ce(b), Ce(a) ≺e Ce(c). In the second one, a ∈ [ξ, c[

(if a = d) or Cd(a) ≺d Cd(e) and in the last one Cd(a) ≺d Cd(c). So, in all cases,
a ≺0 c.

This order is converging because if a, b ∈ Br(D∞) and c = c(a, b, ξ) then a is
maximum on [c, a] and b is a maximum on [c, b]. Finally, this order is convex by
construction. �
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Remark 7.8. — The order ≺0 depends a priori on the choice of the linear orders ≺c
for all branch points. Actually, a different choice of orders isomorphic to (Q, <) leads
to an order ≺ such that there exists g ∈ G∞ fixing ξ with x ≺ y ⇔ g(x) ≺0 g(y)

for all x, y ∈ Br(D∞). This can be obtained thanks to a back and forth argument
on Br(D∞). In what follows, we will not use that fact and we will fix the order
(≺c)c∈Br(D∞) in the proof of Proposition 7.12 and thus we will forget the dependency
on this choice.

Proposition 7.9. — The group StabG∞(≺0) is extremely amenable.

To prove the extreme amenability of this group, we used the seminal idea that a
closed subgroup of S∞ is extremely amenable if and only if it is the automorphism
group of some Fraïssé limit of a Fraïssé order class with the Ramsey property [KPT05,
Th. 4.7]. We now describe the Fraïssé class and the Ramsey theorem needed to prove
Proposition 7.9. We essentially follow [Sok15].

A (meet) semi-lattice is a poset (A,6) such that for any two elements a, b ∈ A,
the pair {a, b} has a greatest lower bound (that is, an infimum) denoted by a∧ b and
called the meet of a and b. It satisfies the following three properties for all a, b, c ∈ A:

– a ∧ a = a,
– a ∧ b = b ∧ a and
– (a ∧ b) ∧ c = a ∧ (b ∧ c).

Actually, from a binary operation ∧ satisfying the above three properties, one can
recover the partial order 6 by defining a 6 b⇔ a ∧ b = a. A semi-lattice (A,6,∧) is
treeable if it has a minimum called the root and all the sets a↓ = {b ∈ A; b 6 a} are
linearly ordered.

A linear order ≺ on a treeable semi-lattice (A,6,∧) is a linear extension of 6 if
a < b⇒ a ≺ b and it is convex if for any a, a′, b, b′ ∈ A such that a ∧ b � a′ � a and
a ∧ b � b′ ≺ b, a ≺ b⇔ a′ ≺ b′.

We denote by C T the class of finite treeable semi-lattices with a convex linear
extension (A,6,∧,≺).

Remark 7.10. — If (A,6A,∧A,≺A) and (B,6B ,∧B ,≺B) are elements of C T , an
embedding of A in B is an injective map ϕ : A → B such that for all a, a′ ∈ A,
ϕ(a ∧A a′) = ϕ(a) ∧B ϕ(a′) and a ≺A a′ ⇒ ϕ(a) ≺B ϕ(a′).

We emphasize that this notion of embeddings does not coincide with the notion
of embeddings for graphs. In our situation, one can add a vertex in the middle of an
edge and this is impossible for graphs embeddings.

Let us introduce the following partial order on Br(D∞): a 6 b⇔ a ∈ [ξ, b].

Lemma 7.11. — The poset (Br(D∞),6) is a treeable semi-lattice and ≺0 is a convex
linear extension of 6.
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Proof. — It is straightforward to check that it is a treeable semi-lattice with meet
a∧ b = c(a, b, ξ) for any a, b ∈ Br(D∞). The fact that ≺0 is a convex linear extension
of < follows from the properties given in Lemma 7.7. �

Proposition 7.12. — The Fraïssé limit of C T is (Br(D∞),6,∧,≺0).

To prove this proposition, we rely on the relation between semi-linear orders and
dendrite with a chosen end point developed in [DM19, §5]. A partially ordered set
(X,6) is a semi-linear order if for any x, y ∈ X, there exists z ∈ X such that z 6 x, y
and for all x ∈ X, the downward chain x↓ = {y ∈ X, y 6 x} is totally ordered.
Treeable semi-lattices are particular cases of semi-linear orders.

A partially ordered set (X,6) is dense if for all x, y such that x < y there exists
z ∈ X with x < z < y. An important point of [DM19, §5] is to show that a countable
dense semi-linear order T can be canonically embedded in some dendrite T̂ and the
order is given by some end point as in Lemma 7.11.

For example, the order on D∞ defined by x 6 y ⇔ [ξ, x] ⊆ [ξ, y], is a dense
semi-linear order.

Proof of Proposition 7.12. — It is known that C T is a Fraïssé class [Sok15, §4]. Let
(CT ,6,∧,≺) be its Fraïssé limit. One checks easily that (CT ,6) is a dense semi-
linear order. The density actually follows from the amalgamation property of the
Fraïssé limit: for any x, y, such that x < y, one can find z such that x < z < y.
By [DM19, Prop. 5.15 & Theorem 5.19], CT can be embedded in a semi-linear order
D = CT
∧

that can be topologized to be a dendrite. To show that D ' D∞, we use
the characterization of D∞. This is the only dendrite without free arc such that all
branch points have infinite order. One can conclude by showing that CT is exactly
the set of branch points of D, this set is arcwise dense and that any branch point has
infinite order. Let us show these properties.

Recall that D is the set of full down-chains of (CT ,6), where a chain is a totally
ordered subset of CT . A chain C is a down chain if x ∈ C ⇒ x↓ ⊂ C and it is full if
it contains its supremum or has no supremum in CT . The set CT is embedded in D
via the map x 7→ x↓.

We now identify arcs and branch points in D. Let C1, C2 ∈ D and C = C1 ∩ C2

which is the infimum C1 ∧ C2. It appears in the proof of [DM19, Th. 5.19] that for
any C ∈ D, {x ∈ D, x 6 C} is exactly the arc from the point C of D to the
minimum. Since C ⊂ C1, {x ∈ D,C 6 x 6 C1} is the arc [C1, C]. Similarly [C2, C] =

{x ∈ D,C 6 x 6 C2}. Since these arcs have an intersection reduced to C, [C1, C2] =

[C1, C] ∪ [C,C2]. So, we deduce that for any C1, C2, C3 ∈ D, the center c(C1, C2, C3)

is Ci ∧Cj for some i, j 6 3 (it is actually the maximum among C1 ∧C2, C2 ∧C3 and
C3 ∧ C1).

Let C be some branch point in D. There are C1, C2, C3 such that C = c(C1, C2, C3)

and C 6= Ci for all 1 6 i 6 3. There exist i, j such that C = Ci ∧Cj . Choose x ∈ CT

such that C < x < Ci and C < y < Cj . So C = Ci ∧ Cj = x ∧ y ∈ CT . To
conclude that D ' D∞, it remains to show that a point of CT has infinite order. Let
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us consider the following finite treeable semilattice (A,6,≺): A = {x0, x1, . . . , xn},
x0 6 xi for all i 6 n, xi, xj are incomparable for 6 if i, j 6= 0 and ≺ is any linear order
such that x0 is a minimum. For any embedding ϕ of A in D via CT , the image of x0

has order at least n because the xi’s are mapped to different connected components
of Dr {ϕ(x0)} because ϕ(xi)∧ ϕ(xj) = ϕ(x0) and thus ϕ(x0) ∈ [ϕ(xi), ϕ(xj)]. Since
CT is homogeneous, it means that each point of CT has order at least n and thus
all these points have infinite orders. Let us finish the proof by showing that CT is
arcwise dense. Let C1 6= C2 ∈ D. We know that [C1, C2] = [C1, C] ∪ [C,C2], where
C = C1 ∧ C2. Since C1 6= C2, there is i such that Ci 6= C. So, C < Ci, and since C
and Ci are full down-chains, there is x ∈ CT that belongs to C1 and not to C. So
x ∈ [C1, C2] and D is arcwise dense.

So (ĈT ,6) ' (D∞,6) and CT corresponds to Br(D∞) in this identification. Let
c ∈ Br(D∞). Two points a, b ∈ Br(D∞) such that a, b > c, are in the same connected
of Cc if and only if c(ξ, a, b) 6= c that is, if and only if a ∧ b > c. Since ≺ is convex,
it induces a dense linear order ≺c on elements of Cc that do not contain ξ. By the
amalgamation property each order ≺c is countable and dense thus isomorphic to
(Q, <) and ≺0 is obtained by Lemma 7.7. �

Lemma 7.13. — The groups Aut(Br(D∞),6,∧,≺0) and StabG∞(≺0) are isomorphic.

Proof. — It is proved in [DM19, Cor. 5.21] that Aut(Br(D∞),6) ' StabG∞(≺0) and
the lemma follows. �

We can now prove Proposition 7.9.

Proof of Proposition 7.9. — Thanks to [KPT05, Th. 4.7], it suffices to show that the
group StabG∞(≺0) is the automorphism group of some Fraïssé limit of some Fraïssé
order class with the Ramsey property. By Lemma 7.13, StabG∞(≺0) is the automor-
phism group of the limit of the class C T and this class has the Ramsey property
[Sok15, Th. 2]. �

Let us denote by CCLO(D∞)ξ the closed subspace of CCLO(D∞) of convex con-
verging linear orders with root ξ. For brevity we denote Gξ = StabG∞(ξ).

Lemma 7.14. — Any G∞-orbit in CCLO(D∞) is dense. Similarly, any Gξ-orbit in
CCLO(D∞)ξ is dense.

Proof. — One has to show that for any pair ≺1,≺2 ∈ CCLO(D∞) and any finite
subset F ⊂ Br(D∞), there is g ∈ G∞ that induces an isomorphism from (F,≺1) to
(gF,≺2) (i.e., for any x, y ∈ F , x ≺1 y ⇔ g(x) ≺2 g(y)); and moreover if ξ is the root
of ≺1 and ≺2 then g can be chosen in Gξ.

For any finite set F in a dendrite, the subdendrite [F ], that is, the smallest subden-
drite containing F , has finitely many branch points. So, adding these branch points
to F if required, we assume that F is c-closed. We proceed by induction on the car-
dinality of F . If F is reduced to a point then the result is immediate because Gξ
acts transitively on branch points. Assume F has n > 2 points and we have the
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result for n − 1. Let m be the maximum of F for ≺1. The converging property of
≺1 implies that m is an end point of [F ] and thus F ′ = F r {m} is also a finite
c-closed subset of Br(D∞) and thus by induction there exists g1 ∈ G∞ that induces
an isomorphism from (F ′,≺1) to (g1(F ′),≺2). Moreover, if ≺1,≺2 have root ξ, then
g1 ∈ Gξ. It remains to put m in the right position.

Claim. — Let ≺ be some convex converging linear order on Br(D∞), x1, x2 ∈ Br(D∞)

and Ci ∈ Cxi such that Ci does not contain the root of ≺. If F is a finite c-closed
subset such that F ⊂ C1 and x1 ∈ F then there exists a homeomorphism h from C1

to C2 such that h(x1) = x2 and h is increasing for ≺ on F .

Proof of the claim. — Once again, we argue by induction and the case where F = {x1}
is simply the fact there exists a homeomorphism from C1 to C2 that maps x1 to x2.
So, assume F has cardinality at least 2. Since F ′ = F r {x1} is included in C1, there
exists a minimal point x′1 ∈ F ′ such that for any y ∈ F , x′1 ∈ [x1, y] and this point
is in fact the minimum of F r {x1}. Let C1

1 , . . . , C
k
1 be the connected components of

C1 r {x′1} that meet F ′ and let us denote Fi = Ci1 ∩F ′ ∪{x′1}. We assume that these
components are numbered increasingly (Ci1 ≺x

′
Cj1 ⇔ i < j). Choose x′2 ∈ Br(C2)

and connected components C1
2 , . . . , C

k
2 ∈ Cx′2 that do not contain x2 and that are

numbered increasingly. By the induction assumption, there is hi homeomorphism
from Ci1 to Ci2 such that h(x′1) = x′2 and hi is increasing on Fi. Now, choose any
homeomorphism h′ from C1r

(
C1

1 , . . . , C
k
1

)
to C2r

(
C1

2 , . . . , C
k
2

)
such that h′(x1) = x2

and h(x′1) = x′2. Finally, we patch (thanks to Lemma 2.3) h′, h1, . . . , hk to get a
homeomorphism h from C1 to C2. This homeomorphism is increasing on F thanks to
the convexity of ≺. �

Let us come back to the end of the proof of the lemma. Let x be the image of m
under the first point map on F ′ = F r{m}. Since F is c-closed, x ∈ F . We denote by
C1, . . . , Ck the (increasingly numbered for ≺2) elements of Cg(x) that do not contain
the root of ≺2 and meet g(F ′). Choose C ′1, . . . , C ′k+1 ∈ Cg(x) r {C1, . . . , Ck} that do
not contain the root of ≺2 and are numbered increasingly. For each i 6 k, thanks to
the claim, choose a homeomorphism hi from Ci to C ′i that fixes g(x) and such that hi
is increasing on g(F ′)∩Ci. We also choose a homeomorphism hk+1 from Cg(x)(g(m))

to Ck+1. Now, we define a homeomorphism f of D∞ in the following way: f |Ci = hi
and f |C′i = h−1

i (this is a legal definition because the Ci’s and C ′i’s are distinct) and f
is the identity elsewhere. This is a homeomorphism thanks to the patchwork lemma.
Now, g = f ◦ g1 is a homeomorphism and it is increasing thanks to the convexity of
≺2. Observe that g fixes ξ if g1 fixes ξ. �

Lemma 7.15. — The action StabG∞(≺0) y Br(D∞) is oligomorphic.

Proof. — For a finite subset F ⊂ Br(D∞) of some fixed cardinality, there are finitely
many possibilities for the order induced by ≺0 on F . So it suffices to show that if
F, F ′ are two finite subsets of Br(D∞) such that the restriction of ≺0 on F and F ′
are isomorphic, then there exists g ∈ StabG∞ that induces this isomorphism. We have
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seen that (Br(D∞),6,∧,≺0) is a Fraïssé limit (Proposition 7.12) and StabG∞(≺0) is
its automorphism group (Lemma 7.13). So such g exists by the ultrahomogeneity of
Fraïssé limits. �

Theorem 7.16. — The universal minimal G∞-flow is CCLO(D∞) and the universal
minimal Gξ-flow is CCLO(D∞)ξ.

Corollary 7.17. — The universal minimal G∞-flow is metrizable and has a comeager
orbit.

Let us recall that any topological group G has a left and right uniform structures.
The right uniform structure Ur has a fundamental system of entourages given by sets

{(g, h) ∈ G×G, gh−1 ∈ V },

where V is a symmetric neighborhood of the identity. For any closed subgroup H

this right uniform structure Ur yields a uniform structure on the quotient space G/H
compatible with the quotient topology. A fundamental system of entourages is given
by sets

{(gH, vgH), g ∈ G, v ∈ V },
where V is a symmetric neighborhood of the identity in G. We denote by Ĝ/H the
completion of G/H with respect to this uniform structure.

The closed subgroup H is co-precompact if Ĝ/H is compact. This is equivalent to
the following condition: for any neighborhood of the identity V , there exists a finite
subset F ⊂ G such that G = V FH. If G is an oligomorphic subgroup of S∞ and H
a closed subgroup of G then H is co-precompact if and only if it itself oligomorphic.
See [NVT13, §2].

Let X be a G-flow and x ∈ X be some H-fixed point. It is a standard fact the
orbit map

G/H −→ X

gH 7−→ gx

is uniformly continuous and thus extends to a continuous map from Ĝ/H to X. See
[Pes06, Lem. 2.15 and §6.2].

Proof of Theorem 7.16. — For brevity, let us write G = G∞ (respectively G = Gξ)
and H = Stab(<0). We identify G/H with the G-orbit of <0 in CCLO(D∞). Since
CCLO(D∞) (respectively CCLO(D∞)ξ) is a minimal G-flow and H = Stab(<0) is
an oligomorphic subgroup, thus co-precompact, we have a homeomorphism G/H

∧

'
CCLO(D∞) (respectively G/H

∧

' CCLO(D∞)ξ). This follows from the fact that the
identification G/H with its orbit in CCLO(D∞) is bi-uniformly continuous and H

is co-precompact, see [NVT13, Cor. 1]. Now, if X is a minimal G-flow, since H is
extremely amenable, we have an orbit map G/H → X, gH 7→ gx0, where x0 is a H-
fixed point. This maps is uniformly continuous and thus extends to G/H

∧

→ X and by
minimality of X, it is surjective. So, G/H

∧

' CCLO(D∞) (respectively CCLO(D∞)ξ)
is the universal minimal flow of G. �
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Remark 7.18. — In [Kwi18], written at the same time this work was done, but fi-
nalized much earlier, Aleksandra Kwiatkowska describes the universal minimal flow
M(GS) of all Ważewski groups GS . So Theorem 7.16 appears as a particular case of
her results. Her description of M(GS) enables us to prove that M(GS) is metrizable
if and only if S is finite.

8. Amenability and Furstenberg boundaries

8.1. Amenability. — Let G be some topological group. Let us recall that a G-flow X

is strongly proximal if the induced action on the G-flow of probability measures on X
is proximal. This is equivalent to the fact that for any probability measure m on X,
the adherence of the G-orbit of m contains a Dirac mass [Gla76, Chap. III].

A topological group is amenable if its universal Furstenberg boundary is a point,
that is, any strongly proximal minimal flow is trivial. Below, we recall a few conditions
equivalent to amenability. Let `∞(G) be the Banach space of all bounded functions
on G. A function f ∈ `∞(G) is right uniformly continuous if the orbit map

G −→ `∞(G)

g 7−→ Rg(f)

is continuous where Rg(f)(h) = f(hg). Let us denote by Cru
b (G) the closed subspace

of bounded right uniformly continuous functions on G and let us observe that G acts
isometrically on Cru

b (G) by left translations Lg(f)(h) = f(g−1h). A mean on Cru
b (G)

is a linear functional m such that
(1) f > 0⇒ m(f) > 0,
(2) m(1G) = 1.

Moreover, m is said to be G-invariant if m(Lg(f)) = m(f) for all f ∈ Cru
b (G) and all

g ∈ G.

Theorem 8.1. — If G is a topological group, the following conditions are equivalent.
(1) G is amenable,
(2) any G-flow has an invariant probability measure,
(3) any affine G-flow has a fixed point,
(4) any strongly proximal G-flow has a fixed point,
(5) there is a G-invariant mean on Cru

b (G).

A proof of this theorem can be found in [Gla76, Th. III.3.1].

Lemma 8.2. — A topological group G is amenable if and only if there is an invariant
probability measure on its universal minimal flow M(G).

Proof. — The condition is clearly necessary. Let us show that it is sufficient. Let X
be a G-flow. Let us choose a minimal subflow X0. By the universal property ofM(G),
there is a continuous surjective G-map M(G) → X0. The image of an invariant
probability measure onM(G) is an invariant probability measure on X0 and thus one
gets an invariant probability measure on X and thus G is amenable. �
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Let us fix an end ξ ∈ D∞ and denote by CCLO(D∞)ξ, the subset of CCLO(D∞)

of orders ≺ with root ξ. This condition is equivalent to

∀x, y ∈ Br(D∞), y ∈ ]x, ξ] =⇒ y ≺ x.

For a branch point b, let us recall that Cb,ξ is the space CbrCb(ξ). For any countable
set X, we denote by LO(X) the set of linear orders on X with its usual topology as
a closed subspace of {0, 1}X2r∆.

Lemma 8.3. — The subset CCLO(D∞)ξ is closed in CCLO(D∞) and homeomorphic
to the product space Πb∈Br(D∞) LO(Cb,ξ).

Proof. — The condition of convergence to ξ is given by a collection of closed condi-
tions. Thus CCLO(D∞)ξ is closed in CCLO(D∞).

We have seen in Lemma 7.5 that any convex converging linear order ≺ induces
a linear order ≺b on branches around b that do not contain the root. So we get a
continuous map

CCLO(D∞)ξ −→
∏

b∈Br(D∞)

LO(Cb,ξ)

≺ 7−→ (≺b).

Conversely, from (≺b), we can construct an order ≺ by defining a ≺ b if and only if
a = c(a, b, ξ) or a ≺c b, where c = c(a, b, ξ). One can check, as in Lemma 7.7, that
this definition yields an element in CCLO(D∞)ξ and this operation is the inverse of
the map above. �

In the remaining of this section, we denote by G the group G∞ and by Gξ the
stabilizer of the end point ξ.

Proposition 8.4. — There is a Gξ-invariant measure on CCLO(D∞)ξ.

If f is a bijection between two countable sets X and Y , it induces a bijection f∗
between linear orders on X and on Y . If ≺∈ LO(X), f∗ ≺∈ LO(Y ) is defined by
y(f∗≺)y′ ⇔ f−1(y) ≺ f−1(y′).

Lemma 8.3 gives an identification between CCLO(D∞) and Πb∈Br(D∞) LO(Cb,ξ).
Let us describe how Gξ acts on the product via this identification. Any g ∈ Gξ induces
a bijection σ(g, b) : Cb,ξ → Cgb,ξ. Now, if ≺∈ CCLO(D∞) corresponds to (≺b)b∈Br(D∞)

then g∗≺ corresponds to
(
σ(g, g−1b)∗≺g

−1b
)
b∈Br(D∞)

.

Proof. — Choose b0 ∈ Br(D∞) and for each b ∈ Br(D∞), fix some bijection
fb : Cb0,ξ → Cb,ξ. For example, this bijection can be induced by an element g ∈ Gξ
such that g(b0) = b.

Since S∞ is amenable, there is an invariant probability µ0 on LO (Cb0,ξ) un-
der all bijections of Cb0,ξ. Let us denote µb = (fb)∗µ0 that is a probability
measure on LO (Cb,ξ) and finally set µ to be the product measure of all µb on∏
b∈Br(D∞) LO(Cb,ξ) ' CCLO(D∞). We aim at proving that for any g ∈ G, g∗µ = µ.
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It suffices to prove this equality on cylinders. So, choose distinct b1, . . . , bn ∈ Br(D∞)

and measurable sets Ai ⊂ LO(Cbi,ξ) and set A to be the cylinder

A =

n∏
i=1

Ai ×
∏
b6=bi

LO(Cb,ξ).

One has

g∗(A) =

n∏
i=1

σ(g, bi)∗Ai ×
∏
b 6=gbi

LO (Cb,ξ)

and thus g∗µ(A) = µ(g∗(A)) =
∏n
i=1 µgbi(σ(g, bi)∗(Ai)). One can compute

µgbi (σ(g, bi)∗(Ai)) = µ0

(
f−1
gbi

(σ(g, bi)∗(Ai))
)

= µ0

(
(f−1
gbi
◦ σ(g, bi) ◦ fbi)∗((f−1

bi
)∗(Ai))

)
.

Since f−1
gbi
◦ σ(g, bi) ◦ fbi is a bijection of Cb0,ξ and µ0 is invariant under Sym (Cb0,ξ),

µgbi (σ(g, bi)∗(Ai)) = µ0

(
(f−1
bi

)∗(Ai)
)

= µbi(Ai)

and thus µ (g∗(A)) = µ(A). �

As a consequence of Theorem 7.16, Proposition 8.4 and Lemma 8.2, one has the
following.

Theorem 8.5. — The topological group Gξ is amenable.

Finally, Theorem 1.13 is obtained as the following corollary.

Corollary 8.6. — For any point x ∈ D∞, the stabilizer Gx of x in G is amenable.

Proof. — Thanks to [DM19, Lem. 7.1], for x ∈ D∞ r Ends(D∞), Gx splits homeo-
morphically as

(∏
i∈NGξi

)
o S∞ if x ∈ Br(D∞) and splits as G2

ξ o Z/2Z if x is a
regular point. As it is well known, a product of amenable groups is amenable and
an extension of an amenable group by another amenable group is amenable as well.
So Gx is amenable. �

Remark 8.7. — For any finite subset F ⊂ D∞, the stabilizer and the pointwise
stabilizer of F are amenable groups.

8.2. Universal Furstenberg boundary. — Let ϕ : G/Gξ → D∞ be the continuous
orbit map gGξ 7→ gξ. Since the G-orbit of ξ, that is, Ends(D∞), is a Gδ in D∞, Effros
theorem ([Hjo00, Th. 7.12]) implies that ϕ is a homeomorphism on its image.

This map ϕ is uniformly continuous for the uniform structure coming from the right
uniform structure on G, thus it extends uniformly continuously to a G-equivariant
surjective map ϕ : Ĝ/Gξ → D∞. A fundamental system of entourages for the uniform
structure on G/Gξ coming from the right uniform structure on G, is given by sets

UV = {(gGξ, vgGξ), v ∈ V, g ∈ G},
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where V is symmetric neighborhood of the identity in G. This uniform structure is
metrizable (see the introduction of [MVTT15] for example). Let us push forward this
uniform structure on Ends(D∞) via ϕ. So, a fundamental system of entourages for
this uniform structure is given by sets

UV = {(ζ, η), ∃v ∈ V, η = vζ},

where V is symmetric neighborhood of the identity in G. Let us denote by Ends(D∞)

the completion of Ends(D∞) by this uniform structure. So, this space Ends(D∞) is
isomorphic to Ĝ/Gξ as uniform G-space but we introduce it because we think this is
more convenient to speak about Cauchy sequences of ends points instead of Cauchy
sequences of Gξ-cosets. For b ∈ Br(D∞) and η ∈ Ends(D∞), we denote by Cb(η) the
closure of Cb(η) in EndsD∞.

Lemma 8.8. — Let ξ ∈ Ends(D∞). Let (bn) be a sequence of branch points in D∞
converging to ξ. The collection

{
Cbn(ξ)

}
is a basis of neighborhoods of ξ in Ends(D∞).

Proof. — Let us first show that Cb(ξ) is a neighborhood of ξ in Ends(D∞). Let us
choose a branch point b′ ∈ ]b, ξ[. Now, for any g ∈ G∞ fixing b and b′, gξ ∈ Cb(ξ).
In particular,

UV{b,b′}(ξ) = {η ∈ Ends(D∞), ∃g ∈ V{b,b′}, η = gξ} ⊂ Cb(ξ)

and thus UV{b,b′}(ξ) ⊂ Cb(ξ), which shows that Cb(ξ) is a neighborhood of ξ in
Ends(D∞).

Let F be some finite subset of Br(D∞). Let F ′ be the c-closure of F . The intersec-
tion

⋂
b∈F ′ Cb(ξ) is contained in UVF (ξ) = {η ∈ Ends(D∞), ∃g ∈ VF , η = gξ} because

if η ∈
⋂
b∈F ′ Cb(ξ) then ξ and η lie in the same connected component of D∞rF ′. This

component has at most two points in its boundary. The labeled graphs 〈F ′∪{ξ}〉 and
〈F ′ ∪ {η}〉 are isomorphic and thus, one can find g ∈ VF ′ such that gξ = η by Propo-
sition 2.2. So we have

⋂
b∈F ′ Cb(ξ) ⊂ UVF (ξ) and

⋂
b∈F ′ Cb(ξ) ⊂ UVF (ξ). Choose n

large enough such that bn ∈
⋂
b∈F ′ Cb(ξ). One has Cbn(ξ) ⊂

⋂
b∈F ′ Cb(ξ) and the

same holds for the closures. This shows that the collection
{
Cbn(ξ)

}
is a basis of

neighborhoods of ξ. �

We can now prove Theorem 1.14, that is, Ĝ/Gξ is the universal Furstenberg bound-
ary of G.

Proof of Theorem 1.14. — Since Gξ is oligomorphic, Ĝ/Gξ is compact. Let H be the
stabilizer of ≺0 from Lemma 7.7. Since H fixes ξ, the uniformly continuous map
G/H → G/Gξ extends continuously to an equivariant surjective map Ĝ/H → Ĝ/Gξ.
The minimality of Ĝ/H implies that of Ĝ/Gξ.

We have seen that Gξ is amenable. Let X be a minimal strongly proximal G-flow.
By amenability, there is a Gξ-fixed point x. The orbit map gGξ 7→ gx extends con-
tinuously to a G-map Ĝ/Gξ → X an by minimality this map is surjective.
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It remains to show that the action of G on Ĝ/Gξ is strongly proximal. We follow the
strategy that was used in the proof that the action of G∞ on D∞ is strongly proximal
[DM18, Th. 10.1]. Let m be a Borel probability measure on Br(D∞). Since Ends(D∞)

is uncountable, there is η ∈ Ends(D∞) such that m({η}) = 0. Let η′ be another end
point, (bn), (b′n) be sequences of branch points in [η, η′] converging respectively to η
and η′. Thanks to Lemma 8.8, m

(
Cbn(η)

)
→ 0 and thus m

(
Ends(D∞)rCbn(η)

)
→ 1.

Let gn ∈ G fixing η, η′ and such that gnbn = b′n. For any b ∈ B, one can find n large
enough such that b′n ∈ Cb(η′) and thus Ends(D∞)rCb′n(η) ⊂ Cb(η′). This shows that
(gn)∗m(Cb(η′))→ 1 and thus (gn)∗m→ δη′ . �

Remark 8.9. — The universal Furstenberg boundary of G∞ can also be recovered
from [Zuc18, Th. 7.5] and Theorem 1.13.

Proposition 8.10. — The map ϕ : Ĝ/Gξ → D∞ is not a homeomorphism.

Proof. — We continue to identify Ĝ/Gξ with Ends(D∞). Since the spaces Ĝ/Gξ
and D∞ are compact, they have a unique uniform structure and thus it suffices to
show there exists a sequence (ξn) of end points which is Cauchy in D∞ but not in
Ends(D∞). Let b ∈ Br(D∞) and C1 6= C2 ∈ Cb. Choose (ξ2n) sequence of end points
of C1 converging to b in D∞ and similarly, choose (ξ2n+1) sequence of C2 converging
to b in D∞. The sequence (ξn) converges in D∞ and thus is Cauchy but if b′ ∈ C1

and F = {b, b′}, there is no g ∈ VF such that gC2 = C1 and thus for any n,m ∈ N,
(ξ2m, ξ2n+1) /∈ UVF , hence (ξn) is not Cauchy in Ends(D∞). �

8.3. Another description of the universal Furstenberg boundary. — Let us finish
this article with another description of the universal Furstenberg boundary of G. This
will be the compact space K below.

For each b ∈ Br(D∞), let us consider the space Cb of connected component
around b, with the discrete topology. Let Cb be its Alexandrov compactification and
let us denote by C∞b the added point. The product

∏
b∈Br(D∞) Cb is a metrizable

totally disconnected compact space. The group G acts continuously on this product
space in the following way

g(Cb)b = (g(Cg−1b))b,

where we use the convention g(C∞b ) = C∞gb for any g ∈ G and b ∈ Br(D∞). Let us
define

K =
{

(Cb) ∈
∏
b∈Br(D∞) Cb, ∀b, b′, b′ /∈ Cb ⇒ Cb′ = Cb′(b)

}
,

where Cb(x) is the element of Cb that contains x for x 6= b. For C∞b , we use the
convention that for any b′ ∈ Br(D∞), b′ /∈ C∞b . For x ∈ D∞ r Br(D∞), let C(x) ∈∏
b∈Br(D∞) Cb be (Cb(x))b. For each b ∈ Br(D∞), let us enumerate Cb = {Cnb }n∈N. For

n ∈ N = N∪ {∞} and b0 ∈ Br(D∞) we define Cn(b0) to be (Cb), where Cb = Cb(b0)

for b 6= b0 and Cb0 = Cnb0 .
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Lemma 8.11. — The space K is a closed G-invariant subset. For any C ∈ K, there
exists x ∈ D∞ r Br(D∞) such that C = C(x) or there exists (b, n) ∈ Br(D∞) ×N

such that C = Cn(b).

Proof. — The conditions that define K are G-invariant and closed for the product
topology. We claim that if C ∈ K then there is at most one b such that Cb = C∞b .
Assume there are b 6= b′ that satisfy this condition. Choose b′′ ∈ ]b, b′[ then Cb′′ should
be Cb′′(b) and Cb′′(b′) but these components are distinct.

Let C ∈ K. For any b, b′ such that Cb 6= C∞b and Cb′ 6= C∞b′ then Cb ∩ Cb′ 6= ∅
because either one is included in the other or ]b, b′[ ⊂ Cb ∩ Cb′ . By Helly’s property
[DM18, Lem. 2.1], the intersection

⋂
Cb over all b’s such that Cb 6= C∞b is non-empty

and convex. If x 6= y lie in this intersection then for b ∈ ]x, y[∩Br(D∞)), Cb = Cb(x)

and Cb = Cb(y), which is impossible. Thus this intersection is reduced to one point.
We conclude this lemma by observing that if x is this intersection point then for

any branch point b 6= x, we have Cb = Cb(x). �

Lemma 8.12. — The map Ends(D∞) → K given by ξ 7→ C(ξ) is G-equivariant and
injective. Moreover, the image is dense in K.

Proof. — The G-equivariance is the following straightforward computation:

gC(ξ) = (g(Cg−1b(ξ))b = (Cb(gξ))b = C(gξ).

It is injective because if ξ, η∈Ends(D∞) are distinct then for any b∈ ]ξ, η[∩Br(D∞),
Cb(ξ) 6= Cb(η). To prove density, it suffices to show that for any C = (Cb) ∈ K there
exists a sequence (ξn) of Ends(D∞) such that for any b ∈ Br(D∞), Cb(ξn)→ Cb.

If C = C(x) for x non-branch point then any sequence (ξn) converging to x in D∞
will be suitable, because for any b, Cb(x) is open and contains x thus Cb(ξn) = Cb(x)

for n large enough. If C = Ck(b) with k finite then any sequence (ξn) of end points
in Ckb converging to x in D∞ will be suitable by the same argument. Finally, if
C = C∞(b) then a sequence (ξn) such that ξn ∈ Cn(b) for any n ∈ N will be suitable.
Actually, for any b′ 6= b, Cb′(ξn) = Cb′(b) for all n except at most one and Cb(ξ)→ C∞b
because ξn eventually leaves any finite union of elements of Cb. �

Proposition 8.13. — The spaces EndsD∞ and K are isomorphic as G-flows. More-
over, there are countably many G-orbits.

Proof. — The spaces EndsD∞ and K are compact and metrizable so it suffices to
prove that for any sequence (ξn) of end points, (ξn) is Cauchy in EndsD∞ if and
only if (C(ξn)) is Cauchy in K. That is, (ξn) converges in EndsD∞ if and only if
(C(ξn)) converges in K. This will show that the two spaces are homeomorphic and
the existence of a dense G-orbit will imply that the homeomorphism is G-equivariant.

Let (ξn) be a convergent sequence in EndsD∞. This means that for any finite set F
of branch points, there is N ∈ N such that for any n,m > N , there is g ∈ G fixing
pointwise F and such that gξn = ξm.
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Let b ∈ Br(D∞). For any k ∈ N, choose a branch point bk ∈ Ckb . Since for any
element g ∈ G fixing b and bk, Ckb is g-invariant, one has that either eventually
Cb(ξ) = Ckb or eventually Cb(ξ) 6= Ckb . Thus (Cb(ξ)) is convergent in Cb and C(ξn) is
convergent in K.

Conversely assume that (ξn) is a sequence of end points such that C(ξn) is con-
vergent in K. Let F be some finite set of branch points. Enlarging F if necessary, we
may assume that F is c-closed.

First let us assume there is b ∈ F such that Cb(ξn) → C∞b . Let N such that
for n > N , Cb(ξn) 6= Cb(b

′) for all b′ ∈ F r {b}. For n,m > N , choose g ∈ G,
switching Cb(ξn) and Cb(ξm) such that gξn = ξm and such that g is the identity on
D∞ r (Cb(ξn)∪Cb(ξm)). In particular, g fixes pointwise F and thus ξn is convergent
in EndsD∞.

Now, assume there is no b ∈ F such that Cb(ξn) → C∞b . This means that for any
b ∈ F , Cb(ξn) is eventually equal to some Cb. The intersection

⋂
b∈F Cb is one of the

connected component of D∞rF . Since F is c-closed, there are at most two elements
of F in its boundary. If there is only one, then this intersection

⋂
b∈F Cb is some Cb,

which does not contain any b′ ∈ F and for n,m large enough, ξn, ξm ∈ Cb and thus
one can find g ∈ G∞ fixing pointwise D∞ r Cb such that gξn = ξm. If there are two
points b1, b2 in the boundary then

⋂
b Cb = Cb1 ∩Cb2 = D(b1, b2) does not contain any

b ∈ B. So, for n,m large enough, ξn, ξm ∈ D(b1, b2) and thus one can find g ∈ G∞
fixing pointwise D∞ rD(b1, b2) such that gξn = ξm. In both cases (ξn) is convergent
in EndsD∞.

The statement about the number of orbits follows from Lemma 8.11. Any C ∈ K
is of the form C = C(x) for x non-branch point or C = Cn(b) for some n ∈ N and
some branch point b. In the first case, this gives two orbits, depending whether x is a
regular or an end point. In the second case, this gives countably many orbits, one for
each n ∈ N. �

Remark 8.14. — Since K is totally disconnected and D∞ is connected, this gives
another proof of Proposition 8.10.
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