RTNI—A symbolic integrator for Haar-random tensor networks - Archive ouverte HAL
Article Dans Une Revue J.Phys.A Année : 2019

RTNI—A symbolic integrator for Haar-random tensor networks

Motohisa Fukuda
  • Fonction : Auteur
Robert König
  • Fonction : Auteur

Résumé

We provide a computer algebra package called random tensor network integrator (RTNI). It allows to compute averages of tensor networks containing multiple Haar-distributed random unitary matrices and deterministic symbolic tensors. Such tensor networks are represented as multigraphs, with vertices corresponding to tensors or random unitaries and edges corresponding to tensor contractions. Input and output spaces of random unitaries may be subdivided into arbitrary tensor factors, with dimensions treated symbolically. The algorithm implements the graphical Weingarten calculus and produces a weighted sum of tensor networks representing the average over the unitary group. We illustrate the use of this algorithmic tool on some examples from quantum information theory, including entropy calculations for random tensor network states as considered in toy models for holographic duality. Mathematica and Python implementations are supplied.

Dates et versions

hal-02066438 , version 1 (13-03-2019)

Identifiants

Citer

Motohisa Fukuda, Robert König, Ion Nechita. RTNI—A symbolic integrator for Haar-random tensor networks. J.Phys.A, 2019, 52 (42), pp.425303. ⟨10.1088/1751-8121/ab434b⟩. ⟨hal-02066438⟩
108 Consultations
0 Téléchargements

Altmetric

Partager

More