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3D CLUTs (Color Look Up Tables) are popular digital models used in image and video processing for color grading, simulation of analog films, and more generally for the application of various color transformations. The large size of these models leads to data storage issues when trying to distribute them on a large scale. In this paper, a highly effective lossy compression technique for 3D CLUTs is proposed. It is based on a multi-scale anisotropic diffusion reconstruction scheme. Our method exhibits an average compression rate of more than 99%, while ensuring visually indistinguishable differences with the application of the original CLUTs .

Introduction

Color calibration and correction tools are generally used in the fields of photograph retouching, video processing and other artistic disciplines, in order to change the color mood of digital images. CLUTs (Color Look Up Tables) are among the most popular digital models used for color calibration and alteration. Let RGB be the continuous domain [0, 255] 3 ⊂ R 3 representing the 3D color cube (of discretized resolution 256 3 ). A CLUT is a compact color function on RGB , modelled as a 3D associative array encoding the precomputed transform for all existing colors [START_REF]Explanation of what a 3D CLUT is[END_REF]. where I R ,I G and I B are the RGB color components of I. It should be noted that, most often, a CLUT is a volumic function that is continuous or, at worst, piecewise continuous (Fig. 1a). Fig. 2 exhibits a small set of various colorimetric modifications done with CLUTs , taken from [START_REF]RocketStock, 35 Free LUTs for Color Grading[END_REF][START_REF] Rawtherapee | Film Simulation Pack[END_REF]. It illustrates the large diversity of the effects that CLUTs allow, e.g. color fading, chromaticity boost, color inversion, hue shift, black-and-white conversion, contrast enhancement, etc.

Here, this issue is addressed : an efficient technique for CLUT compression is put forward, as well as the corresponding decompression method. Our algorithm takes a CLUT F as input and generates a smaller representation F c . The reconstruction algorithm operates on F c to generate a reconstructed CLUT F. Our compression scheme is said to be lossy [START_REF] Salomon | Handbook of Data Compression[END_REF], as F is different from F, but with an error that remains visually unnoticeable. Surprisingly, very few references dealing with CLUT compression can be found in the literature. In [START_REF] Balaji | Preprocessing Methods for Improved Lossless Compres-sion of Color Look-Up Tables[END_REF], a lossless CLUT compression method is proposed ; it is based on two different predictive coding schemes, the former being differential hierarchical coding and the latter cellular interpolative predictive coding. In both cases, a prior preprocessing step for data reorganization is needed. However, experimentations are only made on small-sized CLUTs (resolution 17 3 ), and the lossless method leads to compression rates (around 30%) that are much less effective than what we get with our approach.

In essence, our CLUT compression technique relies on the storage of a set of color keypoints in RGB , associated to a fast interpolation algorithm performing a dense 3D reconstruction using anisotropic diffusion PDEs . It should be noted that the idea of compressing/decompressing 2D image data by diffusion PDEs has already been proposed in [START_REF] Galić | Image compression with anisotropic diffusion[END_REF], but the discontinuous aspect of natural images used for their experiments makes it actually harder to achieve high compression rates. In our case, the diffusion model proves to be perfectly suited for interpolating colors in the RGB cube, thanks to the clear continuity of the 3D dense functions we are trying to compress.

The paper is organized as follows : in Section 2, our CLUT re- CLUT are here unrolled as a 2D image of size 512 2 . Despite the apparent continuity of the 3D function, the 2D resulting image exhibits lots of discontinuities, which make its compression harder.

construction algorithm is described and the corresponding compression scheme is developed in Section 3. Our method is evaluated on a large variety of CLUTs , and compression/reconstruction results are finally discussed in Section 4.

2 Reconstruction of a 3D CLUT from a set of keypoints The k th keypoint of K is defined by vector

K k = (X k , C k ) = (x k , y k , z k , R k , G k , B k ),
where X k = (x k , y k , z k ) is the 3D keypoint position in the RGB cube and C k = (R k , G k , B k ) its associated color.

Reconstruction scheme : In order to reconstruct F from K, we propose to propagate/average the colors C k of the keypoints in the whole RGB domain through a specific diffusion process. Let d K : RGB → R+ be the distance function, giving for each point X = (x, y, z) of RGB , the Euclidian distance to the set of keypoints K, i.e.

∀X ∈ RGB, d K(X) = inf k∈0...N X -X k
F is reconstructed by solving the following anisotropic diffusion PDE :

∀X ∈ RGB, ∂F ∂t (X) = m (X) ∂ 2 F ∂η 2 (X) (1) 
where

η = ∇d K(X) ∇d K(X) and m (X) = 0 if ∃k, X = X k 1 otherwise
From an algorithmic point of view, this PDE can classically be solved by an Euler method, starting from an initial estimate F t=0 as close as possible to a solution of [START_REF]Explanation of what a 3D CLUT is[END_REF]. A quite good estimate for F t=0 is actually obtained by propagating the colors C k inside the Voronoï cells associated to the set of points X k (for instance by watershed-like propagation [START_REF] Beucher | The Morphological Approach to Segmentation : The Watershed Transformation[END_REF]), then by smoothing it by an isotropic 3D gaussian filter (Fig. 4b). A more efficient multi-scale scheme for estimating F t=0 is detailed hereafter.

From a geometric point of view, the diffusion PDE (1) can be seen as a local color averaging filter along the lines connecting each point X of the RGB cube to its nearest keypoint [START_REF] Tschumperlé | Vector-valued Image Regularization with PDE's : A Common Framework for Different Applications[END_REF]. This filtering is done for all points X of RGB , except for the keypoints X k which keep their initial color C k throughout the diffusion process. Spatial discretization : Numerically, d K is efficiently computed (in linear time) by a distance transform, such as the one proposed in [START_REF] Meijster | A General Algorithm for Computing Distance Transforms in Linear Time[END_REF]. The discretization of the diffusion directions η requires some care, as the gradient ∇d K is not formally defined on the whole RGB domain. Actually, d K is not differentiable at the peaks of the distance function, i.e. at the points that are local maxima. Therefore, the following numerical scheme for the discretization of ∇d K is put forward :

∇d K(X) =   maxabs(∂ for x d K , ∂ back x d K ) maxabs(∂ for y d K , ∂ back y d K ) maxabs(∂ for z d K , ∂ back z d K )   (2) where maxabs(a, b) = a if |a| > |b| b otherwise and ∂ for x d K = d K(x+1,y,z) -d K(x,y,z) ∂ back x d K = d K(x,y,z) -d K(x-1,y,z)
are the discrete forward and backward first derivative approximations of the continuous function d K along the x axis. We proceed similarly along the y and z axes.

By doing so, one avoids locally misdirected estimations of η on the local maxima of d K , which systematically happen with the centered, forward or backward numerical schemes classically used for estimating the gradient, as shown on Fig. 5 below. In practice, complying to our spatial discretization scheme (2) has a great influence, both on the reconstruction quality of the CLUT F (in comparison with usual discretization schemes introducing visible artifacts on reconstructed structures), and on the effective time of convergence towards the solution of (1). A stable state is reached more quickly. This is particularly true with the use of the multi-scale scheme described hereafter, where reconstruction errors may be amplified when switching from a low resolution scale to a more detailed one.

Temporal discretization : For the sake of algorithmic efficiency, the explicit Euler scheme corresponding to the evolution of (1) becomes the following semi-implicit scheme :

F t+dt -F t dt = m (X) F t (X+η) + F t (X-η) -2 F t+dt (X)
which leads to :

F t+dt (X) = F t (X) +dt m (X)[ F t (X+η) +F t (X-η) ] 1+2 dt m (X)
A major advantage of using such a semi-implicit scheme to implement the evolution of ( 1) is that you can choose dt arbitrarily large, without loss of stability or significant decrease in quality on the diffusion process (as studied in [START_REF] Duarte-Carvajalino | Comparative Study of Semi-Implicit Schemes for Nonlinear Diffusion in Hyperspectral Imagery[END_REF][START_REF] Weickert | Efficient and reliable schemes for nonlinear diffusion filtering[END_REF]). Therefore, we get the following simplified temporal discretization scheme :

     F t+dt (X) = F t (X) if m (X) = 0 F t+dt (X) = 1 2 F t (X+η) + F t (X-η) otherwise (3) 
where F t (X+η) and F t (X-η) are accurately estimated using tricubic spatial interpolation.

Starting from F t=0 , the scheme (3) is iterated until convergence (Fig. 4d). It should be noted that, for each iteration, the computation of (3) can be advantageously parallelized, as the calculations are done independently for each voxel X of RGB .

Multi-scale resolution : As with most numerical schemes involving diffusion PDEs [START_REF] Tschumperlé | Vector-valued Image Regularization with PDE's : A Common Framework for Different Applications[END_REF], it can be observed that the number of iterations of (3) required to converge towards a stable solution of (1) increases quadratically with the 3D resolution of the CLUT F to be reconstructed. In order to limit this number of iterations for high resolutions of CLUTs , we therefore suggest to solve (1) by a multi-scale ascending technique.

Rather than initializing F t=0 by watershed-like propagation for computing the diffusion at resolution (2 s ) 3 , F t=0 is estimated as a trilinear upscaling of the CLUT reconstructed at half resolution (2 s-1 ) 3 . The latter is closer to the stable state of the PDE (1) at resolution (2 s ) 3 , and the number of necessary iterations of (3) to reach convergence is considerably reduced. By performing this recursively, it is even possible to start the reconstruction of F at resolution 1 3 (by simply averaging the colors of all keypoints), then applying the diffusion scheme (3) successively on the upscaled results obtained at resolutions 2 3 , 4 3 , 8 3 . . . , until the desired resolution is reached (Fig. 6). FIGURE 6 -Multi-scale reconstruction scheme : A reconstructed CLUTs at resolution (2 s ) 3 is linearly upscaled and used as an initialization for applying the diffusion scheme at a higher resolution (2 s+1 ) 3 .

Comparison with RBF reconstruction : The reconstruction of a dense function from a set of isolated keypoints is an interpolation problem which has been already well documented in the literature [START_REF] Anjyo | Scattered data interpolation for computer graphics[END_REF][START_REF] Joel | Signal recovery from random measurements via orthogonal matching pursuit[END_REF]. Most traditional solutions to this problem propose to model the function to be reconstructed as a weighted sum, whose number of terms is equal to the number of available keypoints. For instance, the popular RBF (Radial Basis Function) method applied to CLUT reconstruction estimates each color component F i of F (i = R, G or B) by :

∀X ∈ RGB , F i (X) = N k=1 w i k φ( X -X k ),
with φ : R + → R, a given function (e. g. φ(r) = r 2 ln r, for a thin plate spline interpolation [START_REF] Duchon | Splines minimizing rotation-invariant semi-norms in sobolev spaces[END_REF]). The weights w i k are obtained by solving a linear system, involving the known values of the keypoints C k and a matrix whose coefficients are φ( X p -X q ), calculated for all possible pairs (p, q) of keypoints. This reconstruction technique generates 3D interpolations of good quality, and is simple to implement, as it can be calculated directly at full resolution. Unfortunately, its algorithmic complexity is expressed as O(N 3 + N r 3 ) for the reconstruction of a CLUT of resolution r 3 , which becomes prohibitive when the number of keypoints increases notably (e.g. N > 300, which happens frequently in our case, see Fig. 8).

Conversely, the complexity of one single iteration of our diffusion scheme (3) is expressed as O(r 3 ), regardless of the number of keypoints. Thanks to our multi-scale approach that speeds up convergence towards a stable state, no more than twenty diffusion iterations per reconstruction scale are necessary in practice. This ensures a reconstruction of a decent size CLUT (e.g. resolution 64 3 ) in less than one second on a standard multi-core computer (for several tens of seconds with a RBF approach), and this, with an equally good reconstruction quality.

Generation of keypoints

Now that the reconstruction of a dense CLUT F from a set of color keypoints K has been detailed, let us consider the inverse problem, i.e. given only F, is it possible to find a sparse set of keypoints K that allows a good quality reconstruction of F ? First of all, it is worth mentioning that a CLUT being practically stored as a 3D discrete array, it is always possible to build a set K allowing an exact discrete reconstruction from F at resolution r 3 , by simply inserting all the r 3 color voxels from F as keypoints in K. But as a CLUT is most often a continuous function, it is actually feasible to represent it fairly accurately by a set of keypoints K the size of which is much less than the number of voxels composing the discrete cube RGB . K then gives a compressed representation of F.

The compression algorithm detailed hereafter generates a set K of N keypoints representing a given input CLUT F, such that the CLUT F N reconstructed from K is close enough to F, in the sense of two reconstruction quality criteria (which are set as parameters of the method). These quality criteria are chosen as : ∆ max = 8, the maximum reconstruction error allowed at one point of RGB , and ∆ avg = 2, the average reconstruction error for the entire CLUT F. The algorithm consists of three distinct steps :

1. Initialization : The set K is initialized with the 8 keypoints located at the vertices of the RGB cube, with the colors of the CLUT to be compressed, i.e. K = {(X k , F (X k ) | k = 1 . . . 8}, for all X k whose coordinates in x, y and z are either 0 or 255.

Adding keypoints :

Let E N : RGB → R + be the pointto-point error measurement between the original CLUT F and the CLUT F N reconstructed from K, using the algorithm described in Section 2 :

E N (X) = F (X) -F N (X)
where

E max = max X∈RGB (E N (X)
) and E avg = ĒN respectively denote the maximum error and the average reconstruction error. As long as

E max > ∆ max or E avg > ∆ avg , a new keypoint F N +1 = (X N +1 , F N +1(X N +1 )
) is added to K, located at coordinates X N +1 = argmax X (E N ) of the maximum reconstruction error. In practice, one can observe that these keypoints added iteratively are scattered throughout the entire RGB domain, so as to jointly minimize the two criteria of reconstruction quality ∆ max and ∆ avg (Fig. 7).

Deleting keypoints :

Sometimes, the addition of the last keypoint at step 2 leads to a CLUT reconstructed with an higher quality than expected, i.e. with E max < ∆ maxand E avg < ∆ avgand a non negligible > 0. In this case, there is usually a subset of K that also verifies the reconstruction quality criteria, with an closer to 0. We can therefore try to increase the compression rate while maintaining the desired quality of reconstruction, by removing a few keypoints from K. This is simply achieved by iteratively going through all the keypoints K k of K (in the order of their insertion, k = 1 . . . N ), and checking whether the deletion of the k th keypoint K k allows to reconstruct a CLUT F N with quality constraints that still hold. If this is the case, the keypoint K k is discarded from K and the algorithm is resumed from where we left it. According to the degree of continuity of the CLUT , this third step sometimes allows to withdraw up to 25% of keypoints in K (it also happens that no keypoint can be removed this way).

At the end of these three steps, we get a set or keypoints K representing a compressed lossy version of a CLUT F, such that a minimum quality of reconstruction is guaranteed.

Results

The performance of our compression method has been evaluated on publicly available datasets (including [START_REF]RocketStock, 35 Free LUTs for Color Grading[END_REF][START_REF] Rawtherapee | Film Simulation Pack[END_REF]) for a to- of the CLUTs, Fig. 7). By limiting the average reconstruction error, the quality criterion ∆ avg = 2 ensures a minimal value of 42.14 dB for the PSNR between an input CLUT F and its compressed reconstruction F. In theory, this criterion alone is not enough to guarantee visually imperceptible differences. However, this is the case in practice, as our algorithm simultaneously takes into account another quality criterion ∆ max = 8 which limits the maximum reconstruction error.

For the purpose of scientific reproducibility, our CLUT compression/decompression algorithms have been integrated into G'MIC, a full-featured open-source framework for image processing [START_REF] Tschumperlé | G´MIC : GREYC´s Magic for Image Computing : A Full-Featured Open-Source Framework for Image Processing[END_REF].

Conclusions

The CLUT compression/decompression techniques we presented in this paper are surprisingly effective. This is mainly due to the perfect adequacy of the proposed 3D diffusion model (1) to the type of data processed (smooth, volumetric, color-valued).

As a result, all the 552 CLUTs compressed by our method and integrated into G'MIC [START_REF] Tschumperlé | G´MIC : GREYC´s Magic for Image Computing : A Full-Featured Open-Source Framework for Image Processing[END_REF] make it, to the best of our knowledge, the image editing software that offers photographers and illustrators the greatest diversity of color transformations, and this, for a minimal storage cost. We are convinced that the integration of these algorithms into other image or video processing software will trigger the distribution of CLUT-based color transformations at a much larger magnitude scale than current standards.
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 1 FIGURE 1 -Application of a 3D CLUT to a 2D image for a color alteration (here, to simulate vintage color fading).
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 2 FIGURE 2 -Generic nature of color transformations allowed by the use of 3D CLUTs .
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  assume we have a set K = {K k ∈ RGB × RGB | k = 1 . . . N } of N color keypoints, located in the RGB cube, such as K provides a sparse representation of a CLUT F : RGB → RGB.
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 44 FIGURE 4 -Reconstruction of a 3D CLUT F from a set of keypoints K using anisotropic diffusion PDE (1) (here, from 6 keypoints).
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 5 FIGURE 5 -Influence of our scheme for estimating the diffusion orientations η (shown here on a small 40×40 crop of the distance function d K ). Hues displayed at each point represent the estimated orientations η.
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 78 FIGURE 7 -Overview of the first 100 iterations of our 3D CLUTs compression algorithm. Top : Target CLUT F and approximations by iteratively adding keypoints. Bottom : Evolution of the maximum error (in green) and average error (in red), and of the PSNR (in blue) of the reconstructed CLUT F N with respect to the target CLUT F. tal of 552 CLUTs at various resolutions (ranging from 33 3 to 144 3 ) and encoding very diverse color transformations. In our case, the relevant measurement is the compression rate, defined as : %cRate = 100 1 -Size of compressed data Size of input data