
HAL Id: hal-02066484
https://hal.science/hal-02066484v1

Preprint submitted on 13 Mar 2019 (v1), last revised 3 Apr 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient 3D Color LUT Compression Algorithm
Based on a Multi-Scale Anisotropic Diffusion Scheme

David Tschumperlé, Christine Porquet, Amal Mahboubi

To cite this version:
David Tschumperlé, Christine Porquet, Amal Mahboubi. An Efficient 3D Color LUT Compression
Algorithm Based on a Multi-Scale Anisotropic Diffusion Scheme. 2019. �hal-02066484v1�

https://hal.science/hal-02066484v1
https://hal.archives-ouvertes.fr

An Efficient 3D Color LUT Compression Algorithm Based on a
Multi-Scale Anisotropic Diffusion Scheme

David TSCHUMPERLÉ, Christine PORQUET, Amal MAHBOUBI

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC,
F-14050 Caen, France

David.Tschumperle@ensicaen.fr, Christine.Porquet@ensicaen.fr,
Amal.Mahboubi@unicaen.fr

Abstract – 3D CLUTs (Color Look Up Tables) are popular digital models used in image and video processing for color grading, simulation of
analog films, and more generally for the application of various colorimetric transformations. The large size of these models leads to data storage
issues when trying to distribute them on a large scale. In this paper, a highly effective lossy compression technique for 3D CLUTs is proposed.
It is based on a multi-scale anisotropic diffusion reconstruction scheme. Our method exhibits an average compression rate of more than 99%,
while ensuring visually indistinguishable differences with the application of the original CLUTs .

Keywords: 3D CLUTs , generic color transformations, compression of smooth data, anisotropic diffusion.

1 Introduction

Color calibration and correction tools are generally used in the
fields of photograph retouching, video processing and other ar-
tistic disciplines, in order to change the color mood of digital
images. CLUTs (Color Look Up Tables) are among the most
popular digital models used for color calibration and alteration.
Let RGB be the continuous domain [0, 255]3 ⊂ R3 represen-
ting the 3D color cube (of discretized resolution 2563). A CLUT
is a compact colorimetric function on RGB , modelled as a 3D
associative array encoding the precomputed transform for all
existing colors [1].

(a) CLUT , visualized in 3D

(b) Original image

(c) Image after transformation

FIGURE 1 – Application of a 3D CLUT to a 2D image for a color alteration
(here, to simulate vintage color fading).

Let F : RGB → RGB be a 3D CLUT . Applying F to a color
image I : Ω→ RGB is done as follows :

∀p ∈ Ω, Imodified(p) = F(IR(p), IG(p), IB(p))

where IR,IG and IB are the RGB color components of I. It
should be noted that, most often, a CLUT is a volumic function
that is continuous or, at worst, piecewise continuous (Fig.1a).
Fig.2 exhibits a small set of various colorimetric modifications
done with CLUTs , taken from [2, 10]. It illustrates the large
diversity of the effects that CLUTs allow, e.g. color fading,
chromaticity boost, color inversion, hue shift, black-and-white
conversion, contrast enhancement, etc.

Usually, a CLUT is stored either as an ASCII zipped file (with
extension file .cube.zip) which maps a color triple F(X) to
each voxel X of the RGB cube (in float-valued format), or as a
.png image corresponding to the set of all colors F(X) unrol-
led as a 2D image (Fig.3b). In both cases, the large amount
of color voxels composing the RGB cube implies a storage
size often larger than a megabyte (Mb) for a single CLUT,
even when the RGB space is subsampled (typically to sizes
323, 483, 643, . . .). There arises the issue of storing and delive-
ring CLUTs files in at a large scale (several hundreds at once).

Here, this issue is addressed : an efficient technique for CLUT
compression is put forward, as well as a corresponding decom-
pression method. Our algorithm takes a CLUT F as input and
generates a smaller representation Fc. The reconstruction algo-
rithm operates on Fc to generate a reconstructed CLUT F̃. Our
compression scheme is said to be lossy [11], as F̃ is different
from F, but with an error that remains visually unnoticeable.

Image originale “60’s” “Color Negative”

“Orange Tone” “Ilford Delta 3200” “Backlight Filter”

“Bleach Bypass” “Late Sunset” “Rotate Vibrant”

FIGURE 2 – Illustration of the generic nature of colorimetric transformations
allowed by the use of CLUTs .

Surprisingly, very few references dealing with CLUT compres-
sion can be found in the literature. In [4], a lossless CLUT com-
pression method is proposed ; it is based on two different pre-
dictive coding schemes, the former being differential hierar-
chical coding and the latter cellular interpolative predictive co-
ding. In both cases, a prior preprocessing step for data reorga-
nization is needed. However, experimentations are only made
on small-sized CLUTs (resolution 173), and the lossless me-
thod leads to compression rates (around 30%) that are much
less effective than those we get with our approach.

In essence, our CLUT compression technique relies on the sto-
rage of a set of color keypoints in RGB , associated to a fast
interpolation algorithm performing a dense 3D reconstruction
using anisotropic diffusion PDEs . It should be noted that the
idea of compressing/decompressing 2D image data by diffu-
sion PDEs has already been proposed in [8], but the discon-
tinuous aspect of natural images used for those experiments
makes it actually harder to achieve high compression rates. In
our case, the diffusion model proves to be perfectly suited for
interpolating colors in the RGB cube, thanks to the clear conti-
nuity of the 3D dense functions we are trying to compress.

The paper is organized as follows : in Section 2, our CLUT re-
construction algorithm is described and the corresponding com-

a) CLUT visualized in 3D b) Storage as a 2D image

FIGURE 3 – Storage of a CLUT as a .png file : The 643 colors of the
CLUT are here unrolled as a 2D image of size 5122. Despite the apparent
continuity of the 3D function, the 2D resulting image exhibits lots of discon-
tinuities, which make its compression harder.

pression scheme is developed in Section 3. Our method is eva-
luated on a large variety of CLUTs , and compression/reconstruction
results are finally discussed in Section 4.

2 Reconstruction of a 3D CLUT from a
set of keypoints

First, let us assume we have a known set K = {Kk ∈ RGB ×
RGB | k = 1 . . . N} of N color keypoints, located in the
RGB cube, such as K provides a sparse representation of a
CLUT F : RGB → RGB that is to be applied.
The kth keypoint of K is defined by vector

Kk = (Xk,Ck) = (xk, yk, zk, Rk, Gk, Bk),

where Xk = (xk, yk, zk) is the 3D keypoint position in the
RGB cube and Ck = (Rk, Gk, Bk) its associated color.

Reconstruction scheme : In order to reconstruct F from K,
we propose to propogate/average the colors Ck of the key-
points in the whole RGB domain through a specific diffusion
process. Let dK : RGB → R+ be the distance function, giving
for each point X = (x, y, z) of RGB , the Euclidian distance to
the set of keypoints K, i.e.

∀X ∈ RGB, dK(X) = infk∈0...N‖X−Xk‖

Then, F is reconstructed by solving the following anisotropic
diffusion PDE :

∀X ∈ RGB, ∂F

∂t
(X) = m(X)

∂2F

∂η2
(X) (1)

where η =
∇dK(X)

‖∇dK(X)‖
and m(X) =

{
0 if ∃k, X = Xk

1 otherwise

From an algorithmic point of view, this PDE can classically
be solved by an Euler method, starting from an initial estimate
Ft=0 as close as possible to a solution of (1). A quite good esti-
mate for Ft=0 is actually obtained by propagating the colors Ck

inside the Voronoï cells associated to the set of points Xk (for

2

instance by watershed-like propagation [5]), then by smoothing
it by an isotropic 3D gaussian filter (Fig.4b). A more efficient
multi-scale scheme for estimating Ft=0 is detailed hereafter.

From a geometric point of view, the diffusion PDE (1) can be
seen as a local color averaging filter along the lines connecting
each point X of the RGB cube to its nearest keypoint [14]. This
filtering is done for all points X of RGB , except for the key-
points Xk which keep their initial color Ck throughout the dif-
fusion process. Fig.4 below shows the reconstruction of a dense
CLUT with (1), from a setK composed of 6 colored keypoints.

(a) Set K of known keypoints (b) Initial state Ft=0

(c) Diffusion orientations η (d) State at convergence

FIGURE 4 – Reconstruction of a 3D CLUT F from a set of keypoints K
using anisotropic diffusion PDE (1) (here, from 6 keypoints).

Spatial discretization : Numerically, dK is efficiently com-
puted (in linear time) by a distance transform, such as the one
proposed in [9]. The discretization of the diffusion directions η
requires some care, as the gradient∇dK is not formally defined
on the whole RGB domain. Actually, dK is not differentiable at
the peaks of the distance function, i.e. at the points that are
local maxima. Therefore we develop the following numerical
scheme for the discretization of∇dK :

∇dK(X) =

 maxabs(∂ for
x dK, ∂

back
x dK)

maxabs(∂ for
y dK, ∂

back
y dK)

maxabs(∂ for
z dK, ∂

back
z dK)

 (2)

where
maxabs(a, b) =

{
a if |a| > |b|
b otherwise

and
∂ for
x dK = dK(x+ 1, y, z)− dK(x, y, z)

∂ back
x dK = dK(x, y, z)− dK(x− 1, y, z)

are the discrete forward and backward first derivative approxi-
mations of the continuous function dK along the x axis. We
proceed similarly along the y and z axes.

By doing so, one avoids locally misdirected estimations of η on
the local maxima of dK, which systematically happens with the
centered, forward or backward numerical schemes classically
used for estimating the gradient, as shown on Fig.5 below.

(a) Keypoints and dis-
tance function dK

(b) Estimation of η
using forward scheme
∂ fordK

(c) Estimation of
η using backward
scheme ∂ backdK

(d) Estimation of η using centred
scheme 1

2
(∂ fordK + ∂ backdK)

(e) Estimation of η using propo-
sed scheme (2)

FIGURE 5 – Influence of our scheme for estimating the diffusion orienta-
tions η (shown here on a small 40×40 crop of the distance function dK). Hues
displayed at each point represent the estimated orientations η.

In practice, complying to our spatial discretization scheme (2)
has a great influence, both on the reconstruction quality of the
CLUT F (in comparison with usual discretization schemes in-
troducing visible artifacts on reconstructed structures), and on
the effective time of convergence towards the solution of (1).
A stable state is reached more quickly. This is particularly true
with the use of the multi-scale scheme described hereafter, where
reconstruction errors may be amplified when switching from a
low resolution scale to a more detailed one.

Temporal discretization : For the sake of algorithmic effi-
ciency, we also modify the explicit Euler scheme correspon-
ding to the evolution of (1) by the following semi-implicit scheme :

dt+dt
K −dtK
dt = m(X)

[
dtK(X + η) + dtK(X− η)− 2dt+dtK (X)

]
which leads to :

dK(X)t+dt =
dtK+dt m(X)[dtK(X+η)+dtK(X−η)]

1+2 dt m(X)

A major advantage of using such a semi-implicit scheme to im-
plement the evolution of (1) is that you can choose dt arbitrarily
large, without loss of stability or significant decrease in quality
on the diffusion process (as studied in [6, 15]). Therefore, we
get the following simplified temporal discretization scheme :

3

 dK(X)t+dt = dK(X)t if m(X) = 0

dK(X)t+dt = 1
2 [dtK(X + η) + dtK(X− η)] otherwise

(3)
where dtK(X+η) and dtK(X−η) are accurately estimated using
tricubic spatial interpolation.

Starting from Ft=0, the scheme (3) is iterated until convergence
(Fig.4d). It should be noted that, for each iteration, the compu-
tation of (3) can be advantageously parallelized, as the calcula-
tions are done independently for each voxel X of RGB .

Multi-scale resolution : As with most numerical schemes in-
volving diffusion PDEs [14], it can be observed that the number
of iterations of (3) required to converge towards a stable solu-
tion of (1) increases quadratically with the 3D resolution of the
CLUT F to be reconstructed. In order to limit this number of
iterations for high resolutions of CLUTs , we therefore suggest
to solve (1) by a multi-scale ascending technique :

Rather than initializing Ft=0 by watershed-like propagation for
computing the diffusion at resolution (2s)3, Ft=0 is estimated
as a trilinear upscaling of the CLUT reconstructed at half re-
solution (2s−1)3. The latter is closer to the stable state of the
PDE (1) at resolution (2s)3, and the number of necessary ite-
rations of (3) to reach convergence is considerably reduced. By
performing this recursively, it is even possible to start the re-
construction of F at resolution 13 (by simply averaging the co-
lors of all keypoints), then applying the diffusion schemes (3)
successively on the upscaled results obtained at resolutions 23,
43, 83 . . . , until the desired resolution is reached (Fig.6).

FIGURE 6 – Multi-scale reconstruction scheme : A reconstructed CLUTs at
resolution (2s)3 is linearly upscaled and used as an initialization for applying
the diffusion scheme at a higher resolution (2s+1)3.

Comparison with RBF reconstruction : The reconstruction
of a dense function from a set of isolated keypoints is an inter-
polation problem which has been already well studied in the li-

terature [3, 12]. Most traditional solutions to this problem pro-
pose to model the function to be reconstructed as a weighted
sum, whose number of terms is equal to the number of avai-
lable keypoints. For instance, the popular RBF (Radial Basis
Function) method applied to CLUT reconstruction would esti-
mate each color component Fi of F (i = R,G or B) by :

∀X ∈ RGB , Fi(X) =

N∑
k=1

wik φ(‖X−Xk‖),

with φ : R+ → R, a given function (e. g. φ(r) = r2 ln r,
for a thin plate spline interpolation [7]). The weights wik are
obtained by solving a linear system, involving the known va-
lues of the keypoints Ck and a matrix whose coefficients are
φ(‖Xp −Xq‖), calculated for all possible pairs (p, q) of key-
points. This reconstruction technique generates 3D interpola-
tions of good quality, and is simple to implement, as it can be
calculated directly at full resolution. Unfortunately, its algo-
rithmic complexity is expressed as O(N3 + N r3) for the re-
construction of a CLUT of resolution r3, which becomes pro-
hibitive when the number of keypoints increases notably (e.g.
N > 300, which happens frequently in our case, see Fig. 8).

Conversely, the complexity of one single iteration of our diffu-
sion scheme (3) is expressed as O(r3), regardless of the num-
ber of keypoints. Thanks to our multi-scale approach that speeds
up convergence towards a stable state, no more than twenty dif-
fusion iterations per reconstruction scale are necessary in prac-
tice. This ensures a reconstruction of a decent size CLUT (e.g.
with resolution 643) in less than one second on a standard multi-
core computer (for several tens of seconds with a RBF ap-
proach), and this, with an equally good reconstruction quality.

3 Generation of keypoints
Now that the reconstruction of a dense CLUT F from a set of
color keypoints K has been detailed, let us consider the inverse
problem, i.e. given only F, is it possible to find a sparse set of
keypoints K that allows a good quality reconstruction of F ?

First of all, it is worth mentioning that a CLUT being practi-
cally stored as a 3D discrete array, it is always possible to build
a set K allowing an exact discrete reconstruction from F at re-
solution r3, by simply inserting all the r3 color voxels from F
as keypoints in K. But as a CLUT is most often a continuous
function, it is actually feasible to represent it fairly accurately
by a set of keypoints K whose size is much less than the num-
ber of voxels composing the discrete cube RGB . K then gives
a compressed representation of F.

The compression algorithm we describe here generates a set K
of N keypoints representing a given input CLUT F, such that
the CLUT F̃N reconstructed from K is close enough to F, in
the sense of two reconstruction quality criteria (which are set
as parameters of the method). These quality criteria are chosen

4

as : ∆max = 8, the maximum reconstruction error authorized at
one point of RGB , and ∆avg = 2, the average reconstruction
error for the entire CLUT F.
The algorithm consists then of three distinct steps :

1. Initialization : The set K is initialized with the 8 key-
points located at the vertices of the RGB cube, with the colors
of the CLUT to be compressed, i.e. K = {(Xk,F(Xk) | k =
1 . . . 8}, for all Xk whose coordinates in x, y and z are either
0 or 255.

2. Adding keypoints : Let EN : RGB → R+ be the point-
to-point error measurement between the original CLUT F and
the CLUT F̃N reconstructed from K, using the algorithm des-
cribed in Section 2 :

EN (X) = ‖F(X)− F̃N (X)‖

where

Emax = max
X∈RGB

(EN (X)) and Eavg = ĒN

respectively denote the maximum error and the average recons-
truction error. As long as Emax > ∆max or Eavg > ∆avg, a new
keypoint FN+1 = (XN+1,FN+1(XN+1)) is added to K, lo-
cated at the coordinates XN+1 = argmaxX(EN) of the maxi-
mum reconstruction error. In practice, one can observe that
these keypoints added iteratively are scattered throughout the
entire RGB domain, so as to jointly minimize the two criteria
of reconstruction quality ∆max and ∆avg (Fig.7).

3. Deleting keypoints : Sometimes, the addition of the last
keypoint at step 2 leads to a CLUT reconstructed with an hi-
gher quality than expected, i.e. with Emax < ∆max − ε and
Eavg < ∆avg − ε and a non negligible ε > 0. In this case,
there is usually a subset of K that also verifies the reconstruc-
tion quality criteria, with an ε closer to 0. We can therefore try
to increase the compression ratio while preserving the desired
quality of reconstruction, by removing a few keypoints fromK.
This is simply achieved by iteratively going through all the key-
points Kk of K (in the order of their insertion, k = 1 . . . N),
and checking whether the deletion of the kth keypoint Kk al-
lows to reconstruct a CLUT F̃N with quality constraints that
still hold. If this is the case, the keypoint Kk is discarded from
K and the algorithm is resumed from where we left it. Accor-
ding to the degree of continuity of the CLUT processed, this
third step sometimes allows to withdraw up to 25% of key-
points in K (it also happens that no keypoints can be removed
this way).

At the end of these three steps, we get a set or keypoints K
representing a compressed lossy version of a CLUT F, such
that a minimum quality of reconstruction is guaranteed.

FIGURE 7 – Overview of the first 100 iterations of our proposed 3D
CLUTs compression algorithm. Top : Target CLUT F and approximations by
iteratively adding keypoints. Bottom : Evolution of the maximum error (in
green) and average error (in red), and of the PSNR (in blue) of the reconstruc-
ted CLUT F̃N with respect to the target CLUT F.

4 Results
The performance of our compression method has been evalua-
ted on publicly available datasets (including [2, 10]) for a total
of 552 CLUTs with various resolutions (ranging from 333 to
1443) and encoding very diverse colorimetric transformations.
In our case, the relevant measurement is the compression rate,
defined as :

%cRate = 100

(
1− Size of compressed data

Size of input data

)
The set of all the original CLUT data occupies 708 Mb of
disk storage (including 593 Mb in .png format and 115 Mb
in .cube.zip format). The compression of this large data-
set by our algorithm generates 552 sets of keypoints, stored
in a single 2.5 Mb file, representing then an overall compres-
sion rate of 99.65% (despite the fact the input dataset itself is
already in a compressed form !). A statistical study of the ob-
tained sets of keypoints indicates that the average number of
keypoints is 1078 (minimum : 35, maximum : 2047, standard
deviation : 587), which is high enough to make our fast PDE -
based reconstruction technique more suitable than RBFs .

The table in Fig.8 provides individual compression measure-
ments for a sample of 7 CLUTs taken from [2]. It shows the
compression rates obtained by our method for various CLUTs at
different resolutions (our sets of N keypoints being stored as
color .png images with resolutions 2 × N), with respect to
the input CLUT data stored in the usual way, i.e. compressed

5

CLUT name Bourbon 64 Faded 47 Milo 5 Cubicle 99 Fusion 88 Sprocket 231 Paladin 1875
Resolution 163 323 483 643 643 1283 1443

Size in .cube.zip 23.5 Kb 573 Kb 3 Mb 1.2 Mb 1.4 Mb 5.6 Mb 5.4 Mb
Size in .png 3.7 Kb 22 Kb 72 Kb 92 Kb 127 Kb 765 Kb 979 Kb
Number of keypoints 562 294 894 394 210 290 59
PSNR 45.8 dB 45.6 dB 45 dB 45.2 dB 46.1 dB 46.4 dB 43.9 dB
Compression time 28 s 92 s 1180 s 561 s 257 s 3003.s 1432 s
Decompression time 67 ms 157 ms 260 ms 437 ms 452 ms 3281 ms 6739 ms
Keypoints in .png 1.9 Kb 1.5 Kb 4.2 Kb 1.9 Kb 1.3 Kb 1.7 Kb 0.44 Kb
%cRate/.cube.zip 92.1% 99.7% 99.8% 99.8% 99.9% ≈ 100% ≈ 100%
%cRate/.png 49.5% 93.3% 94.2% 98% 99% 99.8% ≈ 100%

FIGURE 8 – Results of our CLUT compression algorithm, on different CLUTs from [2] (with ∆max = 8 et ∆avg = 2).

files with formats .png and .cube.zip. It is interesting to
note that the number of generated keypoints does not depend
on the resolution of the CLUT to be compressed, but rather on
its degree of continuity (the keypoints being naturally placed on
the most discontinuous areas of the CLUTs , Fig.7).
By limiting the average reconstruction error, the quality cri-
terion ∆avg = 2 ensures a minimal value of 42.14 dB for
the PSNR between an input CLUT F and its compressed re-
construction F̃. In theory, this criterion alone is not enough to
guarantee visually imperceptible differences. However, this is
the case in practice, as our algorithm simultaneously takes into
account another quality criterion ∆max = 8 which limits the
maximum reconstruction error.

For the purpose of scientific reproducibility, our CLUT com-
pression/decompression algorithms have been integrated into
G’MIC, a full-featured open-source framework for image pro-
cessing [13].

5 Conclusions
The CLUT compression/decompression techniques we presen-
ted in this paper are surprisingly effective. This is mainly due to
the perfect adequacy of the proposed 3D diffusion model (1) to
the type of data processed (smooth, volumetric, color-valued).
As a result, all the 552 CLUTs compressed by our method and
integrated into G’MIC [13] make it, to the best of our know-
ledge, the image editing software that offers photographers and
illustrators the greatest diversity of color transformations, and
this, for a minimal storage cost. We are convinced that the in-
tegration of these algorithms into other image or video proces-
sing software will trigger the distribution of CLUT-based color
transformations at a much larger magnitude scale than current
standards.

Références
[1] Explanation of what is a 3D CLUT (accessed 2019-02-08).

http ://www.quelsolaar.com/technology/clut.html.

[2] RocketStock, 35 Free LUTs for Color Grading (accessed
2019-02-06). https ://www.rocketstock.com/free-after-effects-
templates/35-free-luts-for-color-grading-videos/.

[3] Ken Anjyo, John P Lewis, and Frédéric Pighin. Scattered data
interpolation for computer graphics. In ACM SIGGRAPH 2014
Courses, page 27. ACM, 2014.

[4] Aravindh Balaji, Gaurav Sharma, Mark Shaw, and Randall
Guay. Preprocessing Methods for Improved Lossless Compres-
sion of Color Look-Up Tables. Journal of Imaging Science and
Technology, 52, 07 2008.

[5] Serge Beucher and Fernand Meyer. The Morphological
Approach to Segmentation : The Watershed Transformation.
Optical Engineering-New York-Marcel Dekker Incorporated-,
34 :433–433, 1992.

[6] Julio M Duarte-Carvajalino, Paul E Castillo, and Miguel Velez-
Reyes. Comparative Study of Semi-Implicit Schemes for Nonli-
near Diffusion in Hyperspectral Imagery. IEEE Transactions on
Image Processing, 16(5) :1303–1314, 2007.

[7] Jean Duchon. Splines minimizing rotation-invariant semi-norms
in sobolev spaces. In Constructive theory of functions of several
variables, pages 85–100. Springer, 1977.

[8] Irena Galić, Joachim Weickert, Martin Welk, Andrés Bruhn,
Alexander Belyaev, and Hans-Peter Seidel. Image compression
with anisotropic diffusion. Journal of Mathematical Imaging
and Vision, 31(2-3) :255–269, 2008.

[9] Arnold Meijster, Jos BTM Roerdink, and Wim H Hesselink. A
General Algorithm for Computing Distance Transforms in Li-
near Time. In Mathematical Morphology and its applications to
image and signal processing, pages 331–340. Springer, 2002.

[10] RawTherapee. Film Simulation Pack (accessed 2019-02-08).
https ://rawpedia.rawtherapee.com/Film_Simulation.

[11] David Salomon and Giovanni Motta. Handbook of Data Com-
pression. Springer Publishing Company, Incorporated, 5th edi-
tion, 2009.

[12] Joel A Tropp and Anna C Gilbert. Signal recovery from random
measurements via orthogonal matching pursuit. IEEE Transac-
tions on information theory, 53(12) :4655–4666, 2007.

[13] David Tschumperlé and Sébastien Fourey. G´MIC : GREYC´s
Magic for Image Computing : A Full-Featured Open-Source
Framework for Image Processing. https ://gmic.eu/, 2008–2019.

[14] David Tschumperlé and Rachid Deriche. Vector-valued Image
Regularization with PDE’s : A Common Framework for Dif-
ferent Applications. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(4) :506–517, 2005.

[15] Joachim Weickert, BM Ter Haar Romeny, and Max A Viergever.
Efficient and reliable schemes for nonlinear diffusion filtering.
IEEE transactions on image processing, 7(3) :398–410, 1998.

6

	Introduction
	Reconstruction of a 3D CLUT from a set of keypoints
	Generation of keypoints
	Results
	Conclusions

