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TOPOLOGICAL PROPERTIES OF WAŻEWSKI DENDRITE GROUPS

BRUNO DUCHESNE

ABSTRACT. Homeomorphism groups of generalized Ważewski dendrites act on the infinite
countable set of branch points of the dendrite and thus have a nice Polish topology. In this
paper, we study them in the light of this Polish topology. The group of the universal Ważewski
dendrite D∞ is more characteristic than the others because it is the unique one with a dense
conjugacy class. For this group G∞, we show some of its topological properties like existence
of a comeager conjugacy class, the Steinhaus property, automatic continuity and the small
index subgroup property. Moreover, we identify the universal minimal flow of G∞. This
allows us to prove that point-stabilizers in G∞ are amenable and to describe the universal
Furstenberg boundary of G∞.

1. INTRODUCTION

A dendrite is a continuum (i.e. a connected metrizable compact space) that is locally con-
nected and such that any two points are connected by a unique arc (see [Nad92] for back-
ground on continua and dendrites). The group of a dendrite is merely its homeomorphism
group. Dendrites are tame topological spaces that appear in various domains as Berkovich
projective line or Julia sets for examples. Groups acting by homeomorphisms on dendrites
share some properties with groups acting by isometries on R-trees (see e.g. [DM16a]) but
some dendrite group properties are very far from properties of groups acting by isometries
on R-trees, for example some have the fixed-point property for isometric actions on Hilbert
spaces (the so-called property (FH)).

In [DM16b], some structural properties of dendrite groups were studied and it was ob-
served that two natural topologies on dendrite groups actually coincide. If X is a dendrite
without free arc (i.e. any arc contains a branch point) then the uniform convergence on X
and the pointwise convergence on the set of branch points Br(X) yield the same topology on
Homeo(X). Since Br(X) is countable, this yields a topological embedding

Homeo(X)→ S∞

where S∞ is the group of all permutations of the integers with its Polish topology, which is
given by the pointwise convergence. The image of this embedding being closed, this means
that Homeo(X) is a non-archimedean Polish group and it becomes natural to discover which
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topological properties this group enjoys. For a nice survey on topological and dynamical
properties of non-archimedean groups, we refer to [Kec13].

For a non-empty subset S ⊂ N≥3 = {3, 4, 5, . . . , ∞}, the generalized Ważewski dendrite DS is
the unique (up to homeomorphism) dendrite such that any branch point of DS has order in
S and for all n ∈ S, the set of points of order n is arcwise-dense (i.e. meets the interior of any
non-trivial arc). If S = {n}, we simply denote Dn and Gn. These dendrites GS are very ho-
mogeneous, for example, the closure of any connected open subset of DS is homeomorphic
to DS itself [DM16b, Lemma 2.14].

1.1. Generic elements. The aim of this paper is to study some topological properties of the
Polish group GS = Homeo(DS) (endowed the non-archimedean topology described above).
Let us first start with a proposition that separates dramatically D∞ from the others Ważewski
dendrites.

Proposition 1.1. The group Polish GS has a dense conjugacy class if and only if S = {∞}.

So, this shows that G∞ is remarkable among groups of Ważewski dendrites and the re-
maining of the paper is essentially devoted to G∞.

An element in a Polish group is generic if its conjugacy class is comeager, that is, it contains
a countable intersection of dense open subsets. The group Polish G∞ has generic elements.
This property is sometimes called the Rokhlin property [GW08].

Theorem 1.2. The Polish group G∞ has a comeager conjugacy class.

Our proof of this theorem relies on Fraïssé theory and G∞ appears as the automorphism
group of some Fraïssé structure. In Section 3, we detail this Fraïssé structure and some of
the properties needed to prove Theorem 1.2 relying on results in [Tru92, KR07].

1.2. Automatic continuity. A Polish group has the automatic continuity property if any ab-
stract group homomorphism to any separable topological group is actually continuous. This
property is quite common for large Polish groups and we refer to [Ros09] for a survey. Au-
tomatic continuity is a consequence of the following property.

Definition 1.3. A topological group G has the Steinhaus property if there is k ∈ N such that
for any symmetric subset W ⊂ G such that there is (gn)n∈N with⋃

n∈N

gnW = G

then Wk is a neighborhood of the identity.

Theorem 1.4. The Polish group G∞ has the Steinhaus property.

In particular, we obtain the following corollary. (see [RS07, Proposition 2]).

Corollary 1.5. The Polish group G∞ has the automatic continuity property.

It is well known that automatic continuity implies the uniqueness of the Polish group
topology. So we have another proof of a particular case of a result due to Kallman. Actually,
the uniqueness of the Polish group topology for GS (with any S ⊆ N≥3) is a direct application
of [Kal86, Theorem 1.1]. So, we can speak about the Polish topology on GS without any
ambiguity.
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Remark 1.6. The proofs use intrinsically that Aut(Q,<) is Steinhaus. Moreover, G∞ has the
Bergman property (any isometric action on a metric space has bounded orbits) but contrar-
ily to Aut(Q,<) [RS07, Corollary 7], G∞ is far to have the fixed point property for (non-
necessarily continuous) actions on compact metrizable spaces. For example, the action of
G∞ on the dendrite D∞ is minimal [DM16b].

Corollary 1.5 means that the Polish topology on G∞ is maximal among separable group
topologies on this space. The following theorem goes in the other direction and shows that
the Polish topology on GS is a least element among Hausdorff group topologies on GS for
any S. See Section 5 for details.

Theorem 1.7. For any S ⊂ N≥3, the Polish group GS is universally minimal.

Combining Corollary 1.5 and Theorem 1.7, we obtain the following characterization of the
Polish topology on G∞.

Corollary 1.8. There is a unique separable Hausdorff group topology on G∞.

If a Polish group has ample generics then it has the Steinhaus property. So, exhibiting
ample generics is a common way to prove the Steinhaus property (see [KR07, §1.6]). In our
situation, this is not possible.

Proposition 1.9. The Polish group G∞ does not have ample generics.

Actually, the diagonal action of G∞ on G∞×G∞ by conjugation does not have any comea-
ger orbit. Our proof relies on the same result for Aut(Q,<) due to Hodkinson (see [Tru07]).

1.3. Small index property. A Polish group has the small index property if any subgroup of
small index, i.e. of index less than 2ℵ0 , is open.

Theorem 1.10. The Polish group G∞ has the small index property.

By definition of the topology of pointwise convergence on branch points, a basis of neigh-
borhoods of the identity is given by pointwise stabilizers of finitely many branch points.
The number of branch points being countable, these subgroups have countable index. So,
Theorem 1.10 shows that subgroups of small index contains the pointwise stabilizer of some
finite set of branch points and thus have countable index.

Let us point out that the property that subgroups of countable index are open is equivalent
to the fact that any homomorphism to S∞ is continuous. This last property is a particular
case of the automatic continuity property.

This theorem enlightens the idea that the Polish topology on G∞ is indeed an algebraic
datum: it can be recovered by subgroups of small index.

1.4. Universal minimal flows. The group G∞ is the automorphism group of a countable
structure, the set of branch points with the betweenness relation, and it is also a group of
dynamical origin since it comes with its action on the compact space D∞. So, it is natural to
try to understand possible G∞-flows, that are continuous actions of G∞ on compact spaces.

Remark 1.11. The group of homeomorphisms of a metrizable compact space (endowed with
the topology of uniform convergence) is separable. So, Theorem 1.5 implies that any action
of G∞ on a metrizable compact space by homeomorphisms is actually continuous.
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Let G be a topological group. A G-flow, is minimal if every orbit is dense. It is a remarkable
fact there is a minimal G-flow which has the following universal property: Any other min-
imal G-flow is a continuous equivariant image of this largest flow. It is called the universal
minimal flow of G (see for example [Gla76] for details).

We identify this universal minimal flow for G∞ to be a subset of the compact space of linear
orders on the set of branch points. This subset consists of linear orders that are converging
and convex. They reflect the dendritic nature of D∞. We refer to Section 7 for definitions.

Theorem 1.12. The universal minimal flow of G∞ is the set of convex converging linear orders on
the set of branch points of D∞.

During this work, a more general result was proved in [Kwi18] but the description is a bit
different. Our point is to show that the stabilizer of some generic converging convex linear
order is actually extremely amenable. Following [KPT05], this is equivalent to the Ramsey
property for the underlying structure. For this Ramsey property, we rely on [Sok15].

The knowledge of the universal minimal flow allows us to obtain amenability results. Let
us observe that for a locally finite tree, amenability of stabilizers of vertices or end points is
easy but for dendrites it is not clear if stabilizers of points are amenable in general.

Theorem 1.13. For any point x in D∞, the stabilizer of x in G∞ is an amenable topological group.

Conversely, it is known that an amenable group acting continuously on a dendrite stabi-
lizes a subset with at most two points [SY16].

This amenability result allows to identify the universal Furstenberg boundary of G∞, that
is the universal strongly proximal minimal G∞-flow. Let ξ be some end point of D∞ and
Gξ its stabilizer. Let us denote by Ĝ∞/Gξ the completion of G/Gξ for the uniform structure
coming from the right uniform structure on G∞.

Theorem 1.14. The universal Furstenberg boundary of G∞ is Ĝ∞/Gξ .

Even if Ends(D∞) is a dense Gδ-orbit in D∞, the natural map between Ĝ∞/Gξ and D∞
is not a homeomorphism (Proposition 8.10) and thus D∞ is a Furstenberg boundary of G∞
but not the universal one. This result should be compared to the fact that the universal
Furstenberg boundary of Homeo(S1) is S1 itself.

At the end of this paper, we give another description of this universal Furstenberg bound-
ary. It appears as a closed subset of some countable product of totally disconnected compact
spaces. See Subsection 8.3.
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FIGURE 1. The Julia set of z 7→ z2 + i. Picture realized with Mathematica.

2. WAŻEWSKI DENDRITES AND THEIR HOMEOMORPHISM GROUPS

2.1. Ważewski dendrites. A dendrite is a connected metrizable compact space that is locally
connected and such that any two points x, y are connected by a unique arc [x, y]. Simple
examples are given by compactifications of locally finite simplicial trees. Some examples
are more complicated. For example, the Julia set of the polynomial map z 7→ z2 + i of the
complex line C is a dendrite (See Figure 1). A subdendrite is a closed and connected subset S
of a dendrite D. It is a dendrite on its own and there is a retraction πS : D → S such that for
any x ∈ D and y ∈ S, πS(x) ∈ [x, y]. This retraction is also called the first-point map to S.

In a dendrite X, there are three types of points x ∈ X, according to the number of con-
nected components of Cx = X \ {x}. This number is at most countable and is called the order
of x.

• If the complement X \ {x} remains connected, x belongs to the set Ends(X) of end
points.
• If x separates X into two components, it is a regular point.
• Otherwise, it is at least 3 and x belongs to the set Br(X) of branch points.

Let X be a dendrite and c : X3 → X be the center map, that is c(x, y, z) = [x, y] ∩ [y, z] ∩
[z, x], which is reduce to a unique point. Let us do a few observations:
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• c is symmetric,
• c(x, y, z) = z if and only if z ∈ [x, y],
• if c(x, y, z) /∈ {x, y, z}, c(x, y, z) is a branch point
• and in particular, Br(X) is c-invariant, i.e. c(Br(X)) = Br(X).

In Bowditch’s terminology, (X, c) is a median space [Bow99]. For two points x 6= y in a
dendrite X, we denote by D(x, y) the connected component of X \ {x, y} that contains ]x, y[.
Let us say that a subset Y of X is c-closed if for any x, y, z ∈ Y, c(x, y, z) ∈ Y. For Y ⊂ X, we
define the c-closure of Y to be c(Y3), which happens to be the smallest c-closed subset of X
containing Y.

Lemma 2.1. For any Y ⊂ X, c(Y3) is c-closed.

Proof. Let x1, x2, x3 ∈ c(Y3) and m = c(x1, x2, x3). If m ∈ {x1, x2, x3} then we are done.
Otherwise, for each i = 1, 2, 3, one can find a point yi ∈ Y that is not in Cxi(m), the connected
component of Cxi that contains m. Thus m = c(y1, y2, y3) ∈ c(Y3). �

Let S be a non-empty subset of N≥3 = {3, 4, 5, . . . , ∞}. The Ważewski dendrite DS is the
unique (up to homeomorphism) dendrite such that all orders of branch points belong to
S and for any n ∈ S, the set of points of orders n is arcwise-dense. See [DM16a, §12] for
a few historical references and a reference to the proof of this characterization. With this
characterization, it easy to see that the closure of any open connected subset in DS is actually
homeomorphic to DS. We denote by GS the homeomorphism group of DS. If S = {n},
we simply denote Dn and Gn for the dendrite and its group. For example, D∞ appears
to be homeomorphic to the Berkovich projective line over Cp. See [HLP14, Figure 1] for
explanations and a nice picture of this dendrite.

Let us recall some properties of the groups GS = Homeo(DS) proved in [DM16b, §6 & 7].
The first one shows how homogeneous the dendrite DS is. To any finite subset F of the den-
drite DS, we associate a finite vertex-labelled simplicial tree 〈F〉 as follows. The sub-dendrite
[F], i.e. the smallest subdendrite containing F, is a finite tree in the topological sense, i.e. the
topological realization of a finite simplicial tree. Such a simplicial tree is not unique because
degree-two vertices can be added or removed without changing the topological realization.
We choose for 〈F〉 to retain precisely one degree-two vertex for each element of F which is a
regular point of the dendrite [F]. Thus, 〈F〉 is a tree whose vertex set contains F. Finally, we
label the vertices of 〈F〉 by assigning to each vertex its order in DS.

Proposition 2.2 ([DM16b, Proposition 6.1]). Given two finite subsets F, F′ ⊆ DS, any isomor-
phism of labelled graphs 〈F〉 → 〈F′〉 can be extended to a homeomorphism of DS.

This simple proposition have strong corollaries for GS. For example, GS acts 2-transitively
on the set of points of a given order. Moreover, GS is a simple group and if S is finite then
the action of GS on the set of branch points (which is countable) is oligomorphic [DM16b,
Corollary 6.7]. For an introduction to oligomorphic groups, we refer to [Cam09].

The structure of the group GS completely determines the dendrite DS: if GS and GS′

are isomorphic then S = S′ and an automorphism of GS is always given by a conjugation
[DM16b, Corollary 7.4 & 7.5].

Since the action on the set of branch points Br(DS) completely determines the action, GS
embeds as a closed subgroup of S∞. With this topology, if S is finite then the Polish group
GS has the strong Kazhdan property (T) [DM16b, Corollary 6.9]. Without the assumption
of finiteness of S, the discrete group GS has Property (OB) (every action by isometries on a
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metric space has bounded orbits) [DM16b, Corollary 6.12].

We will need to construct global homeomorphisms from patches of partial homeomor-
phisms. This is possible thanks to the following lemma [DM16b, Lemma 2.9].

Lemma 2.3 (Patchwork lemma). Let U be a family of disjoint open connected subsets of a dendrite
X and let ( fU)U∈U be a family of homeomorphisms fU ∈ Homeo(U) for U ∈ U . Suppose that
each fU can be extended continuously to the closure U by the identity on the boundary U \U.

Then the map f : X → X given by fU on each U ∈ U and the identity everywhere else is a
homeomorphism.

2.2. Dynamics of individual elements. Let g be a homeomorphism of a dendrite X. An arc
[x, y] ⊂ X is austro-boreal for g if x 6= y are fixed and there is no fixed-point in ]x, y[. Observe
that in this case, the restriction of the action of g on ]x, y[ is conjugated to an action by a
non-trivial translation on the real line.

For a non-trivial arc [x, y], we denote by D(x, y) the connected component of X \ {x, y}
that contains ]x, y[. We denote by D(g) the union of all D(I) where I is an austro-boreal arc
for g and by K(g) its complement in X.

The following proposition [DM16a, Proposition 10.6] describes the dynamics of a homeo-
morphism of a dendrite.

Proposition 2.4. The decomposition X = D(g) t K(g) has the following properties.
(i) D(g) is a (possibly empty) open g-invariant set on which g acts properly discontinuously. In

particular, K(g) is a non-empty compact g-invariant set.
(ii) K(g) is a disjoint union of subdendrites of X. Moreover, g preserves each such subdendrite

and has a connected fixed-point set in each.

The subdendrites that appear in (ii) in the above proposition are actually the connected
component of K(g). Let us precise the action of g on these connected components.

Lemma 2.5. If C is a connected component of K(g), then g permutes the connected components of
C \ Fix(g) where Fix(g) is the set of fixed points of g. Moreover none of these connected components
of C \ Fix(g) is invariant.

Proof. The connected component C is g-invariant by Proposition 2.4 and contains at least one
fixed point by the fixed point property for dendrites (See for example [DM16a, Lemma 2.5]).
So g permutes the connected components of C \ Fix(g). Let C′ be a connected component of
C \ Fix(g). Let x ∈ C′ and y ∈ C′ be distinct points. There is a sequence (xn) converging to
y such that xn ∈ C′ for all n ∈ N. Since C′ is connected [x, xn] ⊂ C′ for all n ∈ N. For all
z ∈]x, y[ and n large enough, z ∈ [x, xn]. Thus [x, y[⊂ C′. For y′ ∈ C′ \ C′ such that y′ 6= y,
the point c(x, y, y′) ∈ C′ separates y and y′. Since Fix(g) ∩ C is connected then C′ contains
exactly one fixed point. This fixed point is an end point of the subdendrite C′ because C′ is
connected. Assume C′ is g-invariant, then by [DM16b, Lemma 4.8], g has two fixed points
in C′ and we have a contradiction. �

Let X be a dendrite and g ∈ Homeo(X). It will be useful for us to decide where a point
x ∈ X lies in the decomposition X = K(g) t D(g) from Proposition 2.4, using only finitely
many points in the g-orbit of x.

Lemma 2.6. Let g ∈ Homeo(X) and x ∈ X. Then,
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• x is in the interior of some austro-boreal arc if and only if g(x) ∈]x, g2(x)[,
• x ∈ D(g) if and only if c(g(x), g2(x), g3(x)) ∈]c(x, g(x), g2(x)), c(g2(x), g3(x), g4(x)[,
• x ∈ K(g) if and only if [x, g(x)] ∩ Fix(g) 6= ∅.

Proof. Let us start with elements in the interior of some austro-boreal arc. Let [y, z] be some
austro-boreal arc for g. If x ∈]y, z[ then g(x) ∈]x, g2(x)[ because the action of g on ]y, z[ is
conjugated to an action on the real line by translation. Conversely, if g(x) ∈]x, g2(x)[ then
for any n ∈ Z, gn(x) ∈]gn−1x, gn+1(x)[ and thus ∪n∈Z[gn(x), gn+1(x)] is an austro-boreal arc.

If x ∈ D(y, z) for some austro-boreal arc [y, z] then let p be the image of x under the
first-point to [y, z]. The point p lies in ]y, z[ then gp = c(x, g(x), g2(x)) ∈]y, z[ and thus
gc(x, g(x), g2(x)) ∈ [c(x, g(x), g2(x)), g2c(x, g(x), g2(x))] that is c(g(x), g2(x), g3(x)) belongs
to ]c(x, g(x), g2(x)), c(g2(x), g3(x), g4(x)[. Conversely, if

c(g(x), g2(x), g3(x)) ∈]c(x, g(x), g2(x)), c(g2(x), g3(x), g4(x)[,

then by the first part this means that c(g(x), g2(x), g3(x)) lies in some austro-boreal arc. Let
y, z be the ends of this arc. Then, by construction, x ∈ D(y, z).

Let x ∈ K(g), let C be its connected component in K(g) and let C0 be its connected compo-
nent in C \ Fix(g). By Lemma 2.5 gC0 ∩ C0 = ∅ and thus there is a fixed point p in [x, g(x)].
Conversely, if there is a fixed point p in [x, g(x)] then d /∈ D(g) since the action of g on D(g)
is properly discontinuous. �

The decomposition X = K(g) t D(g) is not really a group invariant for the cyclic group
〈g〉 generated by g. Each part is 〈g〉-invariant but the decomposition is not the same for
every element of 〈g〉. Let us illustrate this phenomenon.

Example 2.7. Let us fix ξ± two end points of the Ważewski dendrite D3. Let x be some
regular point of D3 and let C1, C2 be the two connected components of D3 \ {x}. Let ϕi be
an homeomorphism from D3 \ {ξ+} to Ci. Let γ be some homeomorphism of D3 such that
[ξ−, ξ+] is austro-boreal for γ. We define an homeomorphism g of D3 fixing x and such that
g|C1 = ϕ2 ◦ ϕ−1

1 and g|C2 = ϕ1 ◦ γ ◦ ϕ−1
2 . The map g is well-defined thanks to Lemma 2.3. By

construction, we have K(g) = D3 and D(g) = ∅ but K(g2) = {x} and D(g2) = C1 ∪ C2.

Nonetheless, we have the following inclusions.

Lemma 2.8. Let X be a dendrite and g ∈ Homeo(X). For any n ∈ N, D(g) ⊂ D(gn) and
K(gn) ⊂ K(g).

Proof. It suffices to prove the first inclusion and pass to the complement to get the other one.
If an arc is austro-boreal for g, it is austro-boreal for any of its non-trivial power and thus
D(g) ⊂ D(gn). �

3. FRAÏSSÉ THEORY AND GENERIC ELEMENTS

We use the notations of [KR07] and denote by K the Fraïssé structure associated to the
action of GS on the countable set Br(DS) (see [KR07, §1.2]) and by K the Fraïssé class of
finite substructures of K. In particular, K is the Fraïssé limit of K and Aut(K) = GS. Let us
briefly explain what is this structure. The structure K is the set Br(DS) with the all relations
Ri,n ⊂ Br(DS)

n given by orbits of the diagonal actions of GS on Br(DS)
n.

Let us briefly recall what it means to be a Fraïssé class. The class K is a countable class of
finite structures over some fixed countable signature that enjoys the following properties:
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(1) Hereditary property. For any B ∈ K and A ≤ B (i.e. A can be embedded in B),
A ∈ K.

(2) Joint embedding property. For any A, B ∈ K, there is C such that A, B ≤ C.
(3) Amalgamation property. For A, B, C ∈ K, if f : A → B and g : A → C are em-

beddings then there is D ∈ K and embeddings r : B → D, s : C → D such that
r ◦ f = s ◦ g.

The structure K, the Fraïssé limit of K, is a countable structure over the same signature such
that any finite substructure belongs to K and K is ultrahomogeneous: any partial isomor-
phism between finite substructures extends to a global isomorphism.

Remark 3.1. The structure K is, a priori, given by Br(DS) (as underlying set) and infinitely
many relations corresponding to orbits in Br(DS)

n for n ∈ N. But actually, GS can be real-
ized as the automorphism group of a structure given by Br(DS) and a unique relation: the
betweeness relation B where B(z; x, y) ⇐⇒ z ∈ [x, y]. A bijection of Br(DS) that preserves
the betweeness relation is actually given by a homeomorphism of DS [DMW18, Proposition
2.4].

A betweenness relation B is of positive type if for any x, y, z there is w such that B(w; x, y)∧
B(w; y, z) ∧ B(w; z, x). Moreover, a finite set with a betweenness relation with positive type
(as it is the case for finite subsets of Br(D∞) closed under the center map) has a tree structure
[AN98, Lemma 29.1] and thus embeds in the set of branch points of the universal dendrite
D∞. We refer to [AN98] for details about betweenness relations and being of positive type.
By Proposition 2.2, any isomorphism between two finite subtree of Br(D∞) can be realized
as the restriction of some element of G∞. This way Br(D∞) with the betweenness relation is
the Fraïssé limit of the class of finite betweenness structures with positive type.

Let us observe that the center map can defined only in terms of the betweenness relation.
Actually, c(x, y, z) = w is equivalent to B(w; x, y) ∧ B(w; y, z) ∧ B(w; z, x).

We also denote by Kp the class of systems S = 〈A, ϕ : B → C〉 where B, C ⊆ A are
finite substructures of K and ϕ is an isomorphism between these substructures. Let S =
〈A, ϕ : B → C〉 and T = 〈D, ψ : E → F〉 be two systems of Kp. An embedding of S into T is
an embedding of structures f : A → D that induces an embedding of B in E, an embedding
of C in F and such that f ◦ ϕ ⊆ ψ ◦ f . In that case, we also say that T is an extension of S . This
notion of embeddings allows us to speak about the joint embedding property (JEP) or the
amalgamation property (AP) for Kp. A subclass L of Kp is cofinal if for any system S ∈ Kp,
there is T ∈ L and an embedding of S into T . For a system S = 〈A, ϕ : B→ C〉 and g ∈ GS,
we say that g induces ϕ if there is A ⊂ Br(DS) and an isomorphism f : A → A such that
ϕ = f−1g f . In this case, by an abuse of notation, we consider A as a subset of Br(DS) and
forgot about f .

3.1. Existence of a dense conjugacy class. The following proposition shows that G∞ is re-
markable amongst all the Ważewski groups.

Proposition 3.2. The Polish group GS has a dense conjugacy class if and only if S = {∞}.

Proof. Thanks to [KR07, Theorem 1.1], it suffices to show that Kp satisfies (or not) the joint
embedding property.

Assume that S contains n 6= ∞. Choose a point x ∈ DS of order n and x1, . . . , xn in distinct
connected components of DS \ {x} such that there exists g ∈ GS with gxi = xi+1 (i ∈ Z/nZ).
We set A = B = C = {x, x1, . . . , xn}, ϕ to be the restriction of g on B and S = 〈A, ϕ : B→ C〉.
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Let T = 〈D, ψ : E→ F〉where D = E = F are two points and ψ is the identity. Now S and T
do not have a joint embedding because any extension of ϕ in Homeo(DS) has a unique fixed
point, namely x.

Now, assume S = {∞}. We claim that a partial isomorphism between finite substructures
can be extended to a homeomorphism of D∞ fixing a branch point and fixing pointwise a
connected component of the complement of this fixed point.

Assume the claim holds true. Let S = 〈A, ϕ : B → C〉 and T = 〈D, ψ : E → F〉 be
elements of Kp. Thanks to the claim, we assume that ϕ is induced by f ∈ G∞ that fixes a
point x ∈ Br(D∞) and ψ is induced by g ∈ G∞ that fixes a point y ∈ Br(D∞). Moreover,
thanks to the disjunction lemma [DM16a, Lemma 4.3], we may assume that y (resp. x) is in
a component of Cx (resp. Cy) pointwise fixed by f (resp. g). Now define h to be the identity
on D(x, y), acts like f on the support of f and like g on the support of g. This h yields a joint
extension of ϕ and ψ.

Let us prove the claim. Any g ∈ G∞ has a fixed point x ∈ D∞ and thus permutes the
components of D∞ \ {x}. These components are all homeomorphic to D∞ \ {ξ} where ξ is
some end point. If x is a branch point, we may glue a new copy D of D∞ by identifying
some end point in D with x. If x is not a branch point, we glue countably many copies of
D∞. The new dendrite is D∞ once again and x is a branch point. One obtain a new dendrite
homeomorphic to D∞ and one can extend g by the identity on the new copies of D∞. �

3.2. Existence of a comeager conjugacy class. Let us recall that for a dendrite X and two
points x, y ∈ X, we denote by D(x, y) the connected component of X \ {x, y} that contains
]x, y[.

For the remaining of this section, we consider only the dendrite D∞ and its associated
Fraïssé class K. In [Tru92], Truss introduced a general way to prove existence of generic
elements in automorphism groups of countable structures. To prove this existence, it suffices
to show thatKp has the joint embedding property (JEP) and the amalgamation property (AP)
defined above. Actually a cofinal version of (AP) is sufficient. In [KR07], a weaker condition,
the weak amalgamation property (WAP) has been shown to be the necessary and sufficient
amalgamation condition.

Remark 3.3. The class Kp does not have (AP). Let us consider the simple example S =
〈A, ϕ : B → C〉 where x, y are two distinct points of Br(D∞), B = {x}, C = {y}, A = {x, y}
and ϕ(x) = y. Actually, ϕ can be realized by an automorphism g1 that fixes a point p in
[x, y[ or by an element g2 such that [x, y] is included in some austro-boreal arc for g2. If ϕ is
extended by ϕ1 the restriction of g1 on {x, p} and by ϕ2 the restriction of g2 on {x, y}, it is
not possible to amalgamate ϕ1 and ϕ2 over ϕ. Actually if ψ is an amalgamation, it is given
by an element g ∈ G∞ that has a fixed point in [x, y] because of ϕ1 and simultaneously such
that [x, y] is included in some austroboreal arc for g because of the first point in Lemma 2.6.
Thus we have a contradiction.

Below, we define a subclass L of Kp for which we show cofinality and the amalgamation
property. As explained in Remark 3.1, we consider the structure K with the betweenness
relation and the associated center map c and for a finite structure of positive type A ∈ K
(that is a c-closed subset of K) and points x, y, z ∈ A, we write x ∈ [y, z] if c(x, y, z) =
x that is B(x; y, z). For x, y ∈ A, we define D(x, y) = {z ∈ A, c(x, y, z) /∈ {x, y}}. Let
us observe that if A is embedded in Br(D∞) then these definitions are consistent with the
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ones in D∞. For a system 〈A, ϕ : B → C〉 ∈ Kp and x ∈ B, we write ϕn(x) for n ∈ N if
ϕ(x), . . . , ϕn−1(x) ∈ B and define ϕn(x) to be ϕ(ϕn−1(x)). In particular, when this notation
is used it implies implicitely that ϕ(x), . . . , ϕn−1(x) are well-defined and belong to B. If
there is n ∈ N such that ϕn(x) = x then we say that x is ϕ-periodic. In that case, its period is
inf{n > 0, ϕn(x) = x}.

Let S = 〈A, ϕ : B→ C〉 ∈ Kp be a system. We define a ϕ−orbit to be an equivalence class
under the equivalence relation on B∪C generated x ∼ϕ y ⇐⇒ y = ϕ(x) or x = ϕ(y).

Definition 3.4. We consider the subclass L ⊆ Kp of systems S = 〈A, ϕ : B → C〉 ∈ Kp with
A, B and C of positive type and that satisfy the following conditions. There is B0 ⊂ B such
that

(1) for any y ∈ B, there is a x ∈ B0 and p non-negative integer such that y = ϕp(x).
(2) For any x ∈ B0, x is ϕ-periodic or there is n ∈ N such that

c
(

ϕn(x), ϕ2n(x), ϕ3n(x)
)
∈
]
c
(
x, ϕn(x), ϕ2n(x)

)
, c
(

ϕ2n(x), ϕ3n(x), ϕ4n(x)
)[

.

(3) For any x ∈ B such that x is not ϕ-periodic, there are y, z ∈ B ϕ-periodic points such
that x ∈ D(y, z).

(4) For any x, y ∈ B0 such that there are n, m ∈ N with ϕn(x) ∈]x, ϕ2n(x)[ and ϕm(y) ∈
]y, ϕ2m(y)[.
• if the ϕn-orbit of x and the ϕm-orbit of y are separated (i.e. no point of one of

the orbit is between two points of the other) then there is z ∈ B, ϕ-periodic point
such that z ∈ [x, y],
• in the other case there are x0, y0 ∈ B0 and k ∈ N such that

– the ϕ-orbit of x is {x0, . . . , ϕk(x0)}, the ϕ-orbit of y is {y0, . . . , ϕk(y0)},
– y0 ∈ [x0, ϕl(x0)] or x0 ∈ [y0, ϕl(y0)] where l is the minimum such that

ϕl(x0) ∈]x0, ϕ2l(x0)[ or ϕl(y0) ∈]y0, ϕ2l(y0)[
– and k is a multiple of l.

(5) If x ∈ B and y, z ∈ B are ϕ-periodic points such that x ∈ D(y, z) then the length of
the ϕ-orbits of x and of c(x, y, z) are the same.

(6) The set A is the c-closure of B and C. That is, for any x ∈ A, there are x1, x2, x3 ∈ B∪C
such that x = c(x1, x2, x3).

Let us explain a bit this definition. The first point means that there is some initial set B0
such that any point of B lies in some positive ϕ-orbit of B0. For the second point, it means
that any point of B0 is a fixed point of gn or lies in D(gn) for any g ∈ G∞ that induces
ϕ (Lemma 2.6). This removes the indetermination that appears in Remark 3.3. More pre-
cisely, these conditions imply that no extension of such a system can merge distinct ϕ-orbits
(Lemma 3.13). The third point means that if x ∈ D(gn) where g induces ϕ then it lies in the
connected component between two fixed points of gn. Condition (4) means that if x, y lie in
some austro-boreal part for some power of g inducing ϕ and the orbits under these powers
do not intertwine then they are separated by some periodic point.

Lemma 3.5. The class of systems S = 〈A, ϕ : B → C〉 ∈ Kp such that there is x0 ∈ B with
ϕ(x0) = x0 is cofinal in Kp.

Proof. Since Br(D∞) is a Fraïssé limit, we know that for any system S = 〈A, ϕ : B → C〉, we
may identify A with a subset of Br(D∞) and ϕ with some restriction to A of an automorphism
g ∈ Homeo(D∞). Since dendrites have the fixed point property, g has a fixed point x in D∞.
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If this point x is a branch point, it suffices to add it to A, B and C (and possibly the finitely
many points c(x, y, z) for y, z ∈ A, B or C) and to extend ϕ with ϕ(x) = x (or by the value
of g on the points c(x, y, z) for y, z ∈ B). If x is not a branch point then we can reduce to
the situation where x is a fixed branch point by the following contruction. We glue infinitely
many copies of D∞ to x by identifying a branch point of each copy with x. We extend g on the
new branches around x by the identity (which is possible thanks to the patchwork lemma).
The new dendrite is homeomorphic to D∞ once again and we are back in the situation where
g has a fixed branch point. �

Let S = 〈A, ϕ : B → C〉 ∈ Kp be a system with a fixed point x0 ∈ B. We define a
branch around x0 to be an equivalence class in A \ {x0} under the relation x ∼x0 y ⇐⇒
¬B(x0; x, y). For two branches around x0, we write D1 ∼ϕ D2 if there is x ∈ D1 ∩ B such
that ϕ(x) ∈ D2. Observe that for another y ∈ B ∩ D1 then ϕ(y) ∈ D2 because ϕ preserves
the betweenness relation. In that case, we write ϕ(D1) = D2 even if this equality is not
true for the underlying sets (we only have ϕ(D1 ∩ B) ⊂ D2). We also take the liberty to
write recursively ϕn(D1) for ϕ(ϕn−1(D1)) if ϕn−1(D1) ∩ B 6= ∅. We still denote by ∼ϕ the
equivalence relation generated by this relation. A ϕ-orbit of branches is an equivalence class
of branches under this equivalence relation.

Lemma 3.6. For any ϕ-orbit of branches E around x0, there is a branch D and n ∈ N with D ∩ B 6=
∅ such that E = {D, ϕ(D), . . . , ϕn−1(D)}.

Proof. Let us first prove that if D and D′ are two branches around x0 such that ϕ(D) = ϕ(D′)
then D = D′. In fact, if x ∈ D, y ∈ D′ with ¬B(x0; ϕ(x), ϕ(y)) then ¬B(x0; x, y) and thus
D = D′.

If D, D′ are in E then there is chain D0, . . . , Dk such that D0 = D, Dk = D′ and ϕ(Di) =
Di+1 or ϕ(Di+1) = Di for each i = 0, . . . , k− 1. One shows by induction on the length of the
chain that D = ϕk(D′) or D′ = ϕk(D).

Now, let {D, ϕ(D), . . . , ϕn−1(D)} be a maximal such chain with distinct elements (which
exists since E is finite). Let D′ ∈ E then there is a minimal k ∈ N such that ϕk(D) =
D′ or ϕk(D′) = D. In the first case, by maximality of {D, ϕ(D), . . . , ϕn−1(D)}, k ≤ n −
1 and D′ ∈ {D, ϕ(D), . . . , ϕn−1(D)}. In the second case, by maximality again, one has
{D′, ϕ(D′), . . . , ϕn−1+k(D′)} = {D, . . . , ϕn−1(D)}. Thus E = {D, ϕ(D), . . . , ϕn−1(D)}. �

Observe that in Lemma 3.6, it is possible that ϕn−1(D) ∩ B 6= ∅ and ϕn(D) = D. Let
E be a ϕ-orbit of branches and E the union of its branches (which is c-closed). We define
SE = 〈AE, ϕE : BE → CE〉 where AE = (A ∩ E) ∪ {x0}, BE = B ∩AE, CE = C ∩AE and ϕE is
the restriction of ϕ to BE. Observe that SE ∈ Kp and if S ∈ L then S ∈ L as well.

Lemma 3.7. Let S = 〈A, ϕ : B→ C〉 ∈ Kp be a system with a fixed point x0 and point x1, . . . , xk ∈
A such that x1, . . . , xk−1 ∈ B, x1 /∈ C, [xi+1, x0] ⊂ [xi, x0] and ϕ(xi) = xi+1 pour all i ≤ k− 1.
Let B1 = {x ∈ B \ {x1}, x1 ∈ [x0, x] and x1 ∈ [x0, ϕ(x)]}. Then there exists an extension
S ′ = 〈A′, ϕ′ : B′ → C′〉 of S such that A′ = A ∪ {y}, B′ = B ∪ {y}, C′ = C ∪ {y} and
ϕ′(y) = y. Moreover, for any b ∈ B1, b′ ∈ B \ B1, y ∈ [b, b′].

Proof. Let us identify A with a subset of Br(D∞) and let g ∈ G∞ such that ϕ is the restriction
of g on B. Par construction, x1 belongs to the interior of an austro-boreal arc I of g. This arc
is contained in the union of two connected components of D∞ \ {x1}. Let U be the one that
does not contain x0. By definition of B1, B1 ⊂ U. Let choose a branch point y in the interior
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of I and in U such that for any b ∈ B1, y ∈ [x1, b] and gy 6= x1 ∈ [x1, y]. By construction,
no element of B lies in D(y, g(y)). Let choose a slightly larger arc [z, z′] in the interior of I
containing [gy, y] and such that the preimage in B ∪C of [z, z′] by the first point map to I is
empty. Let h be a homeomorphism of D(z′, z) such that h(g(y)) = y and fixing z, z′. Let us
extend h to an element of G∞ by setting h to be trivial outside D(z, z′). Now let g′ = h ◦ g
and ϕ′ to be its restriction on B′ = B∪ {y}. �

Proposition 3.8. The class L is cofinal in Kp.

Proof. Let S = 〈A, ϕ : B → C〉 ∈ Kp. Thanks to Lemma 3.5, we may assume that ϕ has
a fixed point x0. Moreover, if g ∈ G∞ induces ϕ, one can replace B by the c-closure of
B ∪ (A \ B∪C), C by the image of this new B by g and A the c-closure of B ∪C. Thanks to
the patchwork lemma, we may reduce to the case where ϕ has a unique orbit of branches E
around x0 and thus S = SE. Actually, we can deal with each orbit of branches separately
and patch them together at the end. So let us assume that S = SE and let D be given by
Lemma 3.6.

The proof will be done thanks to different reductions and inductions.

Case A. The orbit of branches E is reduced to D, that is n = 1 in Lemma 3.6. On A \ {x0},
we define a partial order x ≤ y ⇐⇒ x ∈ [x0, y]. This is a semi-linear order (see [DM16b, §5])
and thus, since B′ = B \ {x0} and C′ = C \ {x0} are c-closed, they have a unique minimum
that we denote respectively by b0 and c0. Since ϕ preserves betweenness, we know that
ϕ(b0) = c0. We set F = B∪C∪ {c(x0, b0, c0)}.

Subcase A.1 The point c(x0, b0, c0) /∈ {b0, c0}. In this case, no point of B′ is between points of
C′ and vice versa. In particular, they are disjoint. We can define an extension 〈A, ψ : F → F〉
where ψ|B = ϕ, ψ(c(x0, b0, c0)) = c(x0, b0, c0) and for c ∈ C, ψ(c) = b ∈ B is the unique
point b ∈ B such that ϕ(b) = c. This extension belongs to Kp and it satisfies Definition 3.4
with F0 = B ∪ {c(x0, b0, c0)}. Actually, for any b ∈ F0, ψ2(b) = b and thus Condition (2) is
satisfied. Conditions (3) & (4) are empty and A is still the c-closure of F.

Subcase A.2 The point c(x0, b0, c0) is c0. Observe that for any g ∈ G∞ that induces ϕ, b0
belongs to an austro-boreal arc for g because [b0, x0] is mapped to [c0, x0] and thus c0 = g(b0)
belongs to [b0, g2(b0)]. Let us denote by x1, . . . , xk the ϕ-orbit of b0 such that ϕ(xi) = xi+1 (in
particular b0 = xk−1 and c0 = xk). Let B1 = {x ∈ B, x1 /∈]x, ϕ(x)[ and x1 ∈]x, x0[}.

Thanks to Lemma 3.7, we may assume that ϕ has a fixed point y ∈ B1 between x1 and
any other point of B \ B1. Let C1 to be ϕ(B1) and A1 to be {y} and the union of the branches
in A around y that do not contain b0. In particular, A1 is c-closed, contains B1 ∪ C1. We
define S1 = 〈A1, ϕ1 : B1 → C1〉 where ϕ1 is the restriction of ϕ to B1. By an induction on
the number of ϕ1-orbits which is less than the number of ϕ-orbits, we may assume that S1
embeds in S ′1 ∈ L.

Let us define A2 = (A \A1) ∪ {y}, B2 = B∩A2, C2 = C∩A2 and let ϕ2 be the restriction
of ϕ on B2. Let choose g ∈ G∞ that induces ϕ. We set B′2 to be B2 and we add successively
points to this set. For any point x in B2∩]y, x0[, we know that x ≥ b0 and g(x) ≤ x1. We add
to B′2 all points gm(x), gm+1(x), . . . , gl(x) such m is the maximal integer such that gm(x) ≥ x1

and l is the minimal integer such that gl(x) ≥ b0. For z ∈ B2 not in [y, x0], let xz ∈]y, x0[ be
c(z, x0, y) ∈ B2. Let m, l be the corresponding integers for xz, we add {gmz, . . . , glz} to B′2
in order to guarantee Condition (5). Finally, we replace B′2 by its c-closure (this adds only

finitely many points). Let C′2 = g(B′2). Let us define (B′2)0 =
(

B′2 ∩ D(y, x1)
)
∪ {x0}. Up
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to add gi((B′2)0) to B′2 for i = 1, 2, 3, 4 (and gi((B′2)0) to C′2 for i = 2, 3, 4, 5) we may assume
that l −m > 4. Now, let A′2 be the c-closure of A2 ∪ B′2 ∪C′2 and ϕ′2 be the g|B′2 . The system
〈A2, ϕ2 : B2 → C2〉 embeds in S ′2 = 〈A′2, ϕ′2 : B′2 → C′2〉 ∈ Kp. Moreover, the latter one
satisfies Condition (2) in Definition 3.4 with n = 1 for all points. Actually Condition (1) is
obtained by construction of (B′2)0, x0 and y are fixed points and all the other points of (B′2)0
are in D(g) thus Conditions (2) & (3) follow. For Condition (4), any two points of B′ that lie
in ]y, x0[ have intertwined ϕ-orbit and the last possibility of Condition (4) occurs. So S ′2 ∈ L.

By the patchwork lemma, there is g ∈ D∞ inducing ϕ′1 and ϕ′2. Thus if ϕ′ is the restriction
of g on B1 ∪ B2 S ′ = 〈A1 ∪A′2, ϕ′ : B1 ∪ B′2 → C1 ∪C′2〉 ∈ L is an extension of S .

Subcase A.3 The point c(x0, b0, c0) is b0. This subcase is very similar to subcase A.2 and we
only indicate what should be modified. The points x1, . . . xk are the ϕ-orbit of b0 but this time
x1 = b0 and xi+1 = ϕ(xi). Let B1 = {x ∈ B, xk /∈]x, ϕ(x)[ and xk ∈]x0, x[}.

Thanks to Lemma 3.7 applied to 〈A, ϕ−1 : C→ B〉, we may assume that ϕ has a fixed point
y ∈ B1 between xk and any other point of B \B1. Let C1 to be ϕ(B1) and A1 to be {y} and the
union of the branches in A around y that do not contain b0. In particular, A1 is c-closed and
contains B1 ∪ C1. We define S1 = 〈A1, ϕ1 : B1 → C1〉 where ϕ1 is the restriction of ϕ to B1.
By an induction on the number of ϕ1-orbits, we may assume that S1 embeds in some S ′1 ∈ L
where ϕ1 is the restriction of ϕ on B1.

Let us define A2 = A \A1 ∪ {y}, B2 = B ∩A2, C2 = C ∩A2 and let ϕ2 be the restriction
of ϕ on B2. Let choose g ∈ G∞ that induces ϕ. We set B′2 to be B2 and we add successively
points to this set. For any point x in B2∩]y, x0[, we know that x ≥ b0 and x ≤ xk. We add to
B′2 all points gm(x), gm+1(x), . . . , gl(x) such that l is the minimal integer such that gm(x) ≥ xk
and l is the minimal integer such that gl(x) ≥ b0. For z ∈ B2 not in [y, x0], let xz ∈]y, x0[ be
c(z, x0, y) ∈ B2. Let m, l be the corresponding integers for xz, we add {gmz, . . . , glz} to B′2.
Finally, we replace B′2 by its c-closure (this adds only finitely many points). Let C′2 = g(B′2).
Let us define (B′2)0 =

(
B′2 ∩ D(x1, x2)

)
∪ {x0}. Up to add gi((B′2)0) to B′2 for i = 1, 2, 3, 4

(and gi((B′2)0) to C′2 for i = 2, 3, 4, 5) we may assume that l − m > 4. Now, let A′2 be the
c-closure of A2 ∪ B′2 ∪ C′2 and ϕ′2 be the g|B′2 . The system 〈A2, ϕ2 : B2 → C2〉 embeds in
S ′2 = 〈A′2, ϕ′2 : B′2 → C′2〉 ∈ Kp and S ′2 ∈ L for the same reasons as above. We conclude
similarly as in Subcase A.2.

Case B. The integer n is larger than 1. The idea is then to reduce to Case A by making a
precise definition for ψ = ϕn and apply Case A to ψ.

Subcase B.1 ϕn−1(D) ∩ B = ∅. This case is quite similar to subcase A.2. Let us identify
A with a subset of Br(D∞) and ϕ with the restriction of some g ∈ Homeo(D∞). Let D̃
be the connected component of D∞ \ {x0} that contains the points of D. Let B0 be the c-
closure of D̃ ∩

(⋃
0≤k<n−1 g−k(B)

)
∪ {x0}. This is a finite set. Let C′ = B′ =

⋃
0≤k<n−1 gk(B0).

We define ϕ′ to coincide with g on
⋃

0≤k<n−1 gk(B0) and g−(n−1) on gn−1(B0). The class
S ′ = 〈A′, ϕ : B′ → C′〉 which is an extension of S belongs to L with this integer n and all
points of B0 are ϕn-fixed points.

Subcase B.2 ϕn(D) ∩ B 6= ∅. So ϕn(D) = D. Up to choose g ∈ G∞ and add points in each
ϕ-orbits, we may assume that all ϕ-orbits start, finish in D and have all the same length that is
at least 4n. That is, we may assume that B0 = D∩B satisfies

⋃
0≤k≤ln−1 ϕk(B0) = B with l ≥ 4

and B0 is c-closed. This will guarantee the very last point of Condition (4) in Definition 3.4.
We define the system T = 〈A ∩ D ∪ {x0}, ψ :

⋃
0≤k≤l−1 ϕkn(B0) →

⋃
0≤k≤l−1 ϕ(k+1)n(B0)〉
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where ψ is the restriction of ϕn to
⋃

0≤k≤l−1 ϕkn(B0). Observe that the number of ψ-orbits is
at most the same number of ϕ-orbits. Now, T ∈ Kp and falls in Case A. So we can find an
embedding of T in some T ′ = 〈A′, ψ′ : B′ → C′〉 ∈ L. Let us define B” =

⋃
0≤i<n gi(B′)

and ϕ′ to be g on
⋃

0≤i<n−1 gi(B′) and ψ′ ◦ g−(n−1) on gn−1(B′). Let C” = ϕ′(B”) and A” =
A′ ∪ B” ∪A. The system S ′ = 〈A”, ϕ′ : B” → C”〉 lies in Kp and contains an embedding of
S . Morever, S ′ ∈ L because T ′ ∈ L. Actually if B0 is the initial set for T ′ as in Definition 3.4
then it is also an initial set for S ′ and for x ∈ B0 and n′ ∈ N is as in Definition 3.4.(2) for T ′
then nn′ satisfies Conditions (2)-(4) for x and ϕ′. Condition (5) is satisfied since it is satisfied
for T ′.

Before the subdivision into cases A and B, Condition (6) was guaranteed and during the
extension that we did in cases A and B, no point outside the c-closure of B∪C was added to
A and thus Condition (6) is still satisfied at the end. �

Proposition 3.9. The class L has the amalgamation property.

To prove this proposition, we rely on a few lemmas.

Lemma 3.10. Let S = 〈A, ϕ : B → C〉 ∈ L and S → T = 〈D, ψ : E → F〉 be an embedding.
If x, y ∈ B are ϕ-periodic points with periods n ≤ m. Assume that ]x, y[∩B does not contain any
periodic point then the components gk(D(x, y)) are disjoint for 0 ≤ k < m and for any z ∈ D,
ψ-periodic point with z ∈]x, y[, the period of z is m.

Proof. Let g ∈ G∞ inducing ψ. We claim that for all gk(D(x, y)) are disjoint for 0 ≤ k < m
and m is a multiple of n. This implies that the period of z is at least m. Now, we have
gm(]x, y[) =]x, y[. If the period of z is not m then gm(z) ∈]z, g2m(z)[ and z ∈ D(gm). Thanks
to Lemma 2.6 and 2.8, this leads to a contradiction.

It remains to prove the claim. If m = 1, the claim is straightforward. So let us assume that
m > 1. Since S ∈ L, g has some fixed point p ∈ B. Since m > 1, y is not in the element
of Cx that contains p. So, if k is not a multiple of n, then c(p, x, gk(x)) separates D(x, y) and
gk(D(x, y)). Thus D(x, y) and gk(D(x, y)) are disjoint. Now, if D(x, y) and gk(D(x, y)) are
not disjoint then the point c(x, y, gk(y)) is necessarily a non-periodic point because otherwise
it would belongs to B which is c-closed. By assumption there is no such point. �

Lemma 3.11. Let g ∈ G∞, let x, y be g-fixed points in D∞ and let M be some finite set in ]x, y[.
There are z ∈]x, y[ such that M ⊂]x, z[, p ∈]z, y[ and g′ ∈ G∞ that is equal to g on D∞ \ D(z, y)
and that fixes p.

Proof. Since M is finite, one can find z ∈]x, y[ such that M ⊂]x, z[. Now, choose p ∈
]z, y[∩]gz, y[⊂]x, y[. Find a homeomorphism f from D(z, y) to D(gz, y) fixing p, y and such
that f (z) = g(z) (this is possible thanks to [DM16b, Proposition 6.1]). Now define, g′ to be f
on D(z, y) and g elsewhere. �

Lemma 3.12. Let S = 〈A, ϕ : B → C〉 ∈ L and S → T = 〈D, ψ : E → F〉 be an embedding.
Let x, y ∈ B be ϕ-periodic points. Assume that ]x, y[∩B does not contain any periodic point. Then
there is an embedding T → T ′ = 〈D′, ψ′ : E′ → F′〉 such that there is p ∈ D′ with D′ = D∪ {p},
E′ = E∪ {p}, F′ = F∪ {p}, p ∈]x, y[, z is ψ′-periodic and ]p, y[∩D = ∅.

Proof. Let h ∈ G∞ that induces ψ and let us consider D as a subset of Br(D∞). As in the
proof of Lemma 3.10, let m be the maximal period of x and y. So, the subsets hk(D(x, y))
are disjoint for 0 ≤ k < m. Let us set g = hm. So, x and y are g-fixed points. Let us apply
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Lemma 3.11 with g = hm and M =]x, y[∩D. One get g′ that fixes some point p such that
D(p, y) ∩D = ∅ and g coincides with g on E. Now, thanks to the patchwork lemma, let us
define h′ ∈ G∞ to be h on D∞ \ hm−1(D(x, y)) and g′ ◦ h1−m on D(x, y). Then h′ coincides
with h on E and p is h′-periodic. We define ψ′ to be the restriction of h′ on E∪ {p}. �

Lemma 3.13. Let S = 〈A, ϕ : B→ C〉 ∈ L and S → T = 〈D, ψ : E→ F〉 be an embedding. Any
ψ-orbit contains at most one ϕ-orbit.

Proof. For a contradiction, let us assume there are x, y ∈ B such that their ϕ-orbits are distinct
but lie in the same ψ-orbit. Thanks to Condition (1) in Definition 3.4, we may assume that
x, y ∈ B0. Observe that these points are not ϕ-periodic (and thus not ψ) because the ψ-orbit
of a periodic point is equal to its ϕ-orbit .

The points x, y belong respectively to some D(x1, x2), D(y1, y2) where x1, x2, y1, y2 are
ϕ-periodic points and we may assume that D(x1, x2), D(y1, y2) do not contain ϕ-periodic
points. Thus, the ϕ-orbits of D(x1, x2), D(y1, y2) are disjoint or the equal and this is a for-
tiori the same for ψ. So, under our current assumption, these two orbits are the same. Let
x′ = c(x, x1, x2) and y′ = c(y, y1, y2). Because of Condition (5), x′, y′ ∈ B0. By Condition (2)
of Definition 3.4, there is n (that we can assume to be minimal) such that for any g ∈ G∞
that induces ϕ, gn is austro-boreal on D(x1, x2) ∩ B and on D(y1, y2) ∩ B. So x′, z′ satisfy
Condition (4) and their ϕn-orbits are not separated by ϕn-fixed point, so by the second point
of Condition (4), x′ ∈ [y′, ϕn(y′)] or y′ ∈ [x′, ϕn(x′)]. Since ψ commute with the center map,
x′ and y′ are in the same ψn-orbit. This is impossible because the ψn-iterates of [y′, ψn(y′)[
(respectively of [x′, ψn(x′)[) are distinct. �

Proof of Proposition 3.9. Let S = 〈A, ϕ : B → C〉 ∈ L and two embeddings ιi : S → Si =
〈Ai, ϕi : Bi → Ci〉 where Si ∈ L for i = 1, 2. We will construct two embeddings ji : Ai →
Br(D∞) and g ∈ G∞ such that j1 ◦ ι1 = j2 ◦ ι2 and ji ◦ ϕi = g ◦ ji for i = 1, 2. So, the restriction
of g on j1(B1) ∪ j2(B2) will yield an amalgamation of ϕ1 and ϕ2 over ϕ.

First, we fix, an embedding j : A → Br(D∞) and g ∈ G∞ such that g induces ϕ on j(B).
For simplicity, we write A instead of j(A) , so we think to A as a subset of Br(D∞). We define
ji on ιi(A) to be j ◦ ι−1

i and it remains to define ji on Ai \ ιi(A).
For a point x ∈ Bi \ B there are three exclusive cases :

(A) The ϕi-orbit of x contains a ϕ-orbit of a point in B.
(B) The ϕi-orbit of x does not contains a ϕ-orbit of a point in B but there are points

y, z ∈ B∪C such that x ∈ D(y, z).
(C) The ϕi-orbit of x does not contains a ϕ-orbit of a point in B and there are no points

y, z ∈ B∪C such that x ∈ D(y, z).
Let us observe that if ϕi-orbit of x contains a ϕ-orbit of a point y ∈ B then this point y

satifies the second possibility in Condition (2) of Definition 3.4. That is, it lies in D(hn) for
some n ∈ N and any h ∈ G∞ that induces ϕi. Moreover thanks to Lemma 3.13, in this
situation, the ϕi-orbit of x contains exactly one ϕ-orbit.

We first deal with points in cases (A)&(B). These points in Bi \B lie in some D(y, z) where
y, z are ϕ-periodic points and thanks to point (3) in Definition 3.4, there is n ∈ N such that
ϕn(y) = y and ϕn(z) = z.

Case A. Let B0,i the sets given by Definition 3.4 for Si. Let x ∈ B0,i such that its ϕi-orbit
contains the ϕ-orbit of some y ∈ B0. So, there is k ∈ N such that ϕk

i (x) = y. We define
ji(x) = g−k(y). For z ∈ Bi in the ϕi-orbit, there is l ∈ N such that z = ϕl

i(x) and we define
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ji(z) = gl(ji(x)). Since all points in Bi \ B are in ϕi-orbit of some point in B0,i, we are done
with points that fall in case (A).

Case B. We consider now points x in Bi that are not in Case A but lie in some D(y, z)
for some y, z ϕ-periodic points. Let us fix y, z ϕ-periodic points such that [y, z] does not
contain any other ϕ-periodic point. In particular, any two points in B0∩]y, z[ satisfy the
second property of Condition (4) in Definition 3.4.

The components D(gi(y), gi(z)), for i ∈ Z, are disjoints or equal and because of Lemma 3.10.
Among them, at most one meets B0 (and similarly for B0,1 and B0,2). If none meets B0 then
D(gk(y), gk(z)) ∩ B = ∅ for any k. Because of Condition (2) in Definition 3.4, any ϕi-orbit
that meet D(y, z) ⊂ Bi meets D(ϕk

i (y), ϕk
i (z)) as well. So, in case D(y, z) ∩ B 6= ∅, we may

assume that D(y, z) is the one that meets B0.

Let us treat the case where D(y, z) ∩ B = ∅ first. In that case, we may assume there is
a branch point t ∈]y, z[ that is g-periodic by Lemma 3.12. For i = 1, 2, we choose some
hi : Ai → Br(D∞) that coincides with j on A and an element gi ∈ D∞ that induces ϕi on
Bi. Thanks to Lemma 3.12, we may assume there are ti ∈]y, z[ such that h1(A1) ∩ D(y, z) ⊂
D(y, t1), h2(A2) ∩ D(y, z) ⊂ D(t2, z) and ti are ϕi-periodic points. By Lemma 3.10, the peri-
ods of t, t1 and t2 are the maximum of the periods of y and z. Let n be this period.

We may assume that D(y, z) is the component that meets B0,1 among all its ϕ-iterates. Let
us fix a homeomorphism l1 : D(y, t1)→ D(y, t). For k = 0, . . . , n− 1, on B1∩D(ϕk(y), ϕk(z)),
we define j1 to be gk ◦ l1 ◦ h1. Finally, on D(gk−1(y), gk−1(t)), we replace the restriction of g by
l1 ◦ ϕn

1 ◦ l−1
1 ◦ g1−n. This way, the embedding j1 is well defined on ∪0≤k≤n−1D(ϕk(y), ϕk(z))∩

B1 and we have j1 ◦ ϕ1 = g ◦ j1 by construction.
We proceed similarly to embed points of ∪0≤k≤n−1D(ϕk(y), ϕk(z)) ∩ B2 to Br(D∞). We fix

a homeomorphism l2 : D(t2, z) → D(t, z). For k = 0, . . . , n− 1, on B2 ∩ D(ϕk(y), ϕk(z)), we
define j2 to be gk ◦ l2 ◦ h2. Finally, on D(gk−1(t), gk−1(z)), we replace the restriction of g by
l2 ◦ ϕn

2 ◦ l−1
2 ◦ g1−n. This way, the embedding j2 is well defined on ∪0≤k≤n−1D(ϕk(y), ϕk(z))∩

B2 and we have j2 ◦ ϕ2 = g ◦ j2 by construction.

Now, we assume that D(y, z) ∩ B 6= ∅ and continue with n being the maximum of the
period of y and z. We may assume that D(x, y) does not contain ϕ-periodic points, up to
consider D(y, z) minimal for inclusion with the property D(y, z) ∩B 6= ∅. For x ∈ D(x, y) ∩
Bi, we have three exclusive subcases that cover all possibilities.

(1) The ϕi-orbit of x contains a point in some D(y′, z′) where y′, z′ ∈ B ∩ D(y, z) and
D(y′, z′) ∩ B = ∅.

(2) The ϕi-orbit of x does not contain a point in some D(y′, z′) where y′, z′ ∈ B ∩ D(y, z)
and D(y′, z′)∩B = ∅ but this ϕi-orbit contains a point in some D(y′, z′) where y′, z′ ∈
(B∩ D(y, z)) ∪ {y, z}, D(y′, z′) ∩ B = ∅.

(3) There is no point in the ϕi-orbit of x that lies in some D(y′, z′) where y′, z′ ∈ (B ∩
D(y, z)) ∪ {y, z}.

Subcase B.1. Let y′, z′ be such points. We will defined the embedding of the whole ϕi-
orbit of x and thus, we may assume that x ∈ B0,i. We continue with the embeddings
hi defined above. We choose branch points t, t1, t2 ∈]y′, z′[ such that h1(A1) ∩ D(y′, z′) ⊂
D(y′, t1), h2(A2) ∩ D(y′, z′) ⊂ D(t2, z′). We fix homeomorphisms l1 : D(y′, t1) → D(y′, t)
and l2 : D(t2, z′) → D(t, z′). We define ji to be li ◦ hi on D(y′, z′) ∩ Bi. For elements x ∈ Bi
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such that ϕk
i (x) ∈ D(y′, z′) for some k ∈ Z, we define ji(x) to be gk ◦ li ◦ hi ◦ ϕ−k

i (x). Thus we
have defined ji for all elements whose ϕi-orbit meets D(y′, z′) and for those points we have
ji ◦ ϕi = g ◦ ji by construction.

Subcase B.2. In that case, {y, z} ∩ {y′, z′} is a point because [y, z] contains points in B. Let
us assume, y = y′. The other possibilities are treated mutatis mutandis. Thanks to Lemma
3.12, we may assume that there are s, t ∈]y, z[ such that s ∈]y, t[ and s, t are g-periodic points.
By Lemma 3.10, the periods of these points are necessarily the maximum of the ones of y
and z, that is n. Moreover, t is such that B ∩ D(y, z) ⊂ D(t, z). Let us use the embeddings hi
from above. From Condition (4) in Definition 3.4, we know that there is a ϕi-periodic point
ti ∈]y, z[ such that all points that fall in this second subcase with y′ = y have a ϕi-orbit that
meets D(y, ti).

We fix a homeomorphism l1 : D(y, h1(t1))→ D(y, s) and define j1 to be l1 ◦ h1 on D(y, t1)∩
B1. For k = 0, . . . , n− 1, on B1 ∩ D(ϕk

1(y), ϕk
1(t1)), we define j1 to be gk ◦ l1 ◦ h1. Finally, on

D(gk−1(y), gk−1(s)), we replace the restriction of g by l1 ◦ ϕn
1 ◦ l−1

1 ◦ g1−n. This way, the
embedding j1 is well defined on ∪0≤k≤n−1D(ϕk

1(y), ϕk
1(t1)) ∩ B1 and we have j1 ◦ ϕ1 = g ◦ j1

on this subset by construction.
We may also assume that ϕ2 has a periodic point s2 ∈]y, t2[ such that D(y, s2)∩B2 = ∅. We

fix a homeomorphism l2 : D(h2(s2), h2(t2))→ D(s, t) and define j2 to be l2 ◦ h2 on D(s2, t2)∩
B2. For k = 0, . . . , n − 1, on B2 ∩ D(ϕk

2(s2), ϕk
2(t2)), we define j2 to be gk ◦ l2 ◦ h2. Finally,

on D(gk−1(s), gk−1(t)), we replace the restriction of g by l2 ◦ ϕn
2 ◦ l−1

2 ◦ g1−n. This way, the
embedding j2 is well defined on ∪0≤k≤n−1D(ϕk

2(s2), ϕk
2(t2))∩B2 and we have j2 ◦ ϕ2 = g ◦ j2

on this subset by construction.
Subcase B.3. In this last subcase, for such an x, there is a unique point p ∈ B∩D(y, z) such

that for any r ∈ B, p ∈ [r, x[. Moreover, this point is necessarily a ϕ-periodic point because
of Condition (3) in Definition 3.4. Let m be this period. Once again, we use the embeddings
hi : Ai → Br(D∞). Let Ci,1, . . . , Ci,mi , for i = 1, 2, be the connected components of D∞ \ {p}
that contains points of hi(Bi) but no point of B (x is necessarily in such a component). Each
of these components contain a gi-periodic point. Thus for any i = 1, 2 and j ≤ mi, there is ki,j

such that g
ki,j
i (Ci,j) = Ci,j.

We glue copies of the Ci,j’s to p and similarly we glue copies of gk
i (Ci,j) to gk(p) for k < m

to obtain a new dendrite which again homeomorphic to D∞. We extend g by the restriction
of gi on the copies of gk

i (Ci,j). Let define ji to be these gluings on ∪0≤k≤n−1gk
i (Ci,j).

Case C. This last case is treated in the same way as subcase B.3 because for any point x
that fall in this case, there is a unique point p such that for any r ∈ B, p ∈ [r, x[ and this point
p is periodic.

To conclude this proof, we define B′ to be the c-closure of h1(B1) ∪ h2(B2), C′ to be g(B′),
ϕ′ to be the restriction of g on B′ and A′ to be the c-closure of B′ ∪C′. �

We can now conclude that G∞ has generic elements.

Proof of Theorem 1.2. The class Kp has JEP (Proposition 3.2) and WAP (Proposition 3.8 and
Proposition 3.9) thus the theorem is a consequence of [Tru92] (see also [KR07, §3]). �

Checking JEP and WAP conditions, we show similarly the existence of comeager conju-
gacy classes for the basic clopen subgroups.

Theorem 3.14. Let F ⊂ Br(D∞) be a finite subset. The clopen subgroup VF = Fix(F) has a
comeager conjugacy class.
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Proof. We consider systems S = 〈A, ϕ : B → C〉 where ϕ is induced by an element g ∈ VF.
The joint embedding and weak amalgamation properties are proved as for G∞. �

Remark 3.15. Let us conclude this section by some observations. Let A be the subgroup of
G∞ fixing a pair of points in Ends(D∞) and let B be the stabilizer of some branch point in
D∞. Notice that VF ∼= An × Bm where n is the number of edges in 〈F〉 and m is the number
of vertices in 〈F〉 (see Section 2 for the definition of 〈F〉).

Once we identify the set of branch points in an open arc in D∞ with Q, we can also observe
that A is a permutational wreath product over B:

A ' B oQ Aut(Q,<) ' BQ o Aut(Q,<).

The subgroup B has itself a permutational wreath product decomposition where E is the
stabilizer of an end point in D∞:

B ' EN o S∞.
We refer to [DM16b, Lemma 7.1] for more explanations. Observe that intuively this shows
that G∞ is somehow built from the classical Polish groups S∞, Aut(Q,<) and E which is
the automorphism group of some semi-linear order on the set of branch points ([DM16b,
Corollary 5.21]).

4. AUTOMATIC CONTINUITY

Our proof of the automatic continuity relies on the Steinhaus property. To prove this
property, we use the same technics as in the proof [RS07, Theorem 15] which states that the
Polish group Aut(Q,<) has the Steinhauss property. Let us recall that a topological group G
has the Steinhaus property (Definition 1.3) if there is k ∈ N such that for any symmetric and
σ-syndethic subset W, Wk contains a neighborhood of the identity.

So, our goal is to prove that the Polish group G∞ has the Steinhaus property (Theorem 1.4).
Before proving the theorem, let us set up a few things. Set merely G = G∞. Let W be a
symmetric σ-syndethic subset of G∞ (i.e. there is (gn)n∈N with

⋃
n∈N gnW = G). Since W is

not meager, W2 = W−1W is dense in some open neighborhood of the identity U = Fix(F)
where F is a finite subset of Br(D∞). Let us denote by T = [F] the tree (i.e. subdendrite)
generated by F .

Let V (⊃ F) be the set of vertices of T and E be its set of edges. For v ∈ V , we denote
Gv = {g ∈ Fix(v), Supp(g) ⊂ ∪Ui} where {Ui} are the connected components of D∞ \ {x}
that do not intersect T. For e = {x, y} ∈ E , we denote by Ge = {g ∈ G, Supp(g) ⊂ D(x, y)}.
Thanks to the patchwork lemma, we have

U =

(
∏
v∈V

Gv

)
×
(

∏
e∈E

Ge

)
.

If we set V = ∏v∈V Gv and E = ∏e∈E Ge, that is U = V × E, it suffices to show the
following two lemmas to prove Theorem 1.4.

Lemma 4.1. The subgroup V is contained in W140.

Lemma 4.2. The subgroup E is contained in W96.

We can now conclude that G∞ has the Steinhauss property.

Proof of Theorem 1.4. We have U = V × E ⊂W140 ·W96 = W236. �
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Proof of Lemma 4.1. For v ∈ V , let CT
v be the set connected components of D∞ \ {v} that do no

intersect T. We define a moiety of
⋃

v∈V CT
v to be a collection X = (Xv)v∈V such that for each

v ∈ V , Xv is a moiety of CT
v , that is Xv ⊂ CT

v is infinite and co-infinite. For such a moiety, we
denote by V(X) the subgroup of V of elements supported on

⋃
v∈V

⋃
C∈Xv

C ⊂ D∞.
Let (Xn) be a sequence of disjoint such moieties. For each n ∈ N, let gn ∈ V(Xn). Thanks

to the patchwork lemma, there is a well defined element g ∈ V that coincides with each gn
on its support. Let (kn) ∈ GN such that

⋃
n∈N knW = G. There is n such that V(Xn) is full

for some knW, that is for any g ∈ V(Xn), there is h ∈ knW such that g and h coincides on
Xn. Otherwise, there would be gn ∈ V(Xn) such that no element of knW coincides with gn
on Xn. Thus the element g obtained by patching the gn’s would not be in

⋃
n∈N knW. For

the remaining of the proof, we fix n such that V(Xn) is full for some knW. This implies that
V(Xn) is full for W2 = (knW)−1knW as well.

Observe that V(Xn) ' BV where B is stabilizer of a branch point in G. Since B has a
comeager conjugacy class (Theorem 3.14), V(Xn) has also a comeager conjugacy class C.
There is n1 ∈ N such that kn1W is not meager in V(Xn) thus W2 = W−1 ·W = W−1k−1

n1
kn1W

is not meager in V(Xn) and there is f ∈ C ∩W2. Now for any g ∈ V(Xn), there is h ∈ W2

such that g and h coincide on Xn. Since f is trivial outside Xn,

g f g−1 = h f h−1 ∈W6.

The product of two comeager subsets being everything, V(Xn) ⊂W12.
For brevity, let us denote Y = Xn and Z =

⋃
v∈V

⋃
C∈CT

v
C. Thanks to a famous theorem

of Sierpinski [Sie28], one can find a continuum of moieties (Yα) such that Yα ⊂ Y for any α

and Yα
v ∩ Yβ

v is finite for every v ∈ V and all α 6= β. Since |Yα
v | = |CT

v \ Y|, one can find an
involution gα ∈ V such that gα(Yα

v ) = CT
v \Y and gα fixes pointwise Yv \Yα

v for all v ∈ V .
By the pigeonhole principle, there are α 6= β and n2 ∈ N such that gα, gβ ∈ kn2W and thus

g−1
β gα ∈W2. Let us denote g = g−1

β gα and Y′ = gY. One has Y′ = Z \ gβYα. Thus

Y ∪Y′ = Z \ gβ(Yα ∩Yβ) and

Y ∩Y′ = Z \ gβ(Yα ∪Yβ).
Thanks to the proof of the first lemma in [DNT86],

V(Y ∪Y′) ⊂ V(Y)V(Y′)V(Y) ∪V(Y′)V(Y)V(Y′).

Since V(Y′) = gV(Y)g−1 ⊂W16, V(Y ∪Y′) ⊂W44. By density of W2 in V and the finiteness
of Yα ∩Yβ, one can find h ∈W2 ∩V such that h(Z \ (Y∪Y′)) ⊂ Y∪Y′. If Y′′ = h(Y∪Y′) then
Y ∪ Y′ ∪ Y′′ = Z. So V(Y′′) = hV(Y ∪ Y′)h−1 ⊂ W48 and as above V = V((Y ∪ Y′) ∪ Y′′) ⊂
W140. �

Proof of Lemma 4.2. We rely on the proof of the Steinhaus property for Aut(Q,<) [RS07, The-
orem 15] and use close notations. For an edge e = {x, y} ∈ E , the group Ge is isomorphic to
A, the subgroup of G fixing two end points. We also denote D(x, y) by D(e).

We now define a moiety for ∪e∈ED(e). We define a linear order ≤ on [x, y] that is Ge-
invariant by s ≤ t ⇐⇒ s ∈ [x, t]. We choose increasing sequences (xe

i )i∈Z of regular points
in [x, y] such that xe

i → y when i → +∞ and xe
i → x when i → −∞. The moiety associated

to this family of sequences is

X =
⋃

e∈E ,n∈Z

D(xe
2n, xe

2n+1).
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For such a moiety X, we denote by A(X) the subgroup of E supported on X. As in [RS07,
Lemma 16], we have

E =
⋃

X,Y∈D

A(X)A(Y)

where D is the set of moieties of ∪e∈ED(e).
We claim that for any X ∈ D, A(X) ⊂ W48, which is sufficient to prove the lemma. Let us

fix some moiety X and for simplicity, let us write Ie
n = D(xe

2n, xe
2n+1). Thus

X =
⋃

e∈E ,n∈Z

Ie
n.

A sub-moiety of X is a moiety of the form ⋃
e∈E ,n∈Z

Ie
ϕ(n)

where ϕ : Z→ Z is injective. Using countably many disjoint sub-moieties of X, with a similar
argument as in Lemma 4.1, one get the existence of a sub-moiety X0 such that A(X0) ⊂W12.
Now, choose a continuum (Xα) of almost disjoint sub-moieties of X0. As above, the existence
of such almost disjoint sub-moieties is a consequence of [Sie28].

Writing
Xα =

⋃
e∈E ,n∈Z

Ie
ϕα(n),

we set Je
α,2n = Ie

ϕα(n)
= D

(
xe

2ϕα(n)
, xe

2ϕα(n)+1

)
and Je

α,2n+1 = D
(

xe
2ϕα(n)+1, xe

2ϕα(n+1)

)
. This

way, each D(e) is the union ∪n∈Z Je
α,n and two consecutive Je

α,n have a unique common point
that is a non-branch point. One can find gα ∈ E such that for all e ∈ E , gα(Je

n,α) = Je
n+1,α.

There is α 6= β and k ∈ G such gα, gβ ∈ kW and thus g−1
β gα, g−1

α gβ ∈W2.
If Ie

n is not in the moiety Xα (i.e. Ie
n ⊂ Je

α,2m−1 for some m ∈ Z) then gα(Ie
n) ⊂ Je

α,2m. By
almost disjointness, for all but finitely many m, Je

α,2m ⊂ X \ Xβ and thus g−1
β (Je

α,2m) ⊂ Xβ. So

for all n such that Ie
n /∈ Xα except a finite number, Xα then g−1

β gα(Ie
n) ⊂ Xβ. Similarly, for all

n such that Ie
n /∈ Xβ except a finite number, g−1

α gβ(Ie
n) ⊂ Xα. Moreover, there are only finitely

many n such that Ie
n ∈ Xα ∩ Xβ. In conclusion, for all but finitely many n,

(1) g−1
β gα(Ie

n) ⊂ Xβ or g−1
α gβ(Ie

n) ⊂ Xα.

Let n1(e), . . . , nk(e) be the indices such that the Condition (1) is not satisfied. By density of
W2 in E, one can find he ∈ W2 such that h(Ie

n1(e)
∪ · · · ∪ Ie

nk(e)
) ⊂ X0 for all e ∈ E . Let X1 be

the union of all Ie
n such that g−1

β gα(Ie
n) ⊂ Xβ, X2 the union of all Ie

n such that g−1
α gβ(Ie

n) ⊂ Xα

and X3 = ∪e∈E Ie
n1(e)
∪ · · · ∪ Ie

nk(e)
. Since X = X1 ∪ X2 ∪ X3,

A(X) = A(X1)A(X2)A(X3).

Morever, each A(Xi) is included in a conjugate of A(X0) by g−1
β gα, g−1

α gβ or he, that are
elements of W2. So, A(Xi) ⊂W16 and A(X) ⊂W48. �

Remark 4.3. A closed subgroup of S∞ has the automatic continuity property as soon as the
stabilizer of some point has the same property. So, to get only the automatic continuity
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property for G∞, it is easier to prove that the stabilizer of a branch point is Steinhaus which
is a slightly simpler version of Lemma 4.1.

In a Polish group G, an element is generic if its conjugacy class is comeager. A group G
has ample generics if for any n ∈ N, the diagonal conjugacy action G y Gn has a comeager
orbit. An element in Gn whose orbit is comeager is also called generic. The existence of ample
generics is a very strong property and it implies the Steinhaus property [KR07]. Even if the
group G∞ has the Steinhaus property, it does not have ample generics. Here is a more precise
version of Proposition 1.9.

Proposition 4.4. There is no comeager orbit in the diagonal conjugacy action G∞ y G∞ × G∞

In [KR07, §3&6], a framework for existence of generic elements and ample generics is
introduced. The notion of turbulence plays a key role. Let us recall the definition in the
particular case of non-archimedean Polish groups. Let G be a closed subgroup of S∞ acting
continuously on some Polish space X. A point x ∈ X is turbulent if for any open subgroup
V ≤ G, x ∈ Int

(
V · x

)
that is x lies in the interior of the closure of its V-orbit. This notion is

important for us because of the following.

Proposition 4.5 ([KR07, Proposition 1.4]). Let G be a closed subgroup of S∞ and suppose G acts
continuously on the Polish space X. Then the following are equivalent for any x ∈ X:

(1) the orbit Gx is a dense Gδ-subset;
(2) the orbit Gx is dense and turbulent.

Proof of Proposition 4.4. We prove that the existence of a generic pair ( f , g) ∈ G2
∞ under the

diagonal conjugacy action would yield a generic pair in Aut(Q,<) and thus would contra-
dict [Tru07, Theorem 2.4].

Let ( f , g) be such a generic pair. Let x, y be distinct branch points in D∞ and let us denote
U = Fix(x, y). By density, we may assume that ( f , g) ∈ U2. Let us fix some identification

ι : Br(D∞)∩]x, y[→ (Q,<).

This yields a continuous and open surjective homorphism

Π : U → Aut(Q,<).

Let us denote (ϕ, ψ) the image of ( f , g) by Π×Π. Any open subgroup of Aut(Q, V) contains
some open subgroup V = Fix(x1, . . . , xn) with x1, . . . , xn ∈ Q. Let us set the subgroup
Ṽ = Π−1(V) that is Fix(x, ι−1(x1), . . . , ι−1(xn), y). By turbulence of ( f , g), we know that
( f , g) ∈ Int

(
Ṽ · ( f , g)

)
and thus (ϕ, ψ) ∈ Int

(
V · (ϕ, ψ)

)
. So (ϕ, ψ) is turbulent.

It remains to show that the orbit of (ϕ, ψ) is dense. The orbit G · ( f , g) is comeager and
since U has countable index in G, U · ( f , g) is non-meager. Moreover, this orbit is included
in U2, so it is non-meager in U2. Thus, there is a (non-empty) basic open set Ṽx,y,z of U2 such
that U · ( f , g) is dense in Ṽx,y,z where

Ṽx,y,z =
{
( f ′, g′) ∈ U2; f ′(xi) = yi, g′(xi) = zi, ∀i ∈ {1, . . . , n}

}
and

x = (x1, . . . , xn) ∈ (Br(D∞) \ {x, y})n ,
y = (y1, . . . , yn) ∈ (Br(D∞) \ {x, y})n ,
z = (z1, . . . , zn) ∈ (Br(D∞) \ {x, y})n .
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Now a basis of open subsets of Aut(Q,<)2 is given by subsets

Vp,q,r =
{
(ϕ′, ψ′); ϕ′(pi) = qi, ψ′(pi) = ri, ∀i ∈ {1, . . . , m}

}
where p, q, r are m-tuples of distinct points in Q. Let z ∈]x, y[ such that ]z, y[ does not contain
any image of elements of x, y, z by the retraction D∞ → [x, y]. Up to conjugate by an element
of U, we may assume that {ι−1(ti), ι−1(pi), ι−1(ri), ; i ∈ {1, . . . , m}} is included in ]z, y[ and
thus Ṽx,y,z ∩ Ṽι−1(p),ι−1(q),ι−1(r) is a non-empty open subset that meet U · ( f , g). This implies
that the orbit of (ϕ, ψ) meets Vp,q,r. �

5. UNIVERSAL MINIMALITY OF THE TOPOLOGY

Let us recall that on any set X, the set of topologies is partially ordered by finess. For two
topologies τ1, τ2, τ1 < τ2 (τ2 is finer than τ1) if and only if τ1 ⊆ τ2 (as subsets of 2X).

For a Hausdorff topological group (G, τ), one say that the group is minimal if τ is minimal
among Hausdorff group topologies on G and the topological group is universally minimal if
it is a least element. The goal of this section is to show that GS with its natural topology is uni-
versally minimal. By the natural topology, we mean the compact-open topology associated
to the action on the dendrite and let us recall that it coincides with the non-archimedean one
coming from the action on the set of branch points. For this natural topology, the stabilizers
of branch points are open subgroups and generate the topology.

Let us fix S ⊆ N≥3 and let us denote U the collection of all D(x, y), the unique connected
component of DS \ {x, y} that contains ]x, y[, where x and y are distinct branch points. For
U, V ∈ U , let

O(U, V) = {g ∈ GS, g(U) ∩V 6= ∅}.
Let us fix some Hausdorff group topology τ on GS. For the remainder of this section, any

topological property on GS is with respect to τ. The starting point is the standard fact that
centralizers CG(g) of any element g are closed in any Hausdorff topological group G.

Lemma 5.1. For any U, V ∈ U , O(U, V) is open.

Proof. The complement of O(U, V) is C(U, Vc) = {g ∈ GS, g(U) ⊆ Vc}. Following an
observation due to Kallman [Kal86, Theorem 1.1], C(U, Vc) is closed. Actually, we claim
that

C(U, Vc) =
⋂
g,h

{ f ∈ GS, f g f−1 ∈ CGS(h)}

where g ranges over all element with support in U (equivalently in U) and h ranges over all
elements with support in V.

Let k ∈ GS. Assume there is x ∈ V such that k(x) 6= x, then one can find h ∈ GS
with support on V, fixing f (x) and not x. Thus an element k commutes with all elements
h supported on V if and only if Supp(k) ⊂ Vc. Since Supp( f g f−1) = f (Supp(g)), f ∈
C(U, Vc) if and only if for all g supported on U, f (Supp(g)) ⊂ Vc, that is f (U) ⊂ Vc. �

Proof of Theorem 1.7. It suffices to show that for any x ∈ Br(DS), Fix(x) is open.
Let us fix some branch point x and let Ux,3 be the subset of {U = (U1, U2, U3) ∈ U 3} such

that the Ui’s lie in distinct components of DS \ {x}. Observe that if U ∈ Ux,3 and g ∈ Fix(x)
then g(U1), g(U2), g(U3) lie in 3 distincts components of DS \ {x}. Moreover, the following
converse holds: if for some U ∈ Ux,3 and each i, g(Ui) intersects some Vi ∈ U where V ∈ Ux,3
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then g ∈ Fix(x). To see this fact, choose xi ∈ f−1(Vi) ∩Ui for each i then x, the center of
[x1, x2, x3] is also the center of [ f (x1), f (x2), f (x3)] and thus f (x) = x. So Now, Fix(x) is
open because

Fix(x) =
⋃

U,V∈Ux,3

O(U1, V1) ∩O(U2, V2) ∩O(U3, V3).

�

6. SMALL INDEX SUBGROUPS

Let us recall that a Polish group has the small index property if any subgroup of small index,
i.e. of index less than 2ℵ0 , is open. For example S∞ and Aut(Q,<) have this property.

Let us start with an example that will be useful for us. Let us denote by Gξ the stabilizer
in G∞ of some end point ξ ∈ D∞.

Proposition 6.1. The Polish group Gξ has the small index subgroup property.

Proof. This is a consequence of [DHM89, Theorem 4.1]. This theorem states that the automor-
phism group of a countable 2-homogeneous tree which is a meet-semilattice has the small
index property.

Let us consider the countable set Br(D∞) endowed with the order x ≤ξ y ⇐⇒ x ∈
[ξ, y]. As it appears in [DM16b, Example 5.2], (Br(D∞),≤ξ) is dense semi-linear order and
it is a meet semi-lattice where the meet of a, b ∈ Br(D∞), that is the infimum of {a, b}, is
a ∧ b = c(a, b, ξ) ∈ Br(D∞). Moreover it is 2-homogeneous, that is any isomorphism be-
tween two subsets with 2 elements extends to an isomorphism of (Br(D∞,≤ξ). Actually, for
a, b, a′, b′ ∈ Br(D∞), if ({a, b},≤ξ) and ({a′, b′},≤ξ) are isomorphic then the labeled graphs
〈{a, b, ξ}〉 and 〈{a′, b′, ξ}〉 are isomorphic and one can find g ∈ G∞ that induces this partial
isomorphism by Proposition 2.2.

Now, by [DM16b, Corollary 5.21], Aut(Br(D∞),≤ξ) ' Gξ and thus Gξ has the small index
property. �

Let Ω be a countable infinite set with full permutation group S∞. For a group G, we
denote by G o S∞ the (unrestricted permutational) wreath product GΩ o S∞. The action of
S∞ on GΩ is by permutation of the coordinates. If σ ∈ S∞ and (gω)ω ∈ GΩ then

σ · (gω) = (gσ−1ω)ω.

If the role of Ω shall be emphasized, we denote the above wreath product G oΩ S∞.
In the particular case where G is a closed subgroup of S∞ acting on a countable set Λ and

another copy of S∞ acts as above on the countable set Ω, the wreath product G o S∞ acts on
Λ×Ω with the imprimitive action. This action is given by the following formula:

((gω), σ) · (λ, ω′) =
(

gσ(ω′)λ, σ(ω′)
)

.

This action embeds G o S∞ as a closed subgroup of the symmetric group of Λ×Ω and thus
it has a natural Polish topology and we will consider this group with this topology.

Theorem 6.2. Let G be a closed subgroup of S∞ with a comeager conjugacy class and the small index
property. The wreath product W = G o S∞ is a Polish group with the small index property.

Lemma 6.3. Let G be some closed subgroup of S∞. The group G has the small index property if and
only if the stabilizer of any point in G has the small index property.
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Before proving Theorem 6.2 and Lemma 6.3, let us see how they imply Theorem 1.10, that
is G∞ has the small index property.

Proof of Theorem 1.10. Thanks to Lemma 6.3, we know that G∞ has the small index property
if and only if the stabilizer Gb of some branch point b has the same property. Since Gb is
isomorphic Gξ oCb S∞ where Gξ (see [DM16b, Lemma 7.1]), the theorem is a consequence of
Theorem 6.2 and Proposition 6.1. �

Proof of Lemma 6.3. Let H be a subgroup of small index of G and Gx be the stabilizer of some
point x ∈ Ω. One has |Gx : H ∩ Gx| ≤ |G : H| < 2ℵ0 . So if Gx has the small index property
then H ∩ Gx is open in Gx so H ∩ Gx is open in G and thus H is open in G.

Conversely, let H be a subgroup of small index of Gx. By the index formula,

|G : H| = |G : Gx| |Gx : H|.

Since Ω is countable |G : Gx| ≤ ℵ0 and thus |G : H| < 2ℵ0 . So H is open in G and thus in
Gx. �

Lemma 6.4. Let G be a Polish group with a comeager conjugacy class. If N is a normal subgroup of
small index then N = G.

Proof. Let C be the comeager conjugacy class. It suffices to show that C ∩ N 6= ∅. Otherwise
by normality, C ⊂ N and thus G = C · C ⊂ N.

Since N has small index then N is not meager [HHLS93, Theorem 4.1] (see also [KR07,
Lemma 6.8] for a very short proof), so N ∩ C 6= ∅ and we are done. �

Our proof that G o S∞ has the small index subgroup property borrow the original ideas
that lead to prove the property for S∞ [DNT86, Theorem 1]. We not only use the result but
also the proof itself and thus reproduce some of the arguments there. Let us recall that a
moiety of Ω is subset Σ that is infinite and co-infinite.

Proof of Theorem 6.2. Let H be a subgroup of W of small index. Let (Σi) be an infinite col-
lection of disjoint moieties of Ω. Let Wi = G oΣi Sym(Σi) ≤ Sym(Λ×Ω) be the subgroup
of permutations supported on Λ× Σi. More precisely, ((gω), σ) ∈ Wi if Supp(σ) ⊂ Σi and
gω = e for ω /∈ Σi. By disjointness of the supports, for i 6= j, Wi ∩Wj is trivial and these two
subgroups commute. Let P be the product subgroup ∏i Wi ≤ Sym(Λ×Ω). Let Hi be the
projection of H ∩ P on Wi. We have

∏
i
|Wi : Hi| = |P : ∏

i
Hi| ≤ |P : H ∩ P| ≤ |W : H| < 2ℵ0 .

This implies that for all but a finite number, Wi = Hi. We fix such an i and simply note
Σ = Σi and W ′ = Wi. We denote by GΣ the subgroup of G o S∞ with elements of the form
((gω), e) and gω = e for ω /∈ Σ. Let g ∈ H ∩ GΣ and g′ ∈ GΣ, there is h ∈ H ∩ P such that
πi(h) = g′ where πi : P→Wi is the projection. One has g′g(g′)−1 = hgh−1 ∈ H ∩GΣ. So, the
subgroup H ∩ GΣ is a normal subgroup of GΣ of small index. The group GΣ has a comeager
conjugacy because of [RS07, Lemma 11] and the fact that G has a comeager conjugacy class.
By Lemma 6.4, H ∩ GΣ = GΣ.

We denote by Sym(Σ) the subgroup of G o S∞ of elements of the form ((gω), σ) where
gω = e for all ω ∈ Ω and Supp(σ) ⊂ Σ. Since Sym(Σ) ∼= S∞ and the non-trivial normal
subgroups of S∞ are the finitary symmetric and alternating subgroups, which are of index
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2ℵ0 ,we know that for H ∩ Sym(Σ) = Sym(Σ). Now, W ′ = G oΣ Sym(Σ) is generated by GΣ

and Sym(Σ). Thus H ≥W ′.
Following the proof of [DNT86, Theorem 1], we choose a continuum of almost disjoint

moieties (Σα) of Σ and an involution gα ∈ S∞ exchanging Σα with Ω \Σ and fixing pointwise
Σ \ Σα. By the pigeonhole principle, for some α 6= β, gα and gβ are in the same H-class
and thus g = g−1

β gα is in H. Let Σ′ = g(Σ), then G oΣ′ Sym(Σ′) = gW ′g−1 ≤ H. Since
Σ ∪ Σ′ = Ω \ gβ(Σα ∩ Σβ) and Σ ∩ Σ′ = Ω \ gβ(Σα ∪ Σβ) are infinite, the first lemma of
[DNT86] shows that H0 = G oΣ∪Σ′ Sym(Σ ∪ Σ′) ⊂ H.

Let us denote by F the finite set gβ(Σα ∩ Σβ). For f ∈ F, let G f ≤ G oΩ S∞ be the corre-
sponding copy of G acting on Λ × { f }. The subgroup H f = H ∩ G f has small index and
thus is open in G f . Now

H ≥
(
Π f∈F H f

)
× H0.

The right hand side being open (containing the pointwise stabilizer of a finite number of
points), H is open as well. �

7. UNIVERSAL MINIMAL FLOW

The goal of this section is to identify, in Theorem 7.16, the universal minimal flow of
G∞. For a general topological group G (for example a locally compact group), this universal
minimal flow M(G) is a huge compact space, often non-metrizable. After [Pes98, GW02,
KPT05] a general framework emerged to identify universal minimal flows of some Polish
groups. One may have a look to [Pes06] for a survey.

Let us recall that a Hausdorff topological group is extremely amenable if any continuous
action on a compact space has a fixed point. The idea to identify the universal minimal is to
find an extremely amenable subgroup G∗ of the Polish group G and consider the completion
Ĝ/G∗ (for the quotient of the right uniform structure on G) of G/G∗. The extreme amenabil-
ity of G∗ can be obtained thanks to a Ramsey property. We recommend [MVTT15, BYMT17]
for more details about this strategy and for relations between the existence of a comeager
orbit in M(G) and the metrizability of M(G).

We follow this strategy and we introduce the tools we use below.

Definition 7.1. Let X be a dendrite. A linear order ≺ is on Br(X) is converging if for any
x, y, z ∈ Br(X), y ∈]x, z[ =⇒ y ≺ x or y ≺ z.

The meaning of the adjective converging appears in the following lemma: minimizing
sequences converge to a unique point that we call the root below.

Lemma 7.2. Let X be a dendrite and ≺ be a converging linear ordering on Br(X). There is a unique
point x0 ∈ X which is the limit of any minimizing sequence. Moreover, for any a, b ∈ Br(X), if
a ∈ [x0, b] then a � b.

Proof. Let (xn) be a minimizing sequence (i.e. for any x ∈ Br(X), there is N such that for
any n ≥ N, xn � x). By compactness, this sequence has at least one adherent point in
X. Assume there are two adherent points, that is we have two subsequences xϕ(n), xψ(n)
converging respectively to xϕ and xψ. Let x ∈]xϕ, xψ[. For n large enough, x ∈]xϕ(n), xψ(n)[

and thus x ≺ xϕ(n) or x ≺ xψ(n). So we have a contradiction and (xn) converges to some point
x0. Replacing (xϕ(n)) and (xψ(n)) by any two minimizing sequences, the same argument
shows that the limit point x0 is independent of the choice of the minimizing sequence.
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FIGURE 2. The simple dendrite D with a converging but not convex linear
order ≺.

Now, let a, b ∈ Br(X) with a ∈ [x0, b]. For n large enough a � xn and a ∈ [xn, b] thus
a � b. �

The point x0 is called the root of the converging linear order ≺.

Definition 7.3. Let X be a dendrite and ≺ a converging linear order with root x0. The order
≺ is convex if for a, b ∈ Br(X), c = c(a, b, x0), a′ ∈ [a, c] and b′ ∈ [b, c],

a ≺ b =⇒ a′ ≺ b′.

Remark 7.4. Let us observe that a general converging linear order is not necessarily convex.
Let us consider the simple dendrite D in Figure 2 with the converging linear order ≺ such
that

• x0 is the root,
• c ≺ a, a′, b, b′,
• a, a′ ≺ b, b′,
• a ≺ a′,
• b′ ≺ b.

The conditions a ≺ a′ and b′ ≺ b show that this order is not convex.

We denote by CCLO(X) the set of convex converging linear orders on Br(X). It is clear
from the definition that CCLO(X) is a metrizable Homeo(X)-flow since it is a closed invari-
ant subspace of the space of all linear orders LO(Br(X)) on Br(X) which is compact for the
pointwise convergence.

We observe that a convex converging linear order ≺ induces an linear order ≺x on the
connected components around a given point x.

Lemma 7.5. Let x ∈ X, ≺∈ CLO(X) with root x0. Let C, C′ ∈ Cx distinct and that do not contain
the root. Then,

(∀c ∈ C, ∀c′ ∈ C′, c ≺ c′) ∨ (∀c ∈ C, ∀c′ ∈ C′, c � c′).

Proof. Let y0 be the image of the root x0 by the first point map to the subdentrite C∪{x}∪C′.
Since x0 /∈ C ∪ C′, y0 = x.

Choose a ∈ C and b ∈ C′. Assume that a ≺ b. Now by convexity of the order, for any
c ∈ C and c′ ∈ C′, Let a′ = c(c, a, x) and b′ = c(b, c′, x). By convexity, a′ ≺ b′ and thus
c ≺ c′. �
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In the first case, we write C ≺x C′ and otherwise we write C′ ≺x C. This defines a linear
order on Cx if x = x0 and on Cx \ Cx(x0) if x 6= x0.

Remark 7.6. Let us observe that convex and converging linear orders have the following
stability property: If ≺∈ CCLO(X) and Y is a subdendrite of X then ≺ |Br(Y) ∈ CCLO(Y). If
x0 is the root of ≺ then πY(x0) is the root of ≺ |Br(Y).

We will see in Theorem 7.16 that the universal minimal G∞-flow is CCLO(D∞). For the
remaining of this section, we fix some ξ ∈ Ends(D∞). For a branch point c, let us denote by
Cc,ξ the space Cc \ Cc(ξ).

Lemma 7.7. For each branch point c, fix a linear order ≺c on the set Cc,ξ that is isomorphic to Q
with its standard linear order <. Then there is a convex converging linear order ≺0 on D∞ such that
the root is ξ and for any branch point c, the linear order induced on the components of Cc,ξ is ≺c.

Proof. We define ≺0 in the following way: for a 6= b ∈ Br(D∞), if c(a, b, ξ) = a then a ≺0 b
(and b ≺0 a if c(a, b, ξ) = b). If c = c(a, b, ξ) 6= a, b then a ≺0 b ⇐⇒ Cc(a) ≺c Cc(b).

Let us check it is a convex converging linear order. Totality and antisymmetry are immedi-
ate. Let a, b, c ∈ Br(D∞) such that a ≺0 b ≺0 c and let us note d = c(a, b, ξ) and e = c(b, c, ξ).
There are three (mutually exclusive) possibilities: e ∈]ξ, d[, d = e or e ∈]d, b]. In the first case
a ∈ Ce(b), Ce(a) ≺e Ce(c). In the second one, a ∈ [ξ, c[ (if a = d) or Cd(a) ≺d Cd(e) and in the
last one Cd(a) ≺d Cd(c). So, in all cases, a ≺0 c.

This order is converging because if a, b ∈ Br(D∞) and c = c(a, b, ξ) then a is maximum on
[c, a] and b is a maximum on [c, b]. Finally this order is convex by construction. �

Remark 7.8. The order ≺0 depends a priori on the choice of the linear orders ≺c for all
branch points. Actually, a different choice of orders isomorphic to (Q,<) leads to an order
≺ such that there is g ∈ G∞ fixing ξ with x ≺ y ⇐⇒ g(x) ≺0 g(y) for all x, y ∈ Br(D∞).
This can be obtained thanks to a back and forth argument on Br(D∞). In what follows, we
will not use that fact and we will fix the order (≺c)c∈Br(D∞) in the proof of Proposition 7.12
and thus we will forgot the dependency on this choice.

Proposition 7.9. The group StabG∞(≺0) is extremely amenable.

To prove the extreme amenability of this group, we used the seminal idea that a closed
subgroup of S∞ is extremely amenable if and only if it is the automorphism group of some
Fraïssé limit of a Fraïssé order class with the Ramsey property [KPT05, Theorem 4.7]. We
now describe the Fraïssé class and the Ramsey theorem needed to prove Proposition 7.9. We
essentially follow [Sok15].

A (meet) semi-lattice is a poset (A,≤) such that for any two elements a, b ∈ A, the pair
{a, b} has a greatest lower bound (that is an infimum) denoted by a ∧ b and called the meet
of a and b. It satisfies the following three properties for all a, b, c ∈ A:

• a ∧ a = a,
• a ∧ b = b ∧ a and
• (a ∧ b) ∧ c = a ∧ (b ∧ c).

Actually, from a binary operation ∧ satisfying the above three properties, one can recover
the partial order ≤ by defining a ≤ b ⇐⇒ a ∧ b = a. A semi-lattice (A,≤,∧) is treeable if it
has a minimum called the root and all the sets a↓ = {b ∈ A; b ≤ a} are linearly ordered.

A linear order ≺ on a treeable semi-lattice (A,≤,∧) is a linear extension of ≤ if a < b =⇒
a ≺ b and it is convex if for any a, a′, b, b′ ∈ A such that a ∧ b � a′ � a and a ∧ b � b′ ≺ b,
a ≺ b ⇐⇒ a′ ≺ b′.
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We denote by CT the class of finite treeable semi-lattices with a convex linear extension
(A,≤,∧,≺).

Remark 7.10. If (A,≤A,∧A,≺A) and (B,≤B,∧B,≺B) are elements of CT , an embedding of
A in B is an injective map ϕ : A → B such that for all a, a′ ∈ A, ϕ(a ∧A a′) = ϕ(a) ∧B ϕ(a′)
and a ≺A a′ =⇒ ϕ(a) ≺B ϕ(a′).

We emphasize that this notion of embeddings does not coincide with the notion of em-
beddings for graphs. In our situation, once can add a vertex in the middle of an edge and
this is impossible for graphs embeddings.

Let us introduce the following partial order on Br(D∞): a ≤ b ⇐⇒ a ∈ [ξ, b].

Lemma 7.11. The poset (Br(D∞),≤) is a treeable semi-lattice and ≺0 is a convex linear extension
of ≤.

Proof. It is straightforward to check that it is a treeable semi-lattice with meet a∧ b = c(a, b, ξ)
for any a, b ∈ Br(D∞). The fact that ≺0 is a convex linear extension of < follows from the
properties given in Lemma 7.7. �

Proposition 7.12. The Fraïssé limit of CT is (Br(D∞),≤,∧,≺0).

To prove this proposition, we rely on the relation between semi-linear orders and dendrite
with a chosen end point developped in [DM16b, §5]. A partially ordered set (X,≤) is a semi-
linear order if for any x, y ∈ X, there z ∈ X such that z ≤ x, y and for all x ∈ X, the downward
chain x↓ = {y ∈ X, y ≤ x} is totally ordered. Treeable semi-lattices are particular cases of
semi-linear orders.

A partially ordered set (X,≤) is dense if for all x, y such that x < y there is z ∈ X and
x < z < y. An important point of [DM16b, §5] is to show that a countable dense semi-linear
order T can be canonically embedded in some dendrite T̂ and the order is given by some
end point as in Lemma 7.11.

For example the order on D∞ defined by x ≤ y ⇐⇒ [ξ, x] ⊆ [ξ, y], is a dense semi-linear
order.

Proof of Proposition 7.12. It is know that CT is a Fraïssé class [Sok15, §4]. Let (CT,≤,∧,≺)
be its Fraïssé limit. One checks easily that (CT,≤) is a dense semi-linear order. The density
actually follows from the amalgamation property of the Fraïssé limit: for any x, y, such x < y,
one can find z such x < z < y. By [DM16b, Proposition 5.15 & Theorem 5.19], CT can be
embedded in a semi-linear order D = CT

∧
that can be topologized to be a dendrite. To show

that D ' D∞, we use the characterization of D∞. This is the only dendrite without free arc
such that all branch points have infinite order. One can conclude by showing that CT is
exactly the set of branch points of D, this set is arcwise dense and that any branch point has
infinite order. Let us show these properties.

Recall that D is the set of full down-chains of (CT,≤) where a chain is a totally ordered
subset of CT. A chain C is a down chain if x ∈ C =⇒ x↓ ⊂ C and it is full if it contains its
supremum or has no supremum in CT. The set CT is embedded in D via the map x 7→ x↓.

We now identify arcs and branch points in D. Let C1, C2 ∈ D and C = C1 ∩ C2 which is
the infimum C1 ∧ C2. It appears in the proof of [DM16b, Theorem 5.19] that for any C ∈ D,
{x ∈ D, x ≤ C} is exactly the arc from the point C of D to the minimum. Since C ⊂ C1,
{x ∈ D, C ≤ x ≤ C1} is the arc [C1, C]. Similarly [C2, C] = {x ∈ D, C ≤ x ≤ C2}. Since
these arcs have an intersection reduced to C, [C1, C2] = [C1, C] ∪ [C, C2]. So, we deduce that
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for any C1, C2, C3 ∈ D, the center c(C1, C2, C3) is Ci ∧ Cj for some i, j ≤ 3 (it is actually the
maximum among C1 ∧ C2, C2 ∧ C3 and C3 ∧ C1).

Let C be some branch point in D. There are C1, C2, C3 such that C = c(C1, C2, C3) and
C 6= Ci for all 1 ≤ i ≤ 3. There are i, j such that C = Ci ∧ Cj. Choose x ∈ CT such
that C < x < Ci and C < y < Cj. So C = Ci ∧ Cj = x ∧ y ∈ CT. To conclude that
D ' D∞, it remains to show that a point of CT has infinite order. Let us consider the
following finite treeable semilattice (A,≤,≺): A = {x0, x1, . . . , xn}, x0 ≤ xi for all i ≤ n,
xi, xj are incomparable for ≤ if i, j 6= 0 and ≺ is any linear order such that x0 is a minimum.
For any embedding ϕ of A in D via CT, the image of x0 has order at least n because the xi’s are
mapped to different connected components of D \ {ϕ(x0)} because ϕ(xi) ∧ ϕ(xj) = ϕ(x0)
and thus ϕ(x0) ∈ [ϕ(xi), ϕ(xj)]. Since CT is homogeneous, it means that each point of CT
has order at least n and thus all these points have infinite orders. Let us finish the proof by
showing that CT is arcwise dense. Let C1 6= C2 ∈ D. We know that [C1, C2] = [C1, C]∪ [C, C2]
where C = C1 ∧ C2. Since C1 6= C2, there is i such that Ci 6= C. So, C < Ci, and since C and
Ci are full down-chains, there is x ∈ CT that belongs to C1 and not to C. So x ∈ [C1, C2] and
D is arcwise dense.

So (ĈT,≤) ' (D∞,≤) and CT corresponds to Br(D∞) in this identification. Let c ∈
Br(D∞). Two points a, b ∈ Br(D∞) such that a, b > c, are in the same connected of Cc if and
only if c(ξ, a, b) 6= c that is if and only if a∧ b > c. Since≺ is convex, it induces a dense linear
oder ≺c on elements of Cc that do not contain ξ . By the amalgamation property each order
≺c is countable and dense thus isomorphic to (Q,<) and ≺0 is obtained by Lemma 7.7. �

Lemma 7.13. The groups Aut(Br(D∞),≤,∧,≺0) and StabG∞(≺0) are isomorphic.

Proof. It is proved in [DM16b, Corollary 5.21] that Aut(Br(D∞),≤) ' StabG∞(≺0) and the
lemma follows. �

We can now prove Proposition 7.9.

Proof of Proposition 7.9. Thanks to [KPT05, Theorem 4.7], it suffices to show that the group
StabG∞(≺0) is the automorphism group of some Fraïssé limit of some Fraïssé order class
with the Ramsey property. By Lemma 7.13, StabG∞(≺0) is the automorphism group of the
limit of the class CT and this class has the Ramsey property [Sok15, Theorem2]. �

Let us denote by CCLO(D∞)ξ the closed subspace of CCLO(D∞) of convex converging
linear orders with root ξ. For brevity we denote Gξ = StabG∞(ξ).

Lemma 7.14. Any G∞-orbit in CCLO(D∞) is dense. Similarly, any Gξ-orbit in CCLO(D∞)ξ is
dense.

Proof. One has to show that for any pair ≺1,≺2∈ CCLO(D∞) and any finite subset F ⊂
Br(D∞), there is g ∈ G∞ that induces an isomorphism from (F,≺1) to (gF,≺2) (i.e. for any
x, y ∈ F, x ≺1 y ⇐⇒ g(x) ≺2 g(y)); and moreover if ξ is the root of ≺1 and ≺2 then g can
be chosen in Gξ .

For any finite set F in a dendrite, the subdendrite [F], that is the smallest subdendrite
containing F, has finitely many branch points. So, up to add these branch points to F, we
assume that F is c-closed. We proceed by induction on the cardinality of F. If F is reduced to
a point then the result is immediate because Gξ acts transitively on branch points. Assume
F has n ≥ 2 points and we have the result for n − 1. Let m be the maximum of F for ≺1.
The converging property of ≺1 implies that m is an end point of [F] and thus F′ = F \ {m}
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is also a finite c-closed subset of Br(D∞) and thus by induction there is g1 ∈ G∞ that induces
an isomorphism from (F′,≺1) to (g1(F′),≺2). Moreover, if ≺1,≺2 have root ξ, g1 ∈ Gξ . It
remains to put m in the right position.

Claim: Let ≺ be some convex converging linear order on Br(D∞), x1, x2 ∈ Br(D∞) and
Ci ∈ Cxi such that Ci does not contain the root of ≺. If F is a finite c-closed subset such that
F ⊂ C1 and x1 ∈ F then there is a homeomorphism h from C1 to C2 such that h(x1) = x2 and
h is increasing for ≺ on F.

Proof of the claim: Once again, we argue by induction and the case where F = {x1} is
simply the fact there is a homeomorphism from C1 to C2 that maps x1 to x2. So assume F
has cardinality at least 2. Since F′ = F \ {x1} is included in C1, there is a minimal point
x′1 ∈ F′ such that for any y ∈ F, x′1 ∈ [x1, y] and this point is in fact the minimum of
F \ {x1}. Let C1

1 , . . . , Ck
1 be the connected components of C1 \ {x′1} that meet F′ and let us

denote Fi = Ci
1 ∩ F′ ∪ {x′1}. We assume that these components are numbered increasingly

(Ci
1 ≺x′ Cj

1 ⇐⇒ i < j). Choose x′2 ∈ Br(C2) and connected components C1
2 , . . . , Ck

2 ∈ Cx′2
that do not contain x2 and that are numbered increasingly. By the induction assumption,
there is hi homeomorphism from Ci

1 to Ci
2 such that h(x′1) = x′2 and hi is increasing on Fi.

Now choose any homeomorphism h′ from C1 \
(
C1

1 , . . . , Ck
1

)
to C2 \

(
C1

2 , . . . , Ck
2
)

such that
h′(x1) = x2 and h(x′1) = x′2. Finally, we patch (thanks to Lemma 2.3) h′, h1, . . . , hk to get a
homeomorphism h from C1 to C2. This homeomorphism is increasing on F thanks to the
convexity of ≺.

Let us come back to the end of the proof of the lemma. Let x be the image of m under
the first point map on F′ = F \ {m}. Since F is c-closed, x ∈ F. We denote by C1, . . . , Ck
the (increasingly numbered for ≺2) elements of Cg(x) that do not contain the root of ≺2 and
meet g(F′). Choose C′1, . . . , C′k+1 ∈ Cg(x) \ {C1, . . . , Ck} that do not contain the root of ≺2 and
are numbered increasingly. For each i ≤ k, thanks to the claim, choose a homeomorphism
hi from Ci to C′i that fixes g(x) and such that hi is increasing on g(F′) ∩ Ci. We also choose
a homeomorphism hk+1 from Cg(x)(g(m)) to Ck+1. Now, we define a homeomorphism f of
D∞ in the following way: f |Ci = hi and f |C′i = h−1

i (this is a legal definition because the Ci’s
and C′i ’s are distinct) and f is the identity elsewhere. This is a homeomorphism thanks to
the patchwork lemma. Now g = f ◦ g1 is a homeomorphism and it is increasing thanks to
the convexity of ≺2. Observe that g fixes ξ if g1 fixes ξ. �

Lemma 7.15. The action StabG∞(≺0) y Br(D∞) is oligomorphic.

Proof. For a finite subset F ⊂ Br(D∞) of some fixed cardinality, there are finitely many pos-
sibilities for the order induced by ≺0 on F. So it suffices to show that if F, F′ are two finite
subsets of Br(D∞) such that the restriction of ≺0 on F and F′ are isomorphic then there is
g ∈ StabG∞ that induces this isomorphism. We have seen that (Br(D∞),≤,∧,≺0) is a Fraïssé
limit (Proposition 7.12) and StabG∞(≺0) is its automorphism group (Lemma 7.13). So such g
exists by the ultrahomogeneity of Fraïssé limits. �

Theorem 7.16. The universal minimal G∞-flow is CCLO(D∞) and the universal minimal Gξ-flow
is CCLO(D∞)ξ .

Corollary 7.17. The universal minimal G∞-flow is metrizable and has a comeager orbit.



32 B. DUCHESNE

Let us recall that any topological group G has a left and right uniform structures. The
right uniform structure Ur has a fundamental system of entourages given by sets

{(g, h) ∈ G× G, gh−1 ∈ V}

where V is a symmetric neighborhood of the identity. For any closed subgroup H this right
uniform structure Ur yields a uniform structure on the quotient space G/H compatible with
the quotient topology. A fundamental system of entourages is given by sets

{(gH, vgH), g ∈ G, v ∈ V}

where V is a symmetric neighborhood of the identity in G. We denote by Ĝ/H the comple-
tion of G/H with respect to this uniform structure.

The closed subgroup H is co-precompact if Ĝ/H is compact. This is equivalent to the fol-
lowing condition: for any neighborhood of the identity V, there is a finite subset F ⊂ G such
that G = VFH. If G is an oligomorphic subgroup of S∞ and H a closed subgroup of G then
H is co-precompact if and only if it itself oligomorphic. See [NVT13, §2].

Let X be a G-flow and x ∈ X be some H-fixed point. It is a standard fact the orbit map

G/H → X
gH 7→ gx

is uniformly continuous and thus extends to a continuous map from Ĝ/H to X. See [Pes06,
Lemma 2.15 and §6.2].

Proof of Theorem 7.16. For brevity, let us write G = G∞ (respectively G = Gξ) and H =
Stab(<0). We identify G/H with the G-orbit of <0 in CCLO(D∞). Since CCLO(D∞) (re-
spectively CCLO(D∞)ξ) is a minimal G-flow and H = Stab(<0) is an oligomorphic sub-
group, thus co-precompact, we have a homeomorphism G/H

∧
' CCLO(D∞) (respectively

G/H
∧

' CCLO(D∞)ξ). This follows from the fact that the identification G/H with its orbit
in CCLO(D∞) is bi-uniformly continuous and H is co-precompact, see [NVT13, Corollary
1]. Now, if X is a minimal G-flow, since H is extremely amenable, we have an orbit map
G/H → X, gH 7→ gx0 where x0 is a H-fixed point. This maps is uniformly continuous and
thus extends to G/H

∧
→ X and by minimality of X, it is surjective. So, G/H

∧
' CCLO(D∞)

(respectively CCLO(D∞)ξ) is the universal minimal flow of G. �

Remark 7.18. In [Kwi18], written at the same time this work was done but this work was
finalized much later, Aleksandra Kwiatkowska describes the universal minimal flow M(GS)
of all Ważewski groups GS. So Theorem 7.16 appears as a particular case of her results. Her
description of M(GS) allows to prove that M(GS) is metrizable if and only if S is finite.

8. AMENABILITY AND FURSTENBERG BOUNDARIES

8.1. Amenability. Let G be some topological group. Let us recall that a G-flow X is strongly
proximal if the induced action on the G-flow of probability measures on X is proximal. This is
equivalent to the fact that for any probability measure m on X, the adherence of the G-orbit
of m contains a Dirac mass [Gla76, Chapter III].

A topological group is amenable if its universal Furstenberg boundary is a point, that is
any strongly proximal minimal flow is trivial. Below, we recall a few conditions equivalent
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to amenability. Let `∞(G) be the Banach space of all bounded functions on G. A function
f ∈ `∞(G) is right uniformly continuous if the orbit map

G → `∞(G)
g 7→ Rg( f )

is continuous where Rg( f )(h) = f (hg). Let us denote by Cru
b (G) the closed subspace

of bounded right uniformly continuous functions on G and let us observe that G acts iso-
metrically on Cru

b (G) by left translations Lg( f )(h) = f (g−1h). A mean on Cru
b (G) is a linear

functional m such that
(1) f ≥ 0 =⇒ m( f ) ≥ 0,
(2) m(1G) = 1.

Moreover, m is said to be G-invariant if m(Lg( f )) = m( f ) for all f ∈ Cru
b (G) and all g ∈ G.

Theorem 8.1. If G is a topological group, the following conditions are equivalent.
(1) G is amenable,
(2) any G-flow has an invariant probability measure,
(3) any affine G-flow has a fixed point,
(4) any strongly proximal G-flow has a fixed point,
(5) there is a G-invariant mean on Cru

b (G).

A proof of this theorem can be found in [Gla76, Theorem III.3.1].

Lemma 8.2. A topological group G is amenable if and only if there is an invariant probability measure
on its universal minimal flow M(G).

Proof. The condition is clearly necessary. Let us show that it is sufficient. Let X be a G-
flow. Let us choose a minimal subflow X0. By the universal property of M(G), there is a
continuous surjective G-map M(G) → X0. The image of an invariant probability measure
on M(G) is an invariant probability measure on X0 and thus one gets an invariant probability
measure on X and thus G is amenable. �

Let us fix an end ξ ∈ D∞ and denote by CCLO(D∞)ξ , the subset of CCLO(D∞) of orders
≺ with root ξ. This condition is equivalent to

∀y ∈ Br(D∞), y ∈]x, ξ] =⇒ y ≺ x.

For a branch point b, let us recall that Cb,ξ is the space Cb \ Cb(ξ). For any countable set
X, we denote by LO(X) the set of linear orders on X with its usual topology as a closed
subspace of {0, 1}X2\∆.

Lemma 8.3. The subset CCLO(D∞)ξ is closed in CCLO(D∞) and homeomorphic to the product
space Πb∈Br(D∞) LO(Cb,ξ).

Proof. The condition of convergence to ξ is given by a collection of closed conditions. Thus
CCLO(D∞)ξ is closed in CCLO(D∞).

We have seen in Lemma 7.5 that any convex converging linear order ≺ induces a linear
order ≺b on branches around b that do not contain the root. So we get a continuous map

CCLO(D∞)ξ → ∏b∈Br(D∞) LO(Cb,ξ)

≺ 7→ (≺b).



34 B. DUCHESNE

Conversely, from (≺b), we can construct an order ≺ by defining a ≺ b if and only if
a = c(a, b, ξ) or a ≺c b where c = c(a, b, ξ). One can check, as in Lemma 7.7, that this
definition yields an element in CCLO(D∞)ξ and this operation is the inverse of the map
above. �

In the remaining of this section, we denote by G the group G∞ and by Gξ the stabilizer of
the end point ξ.

Proposition 8.4. There is a Gξ-invariant measure on CCLO(D∞)ξ .

If f is a bijection between two countable sets X and Y, it induces a bijection f∗ between
linear orders on X and on Y. If ≺∈ LO(X), f∗ ≺∈ LO(Y) is defined by y( f∗ ≺)y′ ⇐⇒
f−1(y) ≺ f−1(y′).

Lemma 8.3 gives an identification between CCLO(D∞) and Πb∈Br(D∞) LO(Cb,ξ). Let us
describe how Gξ acts on the product via this identification. Any g ∈ Gξ induces a bijec-
tion σ(g, b) : Cb,ξ → Cgb,ξ . Now, if ≺∈ CCLO(D∞) corresponds to (≺b)b∈Br(D∞) then g∗ ≺
corresponds to

(
σ(g, g−1b)∗≺g−1b

)
b∈Br(D∞)

.

Proof. Let us choose b0 ∈ Br(D∞) and for each b ∈ Br(D∞), fix some bijection fb : Cb0,ξ → Cb,ξ .
For example, this bijection can be induced by an element g ∈ Gξ such that g(b0) = b.

Since S∞ is amenable, there is an invariant probability µ0 on LO
(
Cb0,ξ

)
under all bijections

of Cb0,ξ . Let us denote µb = ( fb)∗µ0 that is a probability measure on LO
(
Cb,ξ
)

and finally set
µ to be the product measure of all µb on ∏b∈Br(D∞) LO(Cb,ξ) ' CCLO(D∞). We aim to prove
that for any g ∈ G, g∗µ = µ. It suffices to prove this equality on cylinders. So, choose
distincts b1, . . . , bn ∈ Br(D∞) and mesurable sets Ai ⊂ LO(Cbi ,ξ) and set A to be the cylinder

A =
n

∏
i=1

Ai × ∏
b 6=bi

LO
(
Cb,ξ
)

.

One has

g∗(A) =
n

∏
i=1

σ(g, bi)∗Ai × ∏
b 6=gbi

LO
(
Cb,ξ
)

and thus g∗µ(A) = µ(g∗(A)) = ∏n
i=1 µgbi(σ(g, bi)∗(Ai)). One can compute

µgbi (σ(g, bi)∗(Ai)) = µ0

(
f−1
gbi

(σ(g, bi)∗(Ai))
)

= µ0

(
( f−1

gbi
◦ σ(g, bi) ◦ fbi)∗(( f−1

bi
)∗(Ai))

)
.

Since f−1
gbi
◦ σ(g, bi) ◦ fbi is a bijection of Cb0,ξ and µ0 is invariant under Sym

(
Cb0,ξ

)
,

µgbi (σ(g, bi)∗(Ai)) = µ0

(
( f−1

bi
)∗(Ai)

)
= µbi(Ai)

and thus µ (g∗(A)) = µ(A). �

As a consequence of Theorem 7.16, Proposition 8.4 and Lemma 8.2, one has the following.

Theorem 8.5. The topological group Gξ is amenable.

Finally, Theorem 1.13 is obtained as the following corollary.
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Corollary 8.6. For any point x ∈ D∞, the stabilizer Gx of x in G is amenable.

Proof. Thanks to [DM16b, Lemma 7.1], for x ∈ D∞ \ Ends(D∞), Gx splits homeomorphically
as
(
∏i∈N Gξi

)
oS∞ if x ∈ Br(D∞) and splits as G2

ξ oZ/2Z if x is a regular point. As it is well
known, a product of amenable groups is amenable and an extension of an amenable group
by another amenable group is amenable as well. So Gx is amenable. �

Remark 8.7. For any finite subset F ⊂ D∞, the stabilizer and the pointwise stabilizer of F are
amenable groups.

8.2. Universal Furstenberg boundary. Let ϕ : G/Gξ → D∞ be the orbit map gGξ 7→ gξ.
Since this map is uniformly continuous for the uniform structure coming from the right
uniform structure on G, it extends uniformly continuously to a G-equivariant surjective map
ϕ : Ĝ/Gξ → D∞. Since the G-orbit of ξ, that is Ends(D∞), is a Gδ in D∞, Effros theorem
([Hjo00, Theorem 7.12]) implies that ϕ is a homeomorphism on its image.

A fundamental system of entourages for the uniform structure on G/Gξ coming from the
right uniform strucutre on G, is given by sets

UV = {(gGξ , vgGξ), v ∈ V, g ∈ G}
where V is symmetric neighborhood of the identity in G. This uniform structure is metriz-
able (see the introduction of [MVTT15] for example). Let us push forward this uniform struc-
ture on Ends(D∞) via ϕ. So, a fundamental system of entourages for this uniform structure
is given by sets

UV = {(ζ, η), ∃v ∈ V, η = vζ}
where V is symmetric neighborhood of the identity in G. Let us denote by Ends(D∞) the

completion of Ends(D∞) by this uniform structure. So, this space Ends(D∞) is isomorphic
to Ĝ/Gξ as uniform G-space but we introduce it because we think this is more convenient
to speak about Cauchy sequences of ends points instead of Cauchy sequences of Gξ-cosets.
For b ∈ Br(D∞) and η ∈ Ends(D∞), we denote by Cb(η) the adherence of Cb(η) in Ends D∞.

Lemma 8.8. Let ξ ∈ Ends(D∞). Let (bn) be a sequence of branch points in D∞ converging to ξ.
The collection

{
Cbn(ξ)

}
is a basis of neighborhoods of ξ in Ends(D∞).

Proof. Let us first show that Cb(ξ) is a neighborhood of ξ in Ends(D∞). Let us choose a
branch point b′ ∈]b, ξ[. Now for any g ∈ G∞ fixing b and b′, gξ ∈ Cb(ξ). In particular,
UV{b,b′}(ξ) = {η ∈ Ends(D∞), ∃g ∈ V{b,b′}, η = gξ} ⊂ Cb(ξ) and thus UV{b,b′}(ξ) ⊂ Cb(ξ)

which shows that Cb(ξ) is a neighborhood of ξ in Ends(D∞).
Let F be some finite subset of Br(D∞). Let F′ be the c-closure of F. The intersection

∩b∈F′Cb(ξ) ⊂ UVF(ξ) = {η ∈ Ends(D∞), ∃g ∈ VF, η = gξ} because if η ∈ ∩b∈F′Cb(ξ) then
ξ and η lie in the same connected component of D∞ \ F′. This component has at most two
points in its boundary. The labelled graphs 〈F′ ∪ {ξ}〉 and 〈F′ ∪ {η}〉 are isomorphic and
thus, one can find g ∈ VF′ such that gξ = η by Proposition 2.2. So we have ∩b∈F′Cb(ξ) ⊂
UVF(ξ) and ∩b∈F′Cb(ξ) ⊂ UVF(ξ). Choose n large enough such that bn ∈ ∩b∈F′Cb(ξ). One has
Cbn(ξ) ⊂ ∩b∈F′Cb(ξ) and the same holds for the adherences. This shows that the collection{

Cbn(ξ)
}

is a basis of neighborhoods of ξ. �
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We can now prove Theorem 1.14, that is Ĝ/Gξ is the universal Furstenberg boundary of
G.

Proof of Theorem 1.14. Since Gξ is oligomorphic, Ĝ/Gξ is compact. Let H be the stabilizer
of ≺0 from Lemma 7.7. Since H fixes ξ, the uniformly continuous map G/H → G/Gξ

extends continuously to an equivariant surjective map Ĝ/H → Ĝ/Gξ . The minimality of

Ĝ/H implies the one of Ĝ/Gξ .
We have seen that Gξ is amenable. Let X be a minimal strongly proximal G-flow. By

amenability, there is a Gξ-fixed point x. The orbit map gGξ 7→ gx extends continuously to a

G-map Ĝ/Gξ → X an by minimality this map is surjective.

It remains to show that the action of G on Ĝ/Gξ is strongly proximal. We follow the strat-
egy that was used in the proof that the action of G∞ on D∞ is strongly proximal [DM16a,
Theorem 10.1]. Let m be a Borel probability measure on Br(D∞). Since Ends(D∞) is un-
countable, there is η ∈ Ends(D∞) such that m({η}) = 0. Let η′ be another end point,
(bn), (b′n) be sequences of branch points in [η, η′] converging respectively to η and η′. Thanks
to Lemma 8.8, m

(
Cbn(η)

)
→ 0 and thus m

(
Ends(D∞) \ Cbn(η)

)
→ 1. Let gn ∈ G fix-

ing η, η′ and such that gnbn = b′n. For any b ∈ B, one can find n large enough such that
b′n ∈ Cb(η

′) and thus Ends(D∞) \ Cb′n(η) ⊂ Cb(η′). This shows that (gn)∗m(Cb(η′))→ 1 and
thus (gn)∗m→ δη′ . �

Remark 8.9. The universal Furstenberg boundary of G∞ can also be recovered from [Zuc18,
Theorem 7.5] and Theorem 1.13.

Proposition 8.10. The map ϕ : Ĝ/Gξ → D∞ is not a homeomorphism.

Proof. We continue to identify Ĝ/Gξ with Ends(D∞). Since the spaces Ĝ/Gξ and D∞ are
compact, they have a unique uniform structure and thus it suffices to show there is a se-
quence (ξn) of end points which is Cauchy in D∞ but not in Ends(D∞). Let b ∈ Br(D∞)
and C1 6= C2 ∈ Cb. Choose (ξ2n) sequence of end points of C1 converging to b in D∞ and
similarly, choose (ξ2n+1) sequence of C2 converging to b in D∞. The sequence (ξn) converges
in D∞ and thus is Cauchy but if b′ ∈ C1 and F = {b, b′} then there is no g ∈ VF such that
gC2 = C1 and thus for any n, m ∈ N, (ξ2m, ξ2n+1) /∈ UVF and thus (ξn) is not Cauchy in
Ends(D∞). �

8.3. Another description of the universal Furstenberg boundary. Let us finish this paper
with another description of the universal Furstenberg boundary of G. For each b ∈ Br(D∞),
let us consider Cb with the discrete topology. Let Cb be its Alexandrov compacftification
and let us denote by C∞

b the added point. The product ∏b∈Br(D∞) Cb is a metrizable totally
disconnected compact space. The group G acts continuously on this product space in the
following way

g(Cb)b = (g(Cg−1b))b

where we use the convention g(C∞
b ) = C∞

gb for any g ∈ G and b ∈ Br(D∞). Let us define

K =

{
(Cb) ∈ ∏

b∈Br(D∞)

Cb, ∀b, b′, b′ /∈ Cb =⇒ Cb′ = Cb′(b)

}
.
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For C∞
b , we use the convention that for any b′ ∈ Br(D∞), b′ /∈ C∞

b . For x ∈ D∞ \ Br(D∞),
let C(x) ∈ ∏b∈Br(D∞) Cb be (Cb(x))b where Cb(x) is the connected component of D∞ \ {b}
that contains x. For each b ∈ Br(D∞), let us enumerate Cb = {Cn

b }n∈N. For n ∈ N and
b0 ∈ Br(D∞) we define Cn(b0) to be (Cb) where Cb = Cb(b0) for b 6= b0 and Cb0 = Cn

b0
.

Lemma 8.11. The space K is a closed G-invariant subset. For any C ∈ K there is x ∈ D∞ \ Br(D∞)
such that C = C(x) or there is (b, n) ∈ Br(D∞)×N such that C = Cn(b).

Proof. The conditions that define K are G-invariant and closed for the product topology. We
claim that if C ∈ K then there is at most one b such that Cb = C∞

b . Assume there are b 6= b′

that satisfy this condition. Choose b′′ ∈]b, b′[ then Cb′′ should be Cb′′(b) and Cb′′(b′) but these
components are distinct.

Let C ∈ K. For any b, b′ such that Cb 6= C∞
b and Cb′ 6= C∞

b′ then Cb ∩ Cb′ 6= ∅ because either
one is included in the other or ]b, b′[⊂ Cb ∩ Cb′ . By the Helly’s property [DM16a, Lemma
2.1], the intersection

⋂
Cb over all b’s such that Cb 6= C∞

b is non-empty and convex. If x 6= y
lie in this intersection then for b ∈]x, y[∩Br(D∞)), Cb = Cb(x) and Cb = Cb(y) which is
impossible. Thus this intersection is reduced to one point.

We conclude this lemma by observing that if x is this intersection point then for any branch
point b 6= x then Cb = Cb(x). �

Lemma 8.12. The map Ends(D∞) → K given by ξ 7→ C(ξ) is G-equivariant and injective. More-
over the image is dense in K.

Proof. The G-equivariance is the following straightforward computation:

gC(ξ) = (g(Cg−1b(ξ))b = (Cb(gξ))b = C(gξ).

It is injective because if ξ, η ∈ Ends(D∞) are distinct then for any b ∈]ξ, η[∩Br(D∞),
Cb(ξ) 6= Cb(η). To prove density it suffices to show that for any C = (Cb) ∈ K there is (ξn)
sequence of Ends(D∞) such that for any b ∈ Br(D∞), Cb(ξn)→ Cb.

If C = C(x) for x non-branch point then for any sequence (ξn) converging to x in D∞ will
be suitable because for any b, Cb(x) is open and contains x thus Cb(ξn) = Cb(x) for n large
enough. If C = Ck(b) with k finite then any sequence (ξn) of end points in Ck

b converging to
x in D∞ will be suitable for the same argument. Finally, if C = C∞(b) then a sequence (ξn)
such that ξn ∈ Cn(b) for any n ∈ N will be suitable. Actually for any b′ 6= b, Cb′(ξn) = Cb′(b)
for all n except at most one and Cb(ξ) → C∞

b because ξn eventually leaves any finite union
of elements of Cb. �

Proposition 8.13. The spaces Ends D∞ and K are isomorphic as G-flows.

Proof. The spaces Ends D∞ and K are compact and metrizable so it suffices to prove that for
any sequence for end points (ξn), (ξn) is Cauchy in Ends D∞ if and only if (C(ξn)) is Cauchy
in K. That is, (ξn) converges in Ends D∞ if and only if (C(ξn)) converges in K. This will
show that the two spaces are homeomorphic and the existence of a dense G-orbit will imply
that the homeomorphism is G-equivariant.

Let (ξn) be a convergent sequence in Ends D∞. This means that for any finite set F of
branch points, there is N ∈ N such that for any n, m ≥ N, there is g ∈ G fixing pointwise F
and such that gξn = ξm.
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Let b ∈ Br(D∞). For any k ∈ N, choose a branch point bk ∈ Ck
b . Since for any element g ∈

G fixing b and bk, Ck
b is g-invariant, one has that either eventually Cb(ξ) = Ck

b or eventually
Cb(ξ) 6= Ck

b . Thus (Cb(ξ)) is convergent in Cb and C(ξn) is convergent in K.
Conversely assume that (ξn) is a sequence of end points such that C(ξn) is convergent

in K. Let F be some finite set of branch points. Up to enlarge F, we may assume that F is
c-closed.

First let us assume there is b ∈ F such that Cb(ξn) → C∞
b . Let N such that for n ≥ N,

Cb(ξn) 6= Cb(b′) for all b′ ∈ F \ {b}. For n, m ≥ N, choose g ∈ G, switching Cb(ξn) and
Cb(ξm) such that gξn = ξm and such that g is the identity on D∞ \ (Cb(ξn) ∪ Cb(ξm)). In
particular, g fixes pointwise F and thus ξn is convergent in Ends D∞.

Now, assume there is no b ∈ F such that Cb(ξn) → C∞
b . This means that for any b ∈

F, Cb(ξn) is eventually equal to some Cb. The intersection ∩b∈FCb is one of the connected
component of D∞ \ F. Since F is c-closed, there are at most two elements of F in its boundary.
If there is only one then this intersection ∩b∈FCb is some Cb, which do not contain any b′ ∈ F
and for n, m large enough, ξn, ξm ∈ Cb and thus one can find g ∈ G∞ fixing pointwise D∞ \Cb
such that gξn = ξm. If there are two points b1, b2 in the boundary then ∩bCb = Cb1 ∩ Cb2 =
D(b1, b2) does not contain any b ∈ B. So, for n, m large enough, ξn, ξm ∈ D(b1, b2) and thus
one can find g ∈ G∞ fixing pointwise D∞ \ D(b1, b2) such that gξn = ξm. In both cases (ξn)
is convergent in Ends D∞. �

Remark 8.14. Since K is totally disconnected and D∞ is connected, this gives another proof
of Proposition 8.10.
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