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We propose an optimal control algorithm for periodic spin dynamics. This non-trivial optimiza-
tion problem involves the design of a control field maximizing a figure of merit, while finding the
initial and final states of the dynamics, which are not known but are subjected to specific periodic
conditions. As an illustrative example, we consider the maximization of the signal to noise ratio
per unit time of spin systems. In the case of a homogeneous spin ensemble and a very short control
duration, we show numerically that the optimal field corresponds to the Ernst angle solution. We
investigate the optimal control process for longer control durations and their sensitivity to offset
inhomogeneities.

I. INTRODUCTION

Optimality with respect to a given criterion is vital
in many applications, but it presents a complexity that
requires a lot of ingenuity to provide a solution [1–4].
Quantum control [5–11] is no exception to this rule and
many efforts have been made recently in this domain to
develop tools and methods in order to conduct a sys-
tematic analysis of optimal control problems (see, e.g.,
some recent reviews [12–15] and references therein). In
quantum control, there is a genuine desire to solve con-
crete questions and contribute beyond the purely the-
oretical analysis [12, 13]. Different numerical iterative
algorithms have been proposed to solve the optimal equa-
tions [16–21] in a variety of domains [12, 13] extend-
ing from photochemistry [5, 6], Nuclear Magnetic Reso-
nance (NMR) [22–24] and Magnetic Resonance Imaging
(MRI) [25–34], and in quantum information science [12].
Several modifications of standard algorithms have been
proposed to account for experimental limitations and un-
certainties [17, 22–24, 35–41], showing their flexibility
and the possibility to adapt them to new classes of con-
trol problems.

We propose in this work to investigate a new issue
in quantum control, namely the optimal control of pe-
riodic processes. The originality and the difficulty of
this optimization problem come from the fact that the
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initial and final states of the dynamical system are not
known, but have to be determined together with the con-
trol field to maximize a figure of merit. The optimal
control of periodic processes is well-established in math-
ematics [42, 43] and have been applied in different do-
mains, such as robotics or biology [44], to mention a few.
To the best of our knowledge, this issue has not been ex-
plored in quantum control. As an illustrative example,
we consider in this paper a question of fundamental and
practical interest in NMR and MRI [45–48], namely the
maximization of the signal-to-noise ratio per unit time
(SNR) of spin 1/2 particles. The SNR is practically en-
hanced in spin systems by using a multitude of identical
cycles. In this periodic regime, the SNR increases as the
square root of the number of scans. Each elementary
block is composed of a detection time and of a control
period where the spin is subjected to a radio-frequency
magnetic pulse, this latter being used to guarantee the
periodic character of the overall process. A first solution
to this problem was established in the sixties by R. Ernst
and his co-workers [48]. In this protocol, the control law
is made of a δ- pulse, characterized by a specific rota-
tion angle, called the Ernst angle solution. This pulse
sequence is nowadays currently used in magnetic reso-
nance spectroscopy and imaging. Related control pro-
cedures, known as SSFP (Steady State Free Precession)
have been also intensively investigated in the literature
for medical applications (See Ref. [49–56], to mention a
few). Some of us have revisited recently the question of
the Ernst angle procedure by applying the tools of geo-
metric control theory [3, 4]. In [57], it is shown in the
general case of unbounded controls which also includes
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finite-amplitude shaped pulses (only δ- pulses were con-
sidered in [48]) that the Ernst angle solution is the opti-
mal solution of the control problem aiming at maximizing
the SNR of a spin. This analysis was generalized in [58]
to spin dynamics in presence of radiation damping effects
and crusher gradients.

The maximization of the SNR is used in this work as a
motivation to extend the scope of quantum optimal algo-
rithms to periodic dynamics. The periodicity constraint
is enforced through the introduction of a Lagrange multi-
plier. We outline the principles of a gradient optimization
procedure in this generalized framework. We investigate
numerically the optimization of the SNR. For short con-
trol times, we show that the algorithm converges to the
Ernst angle solution in the case of a homogeneous spin
ensemble. For longer control durations, we observe that
the optimal solution heavily depends on the guess field
used to initialize the algorithm. We describe geometri-
cally the different solutions. Finally, we consider the case
of an inhomogeneous ensemble of spins with several off-
sets. For a fixed control time, we analyze the different
periodic trajectories and the maximum achievable SNR.

The paper is organized as follows. Section II intro-
duces the model system and gives a complete description
of the optimal control problem. Section III outlines the
principles of the new optimization procedure. A special
attention is paid to the difference with a standard itera-
tive algorithm. Section IV is dedicated to the numerical
implementation of the algorithm. The numerical results
are presented and discussed in Sec. V for homogeneous
and inhomogeneous spin ensembles, respectively. Con-
clusion and prospective views are given in Sec. VI. Some
analytical computations about the Ernst angle solution
are reported in Appendix A.

II. DESCRIPTION OF THE CONTROL
PROCESS FOR THE MAXIMIZATION OF THE

SNR

We consider an inhomogeneous ensemble of uncoupled
spin 1/2 particles with different offset terms [47]. In a
given rotating frame, the equation of motion for the spin
ensemble reads: ẋ(ω)

ẏ(ω)

ż(ω)

 =

 −2πx(ω)/T2

−2πy(ω)/T2

2π(1− z(ω))/T1

+

 −ωy(ω) + ωy(t)z(ω)

ωx(ω) − ωx(t)z(ω)

ωx(t)y(ω) − ωy(t)x(ω)

 ,

where the Bloch vector X := (x(ω), y(ω), z(ω))ᵀ represents
the state of an element of the ensemble, T1 and T2 are the
two relaxation parameters, ω the offset term and ωx(t),
ωy(t) the two control fields. We use normalized coordi-

nates so that the Bloch ball is defined by x2 +y2 +z2 ≤ 1
for each spin. Normalizing the time by the detection time

Td (see below for the definition) and setting γ = 2πTd/T1

and Γ = 2πTd/T2, we arrive at:

Ẋ = A(~ω)X + D (1)

where D := (0, 0, γ)ᵀ and A(~ω) is a 3× 3- matrix:

A(~ω) :=

 −Γ −ω ωy(t)
ω −Γ −ωx(t)

−ωy(t) ωx(t) −γ

 ,

with ~ω(t) = (ωx(t), ωy(t)). The optimization of the SNR
per unit time is described by a simple scenario (see the
schematic description in Fig. 1 and Ref. [57, 58] for de-

tails). The point M (ω) reached at the end of the control
process is the measurement point for the spin of offset ω.
The corresponding spin has then a free evolution from
this point to the steady state S(ω) where the pulse se-
quence starts. The times Td and Tc denote the detection
time (fixed by the experimental setup) and the control
time, respectively. The total time during which a series of

FIG. 1: Schematic representation of the cyclic process used
in the maximization of the SNR.

identical experiments are made is fixed. The total num-
ber N of experiments is then given by T = N(Tc + Td).
The optimization problem is defined through the intro-
duction of a figure of merit:

R =
N√
N

√
[
∑
ω

x(ω)(Tc)]2 + [
∑
ω

y(ω)(Tc)]2, (2)

where [
∑
ω

x(ω)(Tc)]
2 + [

∑
ω

y(ω)(Tc)]
2 is the square mod-

ulus of the strength of the signal (transverse magneti-
zation) at time Tc. We consider a white noise, which

leads to the
√
N factor in R. Using the relation N =

T/(Tc+Td) and setting Td = 1, we define the normalized
figure of merit:

Fopt =
1√

1 + Tc

√
[
∑
ω

x(ω)(Tc)]2 + [
∑
ω

y(ω)(Tc)]2. (3)

This figure of merit Fopt will be used in the numerical
simulations of Sec. V.
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III. OPTIMAL PERIODIC CONTROL OF SPIN
SYSTEMS

A. Optimal control algorithm

In this paragraph, we generalize the optimal control
algorithm GRAPE to periodic dynamics [16]. To sim-
plify the presentation of the optimization procedure, we
specifically consider the case of the maximization of the
SNR of a single spin, but the algorithm can be applied
to any periodic control of quantum systems. We focus
here on the general characteristics of the algorithm, a
numerical implementation is described in Sec. IV.

We describe the dynamics of the model system on
bounded intervals ([0 Tc], [Tc Tc + Td], · · · ), keeping in
mind that all the variables are (Tc + Td)- periodic. Since
the dynamics are governed by two different regimes over
a period, we split the propagation into the intervals [0, Tc]
and [Tc, Tc + Td]:{

X(Tc) = UcX(0) + Ec
X(0) = UdX(Tc) + Ed,

(4)

where the indices c and d stand respectively for the con-
trolled and detection periods, Uc and Ud (resp. Ec and
Ed) denote the linear (resp. affine) parts of the propaga-
tors over the intervals [0, Tc] and [Tc, Tc + Td]. Setting
W := Uc Ud and L := UcEd +Ec, we find that the peri-
odicity constraint on X reads:

X(Tc) = WX(Tc) + L, (5)

that is

X(Tc) = (1−W )−1L, (6)

in the case where 1 −W is invertible, 1 being the 3 × 3
identity matrix. The invertibility of 1 − W , which is
connected to the existence of periodic trajectories, is ex-
amined in Sec. III B.

The optimal control problem is defined through the
figure of merit F (X(Tc)) = (1 + Tc)F

2
opt. To take into

account the different constraints on the dynamics, we
use the method of Lagrange multipliers by introducing
the Lagrangian of the problem:

F̃ = F (X(Tc)) (7)

+

∫ 2Tc+Td

Tc

Y (t)ᵀ(A(~ω)X(t) +D − Ẋ(t))dt,

where Y (t) is the (Tc + Td)- periodic adjoint state of the
system at time t. Since F explicitly depends on X(Tc),
Y has a jump at time Tc, i.e. Y (T−c ) 6= Y (T+

c ). Differ-

entiating F̃ with respect to its variables, we deduce the
necessary conditions for ~ω to be optimal, namely:

F ′(X(Tc))− (Y (T−c )− Y (T+
c )) = 0

Ẏ (t) + A(~ω)ᵀY (t) = 0

Y ᵀ∂~ωA(~ω)X = 0,

(8)

completed by Eq. (1), where F ′(X(Tc)) = ∇X(Tc)F . Us-

ing the fact that Y (T+
c ) = Uᵀ

d Y (Tc + T−d ) and Y (Tc +

T+
d ) = Uᵀ

c Y (T−c ), we then obtain:

Y (T+
c ) = Uᵀ

dU
ᵀ
c Y (T−c ) = W ᵀY (T−c ).

Combining the latter with Eq. (8), we get:

(1−W ᵀ)Y (T−c ) = F ′(X(Tc)).

If 1 −W ᵀ is invertible, we deduce that the condition at
time t = T−c for the adjoint state is:

Y (T−c ) = (1−W ᵀ)−1F ′(X(Tc)). (9)

The optimality system (1) and (8) can be solved by us-
ing Eq. (6) and (9) and the following iterative approach
similar in spirit to a standard gradient algorithm. The
iteration is initialized by a guess field ~ω0(t). At each
step, X(Tc) is computed using Eq. (6) which then en-
ables to find a solution of Eq. (1). Then we deduce the
state Y (T−c ) from Eq. (9) which allows to compute the
solution of Eq. (8). The correction to the control field is

finally determined using ∇~ωk
F̃ . The detailed numerical

procedure is described in Sec. IV in a time-discretized
setting.

B. Proof of the existence of periodic trajectories

We present a proof of the existence of periodic trajec-
tories for any control field ~ω(t) and any offset ω. We start
by writing the Bloch equation (1) as follows:

Ẋ(t) = (B + C(t))X(t) +D (10)

where

B :=

 −Γ −ω 0
ω −Γ 0
0 0 −γ

 ,

and

C(t) :=

 0 0 ωy(t)
0 0 −ωx(t)

−ωy(t) ωx(t) 0

 .

We denote by P (t) the solution of Eq. (10) when D = 0:

Ṗ (t) = (B + C(t))P (t).

Since the matrix B in Eq. (1) is skew-symmetric, the
norm of P (t) decreases when t increases. Indeed, we
have:

d‖P (t)‖2

dt
= −2

(
Γx2(t) + Γy2(t) + γz2(t)

)
< 0.

As a consequence, for t ∈ [0, T ], we have

d‖P (t)‖2

dt
≤ −2 min(Γ, γ)‖P (t)‖2.



4

Defining g(t) :=
d‖P (t)‖2

dt
+2 min(Γ, γ)‖P (t)‖2 and mul-

tiplying both sides by e2 min(Γ,γ)t, we obtain:

d(e2 min(Γ,γ)t‖P (t)‖2)

dt
= e2 min(Γ,γ)t g(t). (11)

The solution of Eq. (11) can be expressed as:

‖P (t)‖2 = e−2 min(Γ,γ)t‖P (0)‖2+

∫ t

0

e2 min(Γ,γ)(s−t) g(s)ds.

Since g(t) ≤ 0, it follows that:

‖P (t)‖ ≤ e−min(Γ,γ)t‖P (0)‖. (12)

The inequality (12) is used in the proof of the following
lemma.

Lemma 1. Let the function f be defined by:

f(X(0)) := eTBX(0) +

∫ Tc

0

e(T−s)B(C(s)X(s) +D
)
ds

+

∫ T

Tc

e(T−s)BDds,

where X is the solution of Eq. (10). The function f has
a unique fixed point.

Proof Let X and X ′ be the solutions of Eq. (10) cor-
responding respectively to initial conditions X(0) and
X ′(0). Integrating Eq. (10) over a period T = Tc + Td,
we obtain that X satisfies:

X(T ) = eTBX(0) +

∫ Tc

0

e(T−s)B (C(s)X(s) +D) ds

+

∫ T

Tc

e(T−s)B Dds,

and the same for X ′. Subtracting the two identities, we
get:

X(T )−X ′(T ) = eTB(X(0)−X ′(0)) +∫ Tc

0

e(T−s)B C(s) (X(s)−X ′(s))ds.

Setting P (t) = X(t)−X ′(t), we obtain:

P (T ) = eTBP (0) +

∫ Tc

0

e(T−s)B C(s)P (s)ds,

and it can be easily checked that P satisfies inequal-
ity (12) on one hand, and P (T ) = f(X(0)) − f(X ′(0))
on the other hand. It follows that

‖f(X(0))− f(X ′(0))‖ ≤ e−min(Γ,γ)t‖P (0)‖,

which leads to

‖f(X(0))− f(X ′(0))‖ ≤ e−min(Γ,γ)t‖X(0)−X ′(0)‖.

Since e−min(Γ,γ)t < 1, we obtain that f is a contrac-
tion mapping, which implies that f admits a unique fixed
point.�

As a consequence of this result, we observe that the pe-
riodic dynamical model introduced in this study is well-
posed in a very general mathematical setting, which in-
cludes the case of an ensemble of inhomogeneous spins.

IV. DISCRETE COMPUTATION

We now repeat the previous computation in a time-
discretized setting. This corresponds to a standard ex-
perimental framework in NMR and MRI where the used
magnetic fields are piecewise constant fields [46, 47]. We
introduce the time discretization parameters K and dT
satisfying K dT = Tc and a subdivision of the time
interval [0, Tc] given by the sequence (tk)k=1, ··· , K+1,
tk = kdT . Equation (1) is discretized using a Crank-
Nicholson scheme, corresponding to the iteration:

Xk+1 −Xk

dT
= A(~ωk)

Xk+1 +Xk

2
+ D, k = 1, · · · , K.

(13)

where Xk, A(~ωk) and ~ωk stand respectively for X(kdT ),
A(~ω(kdT )) and ~ω(kdT ). Introducing the matrices Bk :=

1 − dT

2
A( ~ωk), B̃k := 1 +

dT

2
A( ~ωk), Uk := B−1

k B̃k and

the vector Ek := dTB−1
k D, Eq. (13) becomes:

Xk+1 = UkXk + Ek. (14)

For a given control field ~ω(t) acting on [0, Tc] and the
initial state X1, we obtain:

Xk+1 =Uk Uk−1 · · · U1X1

+

k−1∑
n=1

( k∏
j=n+1

Uj
)
En + Ek. (15)

Note that, up to a diagonalization, Ud and Ed can be
exactly computed. The diagonalization of A(0) gives
A(0) = PD1P

ᵀ , which leads to Ud = P exp(TdD1)P ᵀ

and Ec = P exp ((Tc + Tds)D1P
ᵀ)Dds. We therefore

keep them at the discrete level, and the discrete expres-
sions of Eq. (4) are given by:{

XK+1 = UdTc X1 + EdTc
X1 = UdXK+1 + Ed,

(16)

where UdTc and EdTc can be expressed as:
UdTc := UK UK−1 · · · U1

EdTc :=

K−1∑
k=1

( K∏
j=k+1

Uj
)
Ek + EK .

(17)

Introducing W dT := UdTc Ud and LdT := UdTc Ed + EdTc ,
we deduce that Eq. (16) lead to

XK+1 = W dT XK+1 + LdT . (18)
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It follows that a solution of Eq. (18) can be written as:

XK+1 = (1−W dT )−1 LdT , (19)

which is a time-discretized version of Eq. (5). In this
setting, the Lagrangian can be expressed as:

F̃ dT = F (XK+1)−
2K−1∑
k=K

Y ᵀ
k+1(Xk+1−UkXk−Ek). (20)

The necessary conditions for ~ω to be optimal are given
by Eq. (14), as well as by:

F ′(XK+1)− YK+1 + Uᵀ
K+1YK+2 = 0 (21)

and, for k = 1, · · · , K:{
Yk − Uᵀ

k Yk+1 = 0

∇~ωk
FdT = 0,

(22)

with

∇~ωk
FdT = Y ᵀ

k+1∂~ωk
UkXk. (23)

Note that YK+1 and Uᵀ
K+1YK+2 correspond respectively

to Y (T−c ) and Y (T+
c ) in the continuous setting. As Y1 =

(UdTc )ᵀYK+1 and Uᵀ
K+1YK+2 = Uᵀ

d Y1, we deduce:

Uᵀ
K+1YK+2 = Uᵀ

d (UdTc )ᵀYK+1 = (W dT )ᵀYK+1.

Combining the latter with Eq. (21) leads to

(1− (W dT )ᵀ)YK+1 = F ′(XK+1).

Assuming once again that 1 − (W dT )ᵀ is invertible (the
invertibility can be shown by adapting the reasoning pre-
sented in Sec. III B to the discrete setting), we obtain
YK+1 from:

YK+1 = (1− (W dT )ᵀ)−1F ′(XK+1). (24)

which corresponds to a discrete version of Eq. (9). Using
Eq. (23), we propose the following gradient-type algo-
rithm, that solves iteratively Eq. (22).

Algorithm: Given ~ω(0) the initial control field, we cal-
culate the operator W dT = UKUK−1 · · ·U1Ud. Let us as-

sume that ~ω(`) is known at iteration `, the control ~ω(`+1)

is computed by the following procedure:

1. Compute X
(`)
K+1 by Eq. (19).

2. Compute Y
(`)
K+1 according to Eq. (24).

3. Propagate forward X(`) using Eq. (14) and X
(`)
K+1.

4. Propagate backward Y (`) from Y
(`)
K+1 using

Eq. (22).

5. Compute the gradient ∇~ω(`)FdT according to
Eq. (23), and the optimal ascent step ρ. Then,
update the control field as follows:

~ω(`+1) = ~ω(`) + ρ∇~ω(`)FdT .

Numerical results are presented in Sec. IV based on the
implementation of the Crank-Nicholson approach (14).
In these numerical tests, different values of Tc are used.
In order to control the accuracy of the numerical evo-

lution of the trajectory of the state ~X, we consider an
adaptive time step in which the parameters dT and K
are fixed with respect to the maximum amplitude of the
control field ~ω∗(t). In this way, we define

dT =
∆T

maxt |~ω∗(t)|
,

and

K =
Tc + dT

dT
.

Step 1 corresponds to the implementation of this dis-
cretization technique.

The control is updated in Step 5 where an optimal
step gradient iteration is used. One could alternatively
consider other optimization methods (optimized gradi-
ent method or pseudo-Newton methods, conjugate gra-
dient method, · · · ). In the examples discussed below, the
choice of a gradient method with optimal step proved to
be the most efficient from a numerical point of view, in
terms of number of iterations and computational time.

V. NUMERICAL RESULTS

A. Control of a homogeneous ensemble

This section is dedicated to the numerical maximiza-
tion of the SNR in the case of a homogeneous spin en-
semble.

The Ernst angle solution is the time-optimal solution
maximizing the SNR [48, 57]. In this paragraph, we use
this control problem as a benchmark to evaluate the ef-
ficiency of the optimization algorithm. Without loss of
generality, we can assume that the offset term is zero
and that ωy(t) = 0, the spin trajectory belonging to the
(y − z)- plane. We first recall the definition of the Ernst
angle solution. For sake of completeness, the derivation
of this control protocol is given in Appendix A. In this
approach, the pulse sequence is only made of a δ- pulse
characterized by the Ernst angle θE :

cos θE =
e−γ + e−Γ

1 + e−Γ−γ . (25)

The dissipation effect is neglected during the control
time. The coordinates of the corresponding measurement
point M are:

z(E)
m =

1

1 + eγ
; y(E)

m =
eΓ

1 + eγ

√
e2γ − 1

e2Γ − 1
. (26)

The figure of merit FE is then given by FE = y(E)
m since

the detection time Td is set to 1 and the control time Tc
is zero for an ideal δ- pulse.
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We start the analysis of the optimal control algorithm
by a general study of the maximum SNR that can be
achieved for short control durations. As can be seen in
Fig. 2, we first verify that the algorithm converges to
the Ernst angle solution when the control duration goes
to 0. We observe that the convergence is almost linear
as a function of Tc. Figure 3 represents the different
positions of the steady state and the measurement point
during the optimization process. Figure 3 clearly shows
that the two points converge very quickly towards the
points of the Ernst angle solution.

-8 -6 -4 -2 0
-10

-5

0

FIG. 2: (Color online) Evolution of the figure of merit
Fopt(Tc) for different control times Tc (open circles). The
relaxation parameters are set to Γ = 4 and γ = 2. The max-
imum is taken over 20 realizations of the algorithm for each
time Tc with different random trial fields. Dimensionless units
are used.

In a second series of numerical tests, we consider a
range of times Tc in the interval [10−4, 7.3 × 10−4].
Several optimizations are performed for increasing con-
trol times, in which the previous optimal field is used
as a guess field to initialize the next optimization. A
coarse and a fine discretizations of the time interval
[10−4, 7.3 × 10−4] are used, with 4 and 13 points, re-
spectively. The results of the optimization process are
given in Fig. 4. A smooth evolution is observed in the
case of a fine discretization, while an abrupt change oc-
curs for the coarse one. The different control mechanisms
can be described from the analysis of the uniform norm
of the optimal field, ||ω||∞ = max

t∈[0,Tc]
|ωx(t)|. Figure 4

shows that this norm is almost constant for the coarse
case, which leads to different trajectories as can be seen
in Fig. 5 (See also the movies in the Supplemental Ma-
terial [59]). For times longer than 3 × 10−4, the steady
state and the measurement points change and the sys-
tem follows more complex trajectories. For the fine case,
the figure of merit changes very little from one control
time to the next. For all the possible values of Tc, we
observe that the optimal solution is very similar to the
one for Tc = 10−4. The uniform norm of the control field
decreases with Tc so that the area of the field remains
approximately constant.

FIG. 3: (Color online) Evolution of the position of the steady
state S (blue or dark gray) and the measurement pointM (red
or light gray) during the optimization process (the points of
the first 25 iterations of the algorithm are plotted). Since the
guess field is a zero control, the initial position of S and M
corresponds to the north pole of Bloch sphere of coordinates
(0,1). The S and the M points for the Ernst angle solution
are depicted respectively in black and in green. The control
time Tc is set to 10−7 and the relaxation parameters to Γ = 4
and γ = 2. Dimensionless units are used.

FIG. 4: (Color online) Evolution of the figure of merit Fopt

(panel (a)) and of the corresponding uniform norm of ω(t)
(panel (b)) as a function of Tc (open circles). The coarse
and the fine time discretizations are plotted respectively in
blue (dark gray) and in red (light gray) lines. The relaxation
parameters Γ and γ are set respectively to 4 and 2. Dimen-
sionless units are used.

B. Extension to a spin ensemble with different
offsets

We investigate in this section the efficiency of the nu-
merical algorithm for optimizing an inhomogeneous spin
ensemble. As a first example, we consider the control of 4
spins with different offsets. The optimization algorithm
has been used for a specific control time Tc = 5.22×10−4.
The optimal trajectories are plotted in Fig. 6 for the four
offsets. The set of steady state and measurement points
are also represented for ω ∈ [0, 10]. The two sets of points
are distributed along two circles of the Bloch ball. The
figure of merit is given in Fig. 7 where the result for a
homogeneous ensemble is also indicated. Note the ro-



7

-1 0 1
-1

0

1

-1 0 1 -1 0 1

FIG. 5: (Color online) Optimal trajectories for Tc = 10−4

(panel (a)), 4.16 × 10−4 (panel (b)) and 7.33 × 10−4 (panel
(c)) corresponding to the coarse discretization of Fig. 4. The
open blue (dark gray) and red (light gray) circles represent
respectively the steady state and measurement points. The
controlled trajectory is plotted in solid red (light gray) line,
the free relaxation in solid blue (dark gray) line. The mea-
surement point of the Ernst angle solution corresponds to the
green open circle. Dimensionless units are used.

bustness of Fopt against variation of the offset ω in the
interval [0, 10]. This observation is not valid for larger
offsets.

FIG. 6: (Color online) Plot of the controlled trajectories for
different offsets in the (x, y, z)- space. The parameters are
set to Tc = 5.22 × 10−4, Γ = 1.8, γ = 1 and the four offsets
are: ω1 = 3.3333 , ω2 = 5.5555, ω3 = 7.7778 and ω4 = 10.
The dashed lines indicate the positions of the steady states
and measurement points in the interval [0, 10]. Dimensionless
parameters are used.

VI. CONCLUSION

We have proposed in this study a numerical optimiza-
tion algorithm for quantum systems with a periodic time
evolution. The difficulty and the originality of the pro-
cedure rely on the fact that the initial and target states
of the dynamics are not known but have to be optimized

0 5 10
4

5

6

7
10-1

FIG. 7: (Color online) Evolution of the figure of merit Fopt

as a function of the offset ω. The red dots represent the
four offsets used in the numerical optimization. The same
dimensionless parameters as in Fig. 6 are used. The horizontal
dashed line displays the figure of merit for a homogeneous spin
ensemble with the same relaxation parameters Γ and γ.

together with the control field. The algorithm is built
on a standard framework, except for the computation of
the initial state and adjoint state of the system. A time
discretization scheme of the algorithm is presented. It
has the advantage of simplicity and general applicabil-
ity. As an illustrative example, we have considered the
maximization of the SNR for an ensemble of spin 1/2
particles. We have shown that the algorithm converges
to the Ernst angle solution with a very high efficiency
in the limit of a control duration going to 0. This anal-
ysis leads also to important insights into the design of
optimal pulses. According to the used guess field, we
have observed that the algorithm converges towards dif-
ferent fields associated with different steady states and
measurement points. The different trajectories in the
Bloch ball can be geometrically characterized. Some pre-
liminary computations have also be done in the case of
an inhomogeneous spin ensemble with different offsets.
The results of this paper can be viewed as an important
step forward in the development of numerical optimal
algorithms in quantum dynamics. In the case of an in-
homogeneous spin ensemble, only four spins have been
considered in this paper and a first improvement would
be the speed-up of the algorithm in order to reduce the
computational time, e.g. by using parallelization tech-
niques [60]. Another open question is the mathematical
and numerical description of the transient regime, only
the permanent periodic dynamics have been investigated
in this work. Some results have been established in this
direction for the Ernst angle solution, but it will be in-
teresting to generalize this analysis to optimal fields of
non-zero duration [49–51].
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APPENDIX A: THE ERNST ANGLE SOLUTION

The goal of this paragraph is to recall the main fea-
tures of the Ernst angle solution. We consider the case
of a spin 1/2 particle subjected to a control field along
the x- direction. We denote respectively by S(ys, zs) and
M(ym, zm) the steady state and the measurement point
of the control process. The S and the M points are con-
nected by a field-free evolution:{

ys = yme
−Γ

zs = 1− e−γ + zme
−γ (A1)

In this limiting case, the pulse sequence is reduced to
an ideal δ- pulse, the radial coordinates rs and rm are
therefore the same. We deduce that:

y2
me
−2Γ + (1− e−γ + zme

−γ)2 = y2
m + z2

m.

The figure of merit F is here given by ym. A necessary

condition to maximize F is
dym
dzm

= 0. We obtain the

following relation:

zm − (1− e−γ + zme
−γ)e−γ = 0,

leading to:

zm =
1− e−γ

eγ − e−γ
,

which can be transformed into:

zm =
1

1 + eγ
.

It is then straightforward to show that:

ym =
eΓ

1 + eγ

√
e2γ − 1

e2Γ − 1
.

We then deduce that the Ernst angle which characterizes
the δ- pulse can be expressed as:

cos(θ) = cos(θm − θs) =
zmzs + ymys
y2
m + z2

m

.

Using the preceding formulas, we obtain:

y2
m + z2

m =
1

(1 + eγ)2

1− e2(Γ+γ)

1− e2Γ
,

and

ymys + zmzs =
eΓ

(1 + eγ)2

e2γ − 1

e2Γ − 1
+

eγ

(1 + eγ)2
.

We arrive at:

cos θ =
eγ(1− e2Γ) + eΓ(1− e2γ)

1− e2(Γ+γ)
,

which can be simplified into:

cos θ =
e−Γ − eΓ + e−γ − eγ

e−(γ+Γ) − eγ+Γ
,

and into the final formula:

cos θ =
e−γ + e−Γ

1 + e−Γ−γ ,

which is the well-known formulation of the Ernst angle
solution.
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