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Abstract—A generalization of the array factor approach of a non-

uniform leaky wave antenna (LWA) is proposed for the 

modelling of discrete tapered LWAs. The demonstration is based 

on the Fourier transform of the illumination amplitude of a LWA 

and is thus quite general. This analysis approach can be helpful 

for design. When it is used in combination with classical 

taperization techniques, it provides an easy and powerful 

conception tool. The validity of the method is demonstrated with 

the Holey and the Honey LWAs. Taylor and cosine distributions 

were simulated and sidelobe level reduction up to     dB were 

obtained. A Holey antenna designed to work at 1.7 GHz with a 

cosine distribution was realized. Its radiation pattern was 

measured and it shows an acceptable agreement with theory and 

numerical simulations. 

 
Index Terms— non-uniform leaky-wave antenna, discrete 

antenna, array factor, sidelobe level minimization, Holey 

antenna, Honey antenna. 

I. INTRODUCTION 

NE-DIMENSIONAL LWAs are capable to produce high 

directivity fan beams with a simple feed compared to 

antenna arrays, and they exist in a planar form nowadays. 

Furthermore, in the last decade, the difficulty of emitting at 

broadside was overcome for all kinds of LWAs [1]. All those 

very interesting properties are making LWAs attractive for a 

lot of applications. 

Space-wave LWAs belong to the general class of traveling 

wave antennas. The radiating wave on a LWA is a fast wave, 

which leaks power all along the length of the waveguide. One-

dimensional LWAs are classified as uniform or periodic 

depending on the radiation mechanism they use [2, 3]. In the 

first category, the guiding structure is uniform all along the 

propagation axis and supports a leaky wave. The phase 

constant of the leaky mode, , is smaller than the wavenumber 

in vacuum, k0:  < k0. In the second category, the unperturbed 

structure supports a non-radiating wave with :  > k0. A 

periodical perturbation of period p is introduced causing the 

apparition of space harmonics. Radiation is caused by at least 

one of those space harmonics for which n. =  + 2πn/p < k0 

[4]. According to this definition, a structure showing a 

periodicity in its geometry is not necessarily classified as a 

periodic LWA. It depends on the radiating mode. 

Quasi-uniform LWAs are a subset of the uniform-LWA 

category. However, they slightly differ from uniform LWAs 

because of the presence of a periodic structure, whose period p 

is small compared to the guided wavelength, g: p/g  0. 

Due to the small periodicity, space harmonics do not play any 

role in the radiation. The radiation comes from the perturbed 

fundamental mode which is fast. Thus quasi-uniform LWAs 

show an electrical behavior similar to that of uniform LWAs 

[1-3]. For some structures, like composite right/left handed 

(CRLH) LWA [3] or Honey LWA [5], the periodic structure is 

the waveguide itself. For other structures like the Holey LWA 

[6], the periodic structure slightly perturbs the guided mode 

transforming it into a leaky mode. A schematic representation 

of those antennas is given in Fig. 1. The classification of the 

LWAs includes tapered structures even if they are neither 

strictly uniform nor periodic [2]. 

 

The fact that quasi-uniform LWAs have a small periodic 

structure is of special interest because the emitters can be 

assimilated to point emitters located at the center of the 

corresponding unit cell (UC) (Fig. 1). Caloz et al. took 

advantage of that and proposed the array factor approach to 

compute the radiation patterns of non-tapered CRLH LWAs 

[7]. A generalization of the approach is proposed in this paper 

in order to describe general discrete LWAs by an equivalent 

array factor. This allows applying classical array results to the 

domain of LWAs. With the new formulation, the radiation 

pattern of structures for which the aperture can be tapered is 

easily described. 

The treatment of tapered discrete LWA has already been 

addressed in literature with discrete approach [8, 9] but no 

closed-form formula of the radiation pattern has been derived 

until now. 
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Fig. 1   Overview of different quasi-uniform LWAs. (a) Holey LWA 

consisting in a rectangular waveguide guiding the TE10 mode over which 

holes are drilled [6]. (b) Honey LWA consisting in a dielectric waveguide 
guiding the TE10 mode over which an array of metal strips are put [5]. (c) 

CRLH LWA whose unit cell is made of interdigital capacitors and stub 

ended by a via [3]. 
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The generalization of the array factor approach is presented 

in sect. II. In sect. III, a design procedure for discrete non-

uniform LWA is proposed. The proposed method is illustrated 

with numerical examples in sect. IV. A third example of a 

tapered quasi-uniform LWA was realized and measured. 

Results are presented and compared with the theory and 

numerical simulations in sect. V. 

II. GENERALIZED ARRAY FACTOR APPROACH 

The physical principle of the array factor approach as it was 

proposed in [7] is based on the fact that the emitters of quasi-

uniform LWAs can be assimilated to localized sources. So, 

following that idea, the radiation pattern of non-tapered quasi-

uniform LWA is obtained by the product of the array factor 

(AF) with the radiation pattern of a single emitter. Because of 

the condition that p/g  0, in [7], the emitters were 

considered point sources and their radiation pattern isotropic, 

so the radiation pattern of a LWA was equal to the AF. 

In the case of tapered non-uniform LWAs, the attenuation 

constant, , is not constant and the formulas in [7] can no 

longer be used directly. We show here that a more general 

approach of the problem leads to the formulation of a 

generalized array factor approach (GAFA) for discrete tapered 

non-uniform LWAs. 

A. Derivation of the Array Factor Formula 

The radiation pattern in the far-field, R(), is the Fourier 

transform of the aperture illumination. For a continuous LWA 

oriented along the z-axis, it is [2]: 

                     
 

 

     (1) 

where L is the length of the LWA, k0 is the wave number in 

vacuum and  is the observation angle (i.e. the elevation 

angle, see Fig. 1).       denotes the continuous complex 

aperture illumination producing the desired radiation pattern. 

For continuous LWAs,       is function of the attenuation 

constant, (z), and of the phase constant in the waveguide, 

(z) [2, 8]: 

                      
 
           

 
   (2) 

where A is a proportionality constant. 

Discrete non-uniform LWAs are divided into N linear 

segments corresponding geometrically to the unit cells, Sn: 

                     (3) 

where zn is the position of the n
th

 UC along the z-axis, and dn is 

its length. The average values of the attenuation and phase 

constants along a UC are denoted by n and n. To obtain a 

specific radiation pattern with a discrete non-uniform LWA, 

n and n will be chosen in such a way that they follow a 

continuous tapering distribution known to give the desired 

radiation pattern [10]: 

                                   (4) 

The attenuation and phase constants along the discrete 

structure (here denoted with the subscript s) are assumed to be 

described by: 
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where the normalized functions, a(z) and b(z), represent the 

distribution of the attenuation and phase constants along a unit 

cell: 

         
 

 

                 
 

 

   (6) 

a(z) and b(z) are usually unknown inside the integration 

bounds of (6) but are equal to zero outside of it. A schematic 

illustration of a distribution of n, s (z) and also of a function 

a(z) are given in Fig. 2.  

For discrete non-uniform LWA, equation (1) thus becomes: 
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with: 

             
    
  

  

         

   

   

   
    
  

   
  

      
    
  

 
 

  

    

          

   

   

   
    
  

       
  

   
    
  

 
 

  

     

 

(8) 

The radiation pattern of a discrete non-uniform LWA 

immediately follows: 

           

 

   

                        

   

   

  

     
    
  

           
    
  

 

 

  

   

  

 

                                 
    
  

 

 

  

                     

(9) 

A change of variable:              is done in the integral 

over a UC in order to simplify (9): 
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with: 

 
Fig. 2   Schematic representation of the model of the attenuation constant for a 

discrete non-uniform LWA. 
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(11) 

The integral over a UC, (11), represents the normalized 

radiation pattern of a single UC. Formally, it is different for 

each UC. However, it is reasonable to presume that the 

differences from a UC to another are negligibly small. Indeed, 

in a non-uniform LWA, the physical structure of a UC is the 

same for all UCs (only the dimensions change from a UC to 

the other) and the variations of n, n, and dn are small. So, 

with that assumption, the integrals of (11) are assumed to be 

all equal to the same function of the angle , here so called 

S(). Physically, this quantity is the radiation pattern of a 

single UC. Finally, by identifying the magnitude and phase 

terms for each UC in (10): 

 

                   

   

   

   

        

   

   

  

(12) 

we obtain the expression: 

            
              

 

   

        (13) 

We recognize in (13) the expression of the product of the 

array factor of a one-dimensional antenna array fed in series 

by the radiation pattern of a single emitter [10]. In (13), the 

amplitude of each emitter can be tapered. 

If the length of a UC is very small compared to the guided 

wavelength, it is easy to show that S() becomes independent 

of , each radiator thus becomes an isotropic one. 

Also, in the special case of a non-tapered quasi-uniform 

LWA with very small UC, (13) takes the exact same form as 

the equation presented in [7]. 

The directivity of a tapered quasi-uniform LWA is 

calculated the same way as it is done for classical arrays 

[11, 12] from the radiation pattern, Rs(). In the case of small 

UC (i.e. isotropic radiators), it is: 

      
       

 

       
         

              

         
 
   

 
   

  
(14) 

Although the derivation of (12) only considers radiation plane 

of the elevation-angle ( ), the fields do exist in the transverse 

dimension of the LWA aperture (y-axis in Fig. 1). Those fields 

do contribute to the radiation pattern in the other plane and 

also to the associated whole directivity. 

B. Limits and Potential Applicability of the GAFA 

Regarding the derivation of (13), different approximations 

that have been made can limit the accuracy of the approach. 

First, equation (4) shows that the continuous leaky-wave 

tapered functions α(z) and β(z) are sampled. The effect of the 

sampling can be evaluated directly from the equivalent array 

factor obtained from (13). If we consider a LWA having a 

uniform spacing d between the UCs and also identical UCs, 

the sampling theorem [13, 14] can be applied. Thus, the 

Nyquist sampling criterion has to be verified at the top surface 

of the LWA where the radiation begins. Condition is 

then:                 The condition has to be respected also 

in the far-field:            to ensure that no grating lobes 

will appear in the visible region [13] and therefore that the 

obtained radiation pattern corresponds to the one of the 

continuous illumination distribution      . We can note that 

due to the radiation condition:  < k0, the first condition will 

be respected if the second one is. For quasi-uniform LWAs, 

the condition is usually satisfied due to the small value of the 

periodicity. If the Nyquist condition is not respected, the 

discretized expression (13) takes into account the influence of 

the grating lobes. The radiation pattern obtained with (13) can 

be compared to the desired one (continuous distribution) to 

quickly assess their effect.  

It is interesting to note that the approach can be applied to 

uniform tapered LWAs as the ones studied in [8, 15, 16]. In 

this case however, there is no UC but the structures are 

generally discretized for numerical computation. So, any 

sampling distance that satisfies the Nyquist sampling criterion 

can be chosen. Furthermore, it is possible to show that the 

discrete expression (13) takes the exact same form as the 

continuous expression (1) when the spatial sampling decreases 

toward zero. The demonstration is given in the appendix. 

The approach is also applicable with some restrictions to the 

analysis of periodic LWAs operating with higher-order 

Floquet-modes for which      is normally equal to 1/2 for 

broadside radiation. If multiple space harmonics exist in the 

structure, each of them can be described separately with (12). 

However, LWAs are generally optimized for only one 

harmonic and generally, it must be ensured that all modes 

except the desired one are non-propagating in the x-direction 

[16, 17]. 

The GAFA method can be applied to tapered LWAs in 

which both the α(z) and β(z) functions are simultaneously 

varied, since the formulation supports both variations. Indeed, 

although the majority of the works done when tapering LWAs 

consists in tapering the amplitude of the aperture distribution 

while maintaining the phase constant along the antenna to get 

a specific radiation pattern, some recent works showed that it 

is interesting to taper the phase [9, 18, 19]. In the case of near-

field focusing antennas, it is interesting to note that the 

sampling criterion has to be modified compared to far-field 

applications [14].  

Finally, we can also note that the GAFA method can 

describe structures having non-uniform spacing. This 

approach used in combination with design procedures for 

unequally spaced array [20] could lead to new kinds of 

designs. However, special attention should be paid to the fact 

that, for LWAs, the UCs are fed through the propagation of 

the wave inside the waveguide. The phase and magnitude 

function of the n
th

 cell thus depends on the previous cells as 

indicated by the sums of (12). Contrarily to classical antenna 

arrays, the phase and magnitude functions can thus not be set 

completely independently from one cell to another for LWAs. 
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III. DESIGN OF DISCRETE TAPERED LWAS 

The design procedure of a tapered uniform LWAs is well 

established [2] and several examples of implementation can be 

found in literature [8,9]. It includes three steps represented 

schematically on Fig. 3. 

 
As indicated on Fig. 3, the GAFA is an efficient analysis 

tool when the geometrical dispersion of the complex 

propagation constant is already known. However, it does not 

provide any help for the last step shown in Fig. 3 which is 

generally considered as the most difficult part of the design. It 

is also important to note that the accuracy of the GAFA relies 

directly on the accurate knowledge of the complex 

propagation constant of the leaky line. 

The first step of the procedure is the choice of the tapering 

function for the aperture illumination amplitude. For that, the 

use of any classical technique for tapered antenna arrays or 

uniform LWAs is possible. For instance, optimal solutions in 

terms of sidelobe level can be employed [10] as well as beam 

shaping techniques [8]. The distribution functions may be 

discrete or continuous. In the latter case, the Nyquist condition 

has to be verified so that the discretization errors can be 

considered negligible [13].  

The second step is the computation of the attenuation 

constant for each UC of the LWA. Assuming that the phase 

constant   does not change with z [2], the attenuation is 

calculated with the following formula: 

 

2

2 2
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i i

M

d M d M
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 

%

% %
, (15) 

where  is the efficiency of the antenna. The summations 

appear naturally when describing  with (4). Equation (15) is 

the discretized version of the equation used for tapered 

uniform LWAs [2]. 

Concerning the phase constant, a condition is found 

from (13). Indeed, to obtain the constructive interference of all 

the individual emitters in a specific direction 0, the phase 

terms of each UC have to be equal to an integer multiple of 

2. This condition is represented schematically Fig 4. This 

leads to a classical formula for phase arrays:  

 0 0

2
sinn

n

m
k

d


   , (16) 

where m is an integer. If the Nyquist condition is satisfied, the 

radiation condition  < k0 is imposing to the value of m to be 

zero. The same relation than the one for continuous structure 

is thus found between the phase constant   and the main beam 

angle   . As commonly found for fast wave structures, it does 

not depend on the distance between two consecutive cells. 

 
A distribution with non-constant values of   can lead to 

phase aberrations compared to the desired radiation pattern. 

Examples of phase aberrations can be found in [15, 21] and 

their effect are discussed in [22]. The GAFA is a quick 

method to evaluate phase aberration effects. 

The third step of the design procedure is the computation of 

the geometrical parameters of each UC as a function of αn and 

βn. Analytical equations to do that depend on the nature of the 

LWA. Such relations exist, for example, for Holey and Honey 

LWAs [5, 6]. Generally, the analytical equations are valid for 

non-tapered LWAs, i.e. with constant values of  and . 

Nevertheless, if we consider the single UC n of a tapered 

LWA to be strictly identical to a UC of a non-tapered LWA 

with n and n, the transposition is direct. 

Couplings exist between adjacent UC of non-uniform 

LWAs and analytical models for non-tapered LWAs take them 

into account. In the case of tapered non-uniform LWAs, 

adjacent UC are different and, strictly speaking, the couplings 

are not perfectly modeled. However, if the geometry of the 

UCs is varying in a smooth manner, those coupling can 

reasonably be assumed to be close to the ones of a non-tapered 

LWA having constant  = n and  = n.  

Often, analytical relations that relate the geometrical 

parameters to the electrical parameters  and  of the line are 

not known. When this is the case, the structure is generally 

represented by a transverse equivalent network and the 

geometrical dispersion of  and  of the leaky-mode is 

determined numerically [8, 9]. 

A classical and efficient procedure to fully optimize the 

radiation pattern of LWAs is to control simultaneously α(z) 

and β(z) along the line thanks to the variation of two different 

parameters. One geometrical parameter mainly controls the 

level of leakage, α(z), while the other parameter is maintaining 

constant β(z). Examples of such designs are given in 

[8, 9, 17, 22]. 

Finally, let’s mention that structures like CRLH LWAs are 

particularly sensitive to couplings effects. In this case, even 

for smooth variations of the UC geometry, the values of α and 

β are showing important deviations from their equivalent 

uniform infinite line counterparts and are not precise enough 

for a direct design [23]. A more complex design procedure 

based on numerical methods is then required [24]. 

IV. NUMERICAL VALIDATION OF SOME PROPOSED TAPERED 

STRUCTURES 

To validate the GAFA approach for tapered non-uniform 

LWAs, the design procedure was tested with the Honey LWA 

and the Holey LWA. In this section, the results are compared 

with full-wave simulations (CST microwave studio). 

A. First Example with the Honey Antenna 

The first design corresponds to the Honey Antenna tapered 

 

Fig. 4   Path difference between two consecutive unit cells. 

  

 
Fig. 3   Design procedure of tapered uniform LWA. 
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with a Taylor distribution. The Taylor distribution yields 

decaying minor lobes and an optimal beamwidth for specified 

sidelobe level. The distribution is [10]:  

                          , (17) 

for       and 0 everywhere else.       is the Bessel 

function of the first kind and B is a constant which controls the 

sidelobe level. For sidelobe level of -20 dB and -40 dB, B 

shall take the values 0.739 and 1.742 respectively. For the 

current design, the objective is to reduce the sidelobe level to  

-20 dB. 

For the Honey LWA, several parameters can be used to 

tune the n to the desired values, but the most sensitive one is 

the gap between the metallic strips, pn, see Fig. 5. The 

variations of  and  as a function of p are represented in 

Fig. 6. They are computed from the analytical equations found 

in [5]. Those equations where derived from an equivalent 

network analysis and are accurate as long as the electric field 

is inductive, which is the case for small spacing of the strips 

compared to the wavelength. They take into account the 

couplings between adjacent inductive strips. Although the fact 

that for tapered structures the spacing is varying, the spacing is 

varied smoothly every four or five strips depending on the 

position along the line. As the variation is smooth, it is 

assumed that in a constant section (4 or 5 strips), the 

propagation constant is close to the one of an infinite line with 

the same geometry. The values of the n are also computed 

from analytical equations found in [5] once the pn are known. 

In the present case, the ratio between the maximum spacing 

and the wavelength in free space is          . The 

theoretical efficiency calculated form the distribution of  and 

the length L is 90%. 

The designed antenna is illustrated in Fig. 5 and its 

parameters are given in Table 1. In the present case, the guide 

is filled with air. For the full-wave simulation, metallic walls 

are present on the edges to emulate strips of infinite length. 

The feed is done with waveguide ports placed sufficiently 

close to the structure to produce a wave polarized in the 

horizontal plane which propagates between the bottom and top 

planes.  

The radiations patterns computed with the GAFA method 

and simulated are illustrated in Fig. 7 and the antenna 

characteristics are given Table 2. Both results are in good 

agreement up to -30 dB where level differences appear. 

Positions of the lobes are in good agreement from -45° up to 

75°. As only one parameter was used for the taperization, no 

control of  was possible creating phase aberrations. The 

effect of the later are easily evaluated by comparing the 

GAFA calculations with a varying β (dotted blue line in Fig. 

7) to the ones obtained with a constant value of β (dotted grey 

line in Fig. 7). It is worth noting that Honey did propose a 

tapered LWA in its original work [5] where the height a of the 

guide is varied resulting in a curved form of the top 

conducting surface in order to maintain  constant along the 

structure. He obtained excellent results.  

B. Second Example with the Holey Antenna 

The design of Holey antenna has been performed with cosine 

and Taylor illumination distributions [10]. A continuous 

 

 

 

 
cosine distribution provides theoretical sidelobe level of          

-23.2°dB. Its equation is: 

                    (18) 
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Fig. 7   Radiation patterns of a tapered Honey LWA computed with the 

GAFA and simulated. Taylor distribution. 
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Fig. 6   Normalized complex propagation constants (phase constant and 

attenuation constant) of a Honey LWA computed with the analytical 

equations of [5]. 

TABLE 1   DIMENSIONS OF THE HONEY LWA 

Parameter Value Characteristic 

quantity 

Value 

a 20.0 cm Working frequency, f0 11.42 GHz 

d 0.254 mm Pointing angle, θ0 54° 

L 609.6 mm Number of UC, N 151 

W 220 mm Strip spacing, pn  1.94 - 6.05 mm 

 

 
Fig. 5   Tapered Honey LWA with a cosine illumination. 
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In the present case, the Taylor distribution is determined to 

reach sidelobe level of -40 dB (see previous section). 

Antennas like the one shown in Fig. 8 with the parameters 

given in Table 3 were designed. The diameters of the holes 

were computed with the help of the analytical equations given 

in [6]: 

   
      

     

 

  
 

 

  
 

 

   
   

   
   

       

    
 

          
  

(19) 

with: 

   
  

       
             

  

       
   

 

   
  

  
                

    

      

(20) 

The diameter of each hole, cn, is the only parameter which 

can be easily varied for the Holey antenna. Thus, it is not 

possible to taper  while maintaining  constant. However 

holes do not disturb much the electric field and the variations 

of the cn have a limited impact on . In the range of values 

used for the cn (15 to 35 mm for the cosine distribution and 0.9 

to 29.5 mm for the Taylor one), the variation of  is 9 %, see 

Fig. 9. 

The validity range of (19) and (20) was checked for the 

antenna design. For that purpose, different uniform LWAs 

having the same length L and the same periodicity p as the 

final tapered LWA where simulated with a commercial 

software (CST Microwave Studio). The diameters of the 

holes, c, were varied from one simulation to another and the 

corresponding S-parameters where obtained. Classical 

 

 

 
extraction formulas [7] were used to deduce the values of   

associated to each hole diameter. The obtained values are 

indicated by black circles on Fig. 9 and are compared with the 

ones given by the analytical equations (19-20). Arbitrarily, 

differences of -values obtained from both calculations less 

than 20 % were considered acceptable, see Fig. 9. This gives a 

range of values for : 0    0.025. However, this range 

limits the efficiency of the antenna to only 15% with the 

cosine distribution and to 11% with the Taylor distribution. 

Those antennas have thus no real practical interest as such. 

Those small efficiencies are due to the fact that the obtainable 

leakage rates are too low for the chosen lengths (L=5  =1 m) 

of the antennas. In order to obtain an efficiency of 90%, the 

maximum value of α.λ should be 0.44 and      for the Cosine 

and Taylor distributions respectively. Those values are not 

realizable in practice for such structure.  

We shall however note that the objective of the design is to 

validate the GAFA approach and that no real application is 

target here. The length L is thus arbitrarily chosen without 

considerations for the classical specifications (beamwidth, 

directivity) in such a way that the computation time of the full-

wave simulations was small enough. The normalized 

illumination distribution is also chosen arbitrarily and the 

efficiency in (15) is used as an adjustment parameter to obtain 

realizable values of α. 

The ratio between the spacing and the wavelength in free 

space is          and it thus verifies the Nyquist criterion. 
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Fig. 10   Variations of the normalized phase constant and of the normalized 
attenuation constant with respect to the frequency, obtained with the analytical 

equations of [6]. 
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Fig. 9   Variations of the normalized phase constant and of the normalized 
attenuation constant obtained with the analytical equations of [6]. The latter 

is also compared to the one extracted from electromagnetic simulations. 

 

Fig. 8   Tapered Holey LWA with a cosine illumination. 

 

TABLE 3   DIMENSIONS OF THE HOLEY LWA 

Parameter Value Characteristic 

variable 

Value 

a 12.0 cm Cutoff frequency, fc 1.25 GHz 

b 4.5 cm Working frequency, f0 1.5 GHz  

p 4.0 cm Pointing angle, θ0 33° cosine 
31° Taylor 

L 100 cm Number of holes, N 24 
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The evolution of the normalized phase constant and 

normalized attenuation constant with respect to the frequency 

has been represented in Fig. 10 for various values of the 

diameter of the hole. 

The radiation patterns simulated with CST and calculated 

with (13) for both distributions are shown in Fig. 11. LWAs 

are simulated without transitions and are fed via waveguide 

ports. The impedance of the ports correspond to the one of the 

closed (not disturb by the holes) waveguide. The magnitude 

values of S11 given in Table 2 are the one computed at the 

ports by CST Microwave studio. The comparison between the 

curves of Fig. 11 shows a good agreement. The latter is even 

better when the real values of  are used (i.e. the curves “ 

variable”). The variations of  are due to the fact that only one 

parameter is used to control α. One advantage of the GAFA 

method is that it can be used to rapidly make a first estimation 

of the impact of the fluctuation of  on the width of the main 

lobe. This is done by forcing  to a constant value, see Fig. 11. 

In the present case, at -20 dB, the non-controlled fluctuations 

of (z) creates an increase of the main beam width of 4° and 

8° respectively for both distributions. 

 

 

V. MEASUREMENT RESULTS 

An experimental validation of the GAFA method was 

carried out. A third model of a Holey antenna with a cosine 

distribution has been realized and measured. The dimensions 

of the structure have been modified compared to the ones 

presented in sect IV. B in order to comply with the WR430 

standard dimensions operating in the R band (1.7-2.6 GHz). 

The working frequency has been chosen at 1.7 GHz to 

decrease the far-field distance region (6.38 m) and to improve 

the efficiency of the antenna. Dimensions and characteristic 

values of the antenna are given in Table 4. A picture of the 

realized antenna is shown in Fig. 12. 

 

 
The transitions used to feed the LWA are commercial ones 

(Vector Telecom VT22WCASKPA). They give a maximum 

VSWR of 1.5 in the frequency band 1.7-2.6 GHz. One of the 

terminations was connected to an adapted load in order to 

avoid reflection of the remaining power at the end of the 

waveguide. Because no information was available concerning 

the geometrical dimensions of the transitions, it was not 

possible to include the transitions in the full-wave simulations 

of the LWA. 

The measured magnitude of the S parameters is represented 

on Fig. 13. At the working frequency, the measured magnitude 

of the     parameter of the antenna together with the two 

transitions is -33 dB and the magnitude of the     parameter is 

equal to -0.79 dB. The measured efficiency given in Table 5, 

is evaluated from the S parameters as           
       

 . 

The comparison of the radiation patterns calculated with 

(12), simulated with CST and measured is given in Fig. 14. 

The measurement, simulation and theory are showing a fair 

agreement in the main lobe region: -10°< <90°. A shift of 

1.5° of the main beam angle,   , is observed between theory 

and measurements. The absence of the first null can probably 

be attributed to phase aberration. A sidelobe level of -21.2 dB 

has been measured which is in good agreement with the 

theoretical value of -      dB. In the region -90°< <-10°, the 

CST simulation and the measurement are in acceptable 

TABLE 4   DIMENSIONS OF THE REALIZED HOLEY LWA (FIG. 12) 

Parameter Value Characteristic 

variable 

Value 

a 10.92 cm Cutoff frequency, fc 1.37 GHz 

b 5.46 cm Working frequency, f0 1.7 GHz  

p 5.0 cm Pointing angle, θ0 39° 

L 75 cm Number of holes, N 15 

 

 
Fig 12. Picture of the Holey LWA used during the measurement in an 

anechoic chamber. 

TABLE 2   SIMULATION RESULTS 

Antenna Honey Holey 

Distribution Taylor Cosine Taylor 

SLL 

 

Theory -20 dB -23.2 dB -40 dB 

Simulation -14.1 dB -21.6 dB -34.9 dB 

Directivity 27.7 dB 13.01 dBi 12.61 dBi 

Adaptation (S11) -19.88 dB -42.88 dB -55.28 dB 

Main beam angle  54° 33° 31° 
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Fig. 11   Radiation patterns of a tapered 24-cells Holey LWA computed with 

the generalized array factor approach and simulated. Numerical values are 

given in Table 3. a) Cosine distribution. b) Taylor distribution. 
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agreement, but a clear discrepancy is observed between them 

and the theoretical prediction (GAFA calculation). The ripples 

in this region are showing a maximum value of -23.75 dB for 

measurement and -28 dB for simulation. 

 Contrarily to the design of section IV. B, the equations (19-

20) have been used for present design without any prior 

verification of their validity range. As it can be seen on Fig. 9, 

this can lead to important inaccuracies in the assessment of α 

and β. This can explain the discrepancy observed between the 

radiation pattern obtained in theory and measurement. When 

the propagation parameters are estimated with sufficient 

accuracy like in the section IV. B, the results are showing a 

better agreement for the entire visible region (-90° <   < 90°) 

(see Fig. 11). 

The value of the directivity at    has been calculated with 

(13) for the case of an isotropic emitter, see Table 5. The 

simulated value shows an augmentation of 0.7 dBi compared 

to the theoretical one. This is probably due to the fact that only 

the elevation-angle ( ) was considered in (14), The fields in 

the transverse dimension of the LWA aperture are not 

perfectly isotropic and then contributes to the whole 

directivity. The measured value is a bit lower than simulation 

 

(-0.5 dBi) but within the measurement uncertainty range ( 1.5 

dBi). Let’s us note that for the calculation of the measured 

directivity value, the efficiency obtained by simulation has 

been used. 

Measurements for different working frequencies (from 

1.5 GHz to 1.9 GHz) have been realized and have shown that 

the sidelobe level sensitivity with respect to frequency is 

+0.4 dB/100 MHz in the vicinity of the working frequency. 

The main beam direction is shifted from +15° for the 

400 MHz frequency variation. Those results are in good 

agreement with (16).  

VI. CONCLUSION  

A generalization of the array factor approach was 

demonstrated and applied to tapered non-uniform LWAs. The 

demonstration is based on the Fourier transform of the 

illumination amplitude of the LWA. The concept was tested 

and found very efficient with the Holey and the Honey LWA 

for which analytical expressions that relate the parameters  

and  to the geometrical dimensions of the antenna do exist. 

The simulations have shown a good agreement with theory for 

both cosine and Taylor distributions. An experimental 

validation has been done for a Holey antenna. Measurements 

are in acceptable agreement with the theory and the numerical 

simulations. The Generalized Array Factor is certainly a well-

adapted technique to design tapered discrete LWAs. It could 

be used with benefit for the design of tapered CRLH LWAs. 

APPENDIX 

Annexe A: Equivalence between the discrete and the 

continuous radiation pattern for infinitely small spacing. 

 

Mathematically, in (12)-(13) the sampling in the 

exponentials, that will be denoted by p, can be distinguished 

from the one of the sum: d. In this case,       is expressed as: 

                                  

   

   

 

 

   

 

              

   

   

              
      

(21) 

with M defined like:               and where 

  
     denotes:  

  
                            

 

 

   
 

 

 

                   

 

 

                 

(22) 

When    , M becomes infinite, and we have: 

   
   

           

(23) 
   
   

  
        

As the functions      and      considered in (21) are 

generally bounded and defined on a finite interval, the double 

TABLE 5   CHARACTERISTICS COMPARISON BETWEEN THEORY, SIMULATION 

AND MEASUREMENT OF THE HOLEY LWA 

 Theory Simulation Measurement 

SLL (dB) -21.6  -23 -21.2  

Directivity 

(dBi) 
10.4 11.3 10.7 

Efficiency 0.15 0.13 0.09 

Main beam 

angle 
-39.5° -39.6° -38° 
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Fig 14.  Radiation pattern of a Holey antenna calculated with the GAFA 

method, simulated and measured. Cosine distribution. 
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Fig 13.   Measured magnitude of the S parameter of  the realized Holey LWA 
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limit theorem can be applied which leads to the final result:  

   
   

         
   

         
   

   
   

     

    
   

                      
  

 

 

 

   

 

              
  

 

            

               . 

(24) 
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