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Smoothing of multidimensional biometric laws in a Long-Term Care Insurance portfolio

, which brings an additional dimension to the estimation problem. In French private LTC insurance, products are purchased at the age of 60 while most claims occur after 85, more than 25 years later, making it an actual Long-Term risk alongside Longevity. Therefore, it is paramount for insurers to develop a deep knowledge of the biometric laws in order to get a clear vision of their liabilities and increase insurance premiums if necessary.

 to smooth the obtained rates and derive extrapolations. Our modelling approach naturally fits in the framework introduced in Currie (2013) for inference of stochastic models with P-splines and constraints. Our implementation further capitalize on the multidimensional structure of our data through the use of Generalized Linear Array Models to greatly improve computation times. We find the restricted interaction approach to be both accurate and parsimonious with the additional advantage of having a clearer interpretation of the results. Our approach could easily be applied to other insurance risks such as disability or critical illness.

Introduction

Over the past decades, due to progress in medicine and especially in the treatment of cardiovascular diseases, there has been a sustained increase in life expectancy, especially at higher ages, leading to a tremendous increase in the number of elderly people. Among other consequences, this has considerably increased the need for Long-Term Care (LTC) services. As LTC is very expansive when compared to the average earning of retired elderly people, this led to the launch of the first LTC products in the late 1970s in the US and in 1985 for France.

While LTC has received a lot of attention from both economists and the insurance industry, publications on LTC modelling remain very scarce, despite strong similarities with epidemiology where multi-state processes are commonly used as well as demography for problems related to old age mortality extrapolation and forecasting.

Among the 3 biometric laws, mortality in LTC proves difficult to model because LTC can be caused by various pathologies such as cancer, dementia, neurological or cardiovascular diseases. All those pathologies are linked to ageing but they are very different, resulting in high heterogeneity in trajectories of disabled people. This leads to a mixture effect that has been identified as the cause for a very high mortality during the first months following entry in the LTC state [START_REF] Biessy | Semi-Markov modeling of the loss of autonomy among elderly people: application to long-term care insurance[END_REF]. Semi-Markov models where the time spent in the LTC state is used as a predictor for the mortality, have been identified for long as the adequate tool to handle this phenomenon.

Nevertheless attempts to derive 2-dimension estimates of mortality in LTC remain scarce. [START_REF] Tomas | Multidimensional smoothing by adaptive local kernel-weighted log-likelihood: Application to long-term care insurance[END_REF] provides a methodology based on local-likelihood smoothing, working on monthly mortality rates for which Chapter 4 of [START_REF] Biessy | Semi-Markov modeling of the loss of autonomy among elderly people: application to long-term care insurance[END_REF] provides a continuous-time variant. [START_REF] Biessy | Continuous-time semi-markov inference of biometric laws associated with a long-term care insurance portfolio[END_REF] introduces a parametric model to replicate the mixture effect observed in the data. [START_REF] Guibert | Non-parametric inference of transition probabilities based on aalen-johansen integral estimators for acyclic multi-state models: application to ltc insurance[END_REF] introduce non-parametric estimators based on Aalen-Johansen integrals.

On the other hand, due to the growing stress put on pension funds by the increase in life expectancy, sophisticated multidimensional models have emerged to estimate and forecast mortality in order to support the booming business of Longevity transaction between reinsurers and pension funds. Among the first prospective models are the Age-Period, Age-Cohort and Age-Period-Cohort model introduced in Clayton and Schifflers (1987a) and Clayton and Schifflers (1987b). Then follows the widespread model of [START_REF] Lee | Modeling and forecasting US mortality[END_REF] further improved when [START_REF] Brouhns | A poisson log-bilinear regression approach to the construction of projected lifetables[END_REF] suggested to work on the number of deaths rather than the mortality rates which led to a more convenient formulation of the original model. [START_REF] Currie | Smoothing and forecasting mortality rates[END_REF] suggested an alternative approach based on multidimensional smoothing using P-splines [START_REF] Eilers | Flexible smoothing with B-splines and penalties[END_REF] for which the Generalized Linear Array Model (GLAM) framework introduced in [START_REF] Currie | Generalized linear array models with applications to multidimensional smoothing[END_REF] provided much faster computation. Finally [START_REF] Currie | Smoothing constrained generalized linear models with an application to the lee-carter model[END_REF] gave a more general framework for the fitting of the Lee-Carter model which could be extended to fit even more sophisticated stochastic models with cohort effects.

To model Long-Term Care we rely on the illness-death model which was first introduced in [START_REF] Kodell | An illness-death model for the study of the carcinogenic process using survival/sacrifice data[END_REF]. We make the additional assumption that no transition from the LTC state back to the Healthy state may occur. Indeed, due to the definition of LTC in France, such recoveries are very unlikely to occur. Our data support this assumption with fewer than one case of recovery being reported per thousands of claims. Finally, we focus on biometric risks and do not model the lapse risk. Figure 1 give a summary of the model where we added the transition toward lapsed for completeness. We therefore model 3 transitions: active lives may move to LTC or death so we have two competing risks and disabled lives may only move to the death state. We allow all transitions to depend on age x and gender g. We let z denote the time spent in the current state and assume that the mortality in LTC may depend on z where time spent in autonomy is assumed to have no effect on either of the 3 transitions. The final model may be seen as a particular case of a semi-Markov model.
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Figure 1: The Long-Term Care model with one level of care and no recoveries from LTC

In this paper, we present a new methodology, inspired by the aforementioned papers, to infer those 3 biometric laws. We rely on P-spline for smooth inference of each biometric law as well as extrapolation for higher ages. In the case of mortality in LTC, we account for time spent in LTC and develop two different approaches to smooth the mortality surface.

The first section illustrates the P-spline methodology that is key to our inference procedure. The second section introduces the Poisson GLM framework in which our models for each of the biometric laws are defined, as well as the scoring algorithm that will be used to fit the parameters. Finally it provides some computational details of our approach, especially the GLAM framework presented in [START_REF] Currie | Generalized linear array models with applications to multidimensional smoothing[END_REF] which allows for faster computation in the case of multidimensional problems. The third section provides smooth estimates of autonomous mortality and incidence in LTC with their extrapolations at higher ages. The penultimate section consider the case of mortality in LTC for which two different approaches are developed and then compared: unconstrained smoothing in 2 dimensions on one hand and a decomposition over the age and duration in LTC component with restricted interactions on the other hand. Finally, we discuss the results and potential extensions to the proposed methodology.

P-splines smoothing

Our methodology relies heavily on P-splines smoothing which is incorporated in our inference procedure. The literature about P-splines is abundant and we refer the interested reader to [START_REF] Eilers | Flexible smoothing with B-splines and penalties[END_REF] for the founding paper. In what follows we merely highlight the main points in the methodology. P-splines stands for Penalized basis-splines. It combines basis splines (abbreviated in B-Splines) formally introduced in De Boor (1978) with penalized likelihood. Psplines is easy to both understand and implement, making it a very good all-around technique. Basis splines are piecewise polynomial functions of a given degree d that are non-zero only over d + 1 consecutive intervals, delimited by d knots. The B-splines as well as their first d -1 derivatives are continuous in each knot. With all those properties, it can be shown that the Bsplines are uniquely defined up to a scaling factor. Figure 2 shows a representation of B-splines of degrees 0 o 3. The interested reader may refer to De Boor (1978) for a very complete book about B-splines that also illustrates how they may be constructed recursively. In what follows, we consider equally spaced knots and splines of degree d = 3.

B-Splines

In order to perform smoothing using B-splines, the first step is to build a full B-splines basis. First the support for the observation must be divided into n d subdivisions delimited by n d + 1 equally-spaced knots called internal knots. To complete the basis, d external knots must also be added on each side, increasing the total number of knots to n d + 2d + 1. The B-splines basis then consists in n d + d splines with identical scaling factor. For each point within the range delimited by the internal knots, d + 1 splines are non-zero (only d at the positions of internal knots) and their sum is equal to 1. Figure 3 represents an example of such basis. Using the basis previously defined, we introduce the dummy function

f (x) = 2 + cos x -2 2
and assume our observations are sampled values of f (x) for x ∈ {3. 05, 3.15, . . . , 6.85, 6.95} with a white noise of standard deviation σ = 0.2. If θ represents the vector of weights for the B-splines, then the regression matrix B for the basis is such that Bθ is the vector of fitted values at the observation points. In the Gaussian case where y = Bθ + , ∼ N (0, σ 2 I n ) the fitted values ŷ are obtained from the observations y using θ = (B B) -1 B y and ŷ = B θ. An illustration of B-splines smoothing with the dummy function and the basis is provided by Figure 4.

Penalized likelihood

The idea of introducing a penalization term to smooth the data can be traced back to [START_REF] Whittaker | On a new method of graduation[END_REF]. If (θ) is the log-likelihood function for the model, the penalized log-likelihood function P (θ) is given by

P (θ) = (θ) + 1 2 θ P θ
where P is a penalty matrix.

For penalties over a single dimension, the penalty matrix P may be defined as P π = πD k,p D k,p where D k,p is a matrix of dimensions (p -k) × p is obtained by differentiating k times I p the identity matrix of size p where k ∈ N * , p is the length of θ and π is a scaling parameter. The matrices D 1,p and D 2,p are as follows:

D 1,p =       1 -1 0 . . . 0 0 0 1 -1 . . . 0 0 . . . . . . . . . . . . . . . 0 0 0 . . . 1 -1       D 2,p =       1 -2 1 0 . . . 0 0 0 0 1 -2 1 . . . 0 0 0 . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 . . . 1 -2 1      
Refined penalty matrices may also be obtained by combining penalties matrix of different orders, for example:

P π = πD 2,p D 2,p + 2 √ πD 1,p D 1,p

P-Splines

In P-splines smoothing, B-splines and penalized likelihood are combined. In B-Splines smoothing, once the degree of the basis has been picked, the number of subdivisions is the only adjustment parameter. Increasing the number of splines results in a more accurate fit to the data with the risk of over-fitting. An optimal number of subdivisions may be determined using cross-validation. However, there may be areas in which a higher density of splines is required when other areas are very regular. A solution can be to use non-equally spaced knots but this comes to the detriment of the simplicity of the method. P-splines offer an attractive solution with the penalization term which takes care of avoiding over-fitting, no matter the number of splines. Therefore, this number of splines should only by picked on the basis of computational limitations. In P-splines smoothing, the order and scale of the penalty term becomes the main adjustment parameters. Higher order penalties result in smoother curves. However, the order of the penalty also plays an important role when it comes to extrapolation. Indeed, a penalty of order k will not penalize polynomial functions of up to degree k -1, meaning the asymptote for the extrapolation will be of degree k -1. A penalty order k = 2 may therefore be seen as a suitable default choice with a reasonable linear extrapolation while k = 1 may be conveniently used to force an horizontal asymptote to the fitted curve. The scale of the penalty π may be determined by minimizing a criterion such as the Bayesian Information Criterion (BIC): BIC = dev + log n × df where dev = 2 [ max -(θ)] is the deviance of the model (l being the log-likelihood function and l max the maximum reachable log-likelihood) and df = tr(H) the effective degrees of freedom (where n is the number of observations and H is the hat matrix for the estimation problem).

3 Estimation framework

Poisson GLM framework

The framework of Generalized Linear Models (GLM) was introduced by [START_REF] Nelder | Generalized linear models[END_REF] and unify the properties of various distribution of the exponential family. A GLM is defined by specifying 3 elements: a random component Y with mean µ = E(Y ), a deterministic component η = Xθ + offset and a link function g linking both previous components so that η = g(µ). For each family any bijective function may be chosen as link yet some link, called canonical links, functions are preferred because they make computations easier. In what follows we work on the random variable Y = D, the number of observed deaths (or entries in LTC when working on the transition from autonomous to LTC) and assume it follows a Poisson distribution of parameter λe c where λ is the transition intensity and e c the central exposure, the sum of all observed lifetimes. We use the canonical link for the Poisson distribution which is the log link.

Our model specification is hence given by log E(D) = log µ = η = log λ + log e c . We further note log λ = Xθ + ξ where ξ is the part of log λ that does not depend on the parameter θ then we can write log E(D) = Xθ + offset where offset = log e c + ξ. In what follows, every model we introduce may be fitted by solving one or two equations of this form.

The Poisson distribution assumption comes with a number of more and less obvious underlying assumptions. First to assume the decomposition µ = λe c , the transition intensity must be considered as constant over the interval where the central exposure is computed. We consider the transition intensity to be constant over one-year intervals of the form [x, x+1) for x ∈ N. For the study of mortality in LTC this assumption is too restrictive due to the high initial mortality and we consider instead one-month intervals for the first year in LTC. The Poisson distribution can also give an unbounded number of deaths while the observed number of deaths is actually limited by the number of individuals under risk. Then, by assuming a Poisson distribution of parameter λe c we implicitly consider the central exposure a deterministic quantity while it depends on the number of exits.

Scoring algorithm

In the previous section we assumed a situation D ∼ P(exp(Xθ + offset)). We want to find the value of θ which maximizes the penalized likelihood P (θ) = (θ) -1/2 θ P θ. We further assume that θ must satisfy a set of linear constraint Hθ = c. Then the penalized likelihood may be maximized by setting k = 0, dev 0 = ∞ and, starting from an adequate vector of initial parameters θ (0) , iterating the following steps of the so-called scoring algorithm:

k ← k + 1 d (k) = exp(Xθ (k-1) + offset) dev (k) = 2 d log d d ; STOP if |dev (k) -dev (k-1) | < tol W (k) = d (k) * I n ∆ (k) = (X W (k) X + P + H H) Ψ (k) = ∆ (k)-1 -∆ (k)-1 H (H∆ (k)-1 H ) -1 H∆ (k)-1 θ (k) = Ψ (k) X W (k) Xθ (k-1) + X (d -d (k) ) + ∆ (k)-1 H (H∆ (k)-1 H ) -1 H∆ (k)-1 c
Furthermore, by noting θ, Ŵ and Ψ the values for θ (k) , W (k) and Ψ (k) obtained at the last iteration of the scoring algorithm, the variance-covariance matrix Σ2 and the hat-matrix H are given by Σ2 = Ψ and H = X ΨX Ŵ while the effective dimension of the model df is df = tr(H) = p -q -tr( ΨP ) where p is the number of parameters (the length of θ) and q is the number of constraints (the number of rows of the constraints matrix H).

The variance of the fitted values X θ is given by var

(X θ) = diag(X ΨX ) = (X Ψ) * X 1 p
We refer the reader to Currie ( 2013) who provides a proof for the previous algorithm in the more general case of GLMs. We used the exact same notations than this author with two exceptions: our vector of parameters is called θ instead of β and the vector of estimated number of deaths at each step of the algorithm is called d (k) when he used µ (k) .

Computational aspects

In order to implement the scoring algorithm, we rely on Generalized Linear Array Models (GLAM, a framework introduced in [START_REF] Currie | Generalized linear array models with applications to multidimensional smoothing[END_REF] to speed-up computations within the scoring algorithm, especially when data has 2 or more dimensions such as our disabled mortality. The main idea behind GLAMs is to keep the matrix or array structure of the observations, offset and parameters through all the computations as opposite to standard GLMs. GLAMs allow for faster computation of linear functions Xθ (k) and X (d -d k ) as well as inner products X W (k) X and diag(X ΨX ) in the scoring algorithm or subsequent diagnosis computations.

Let us assume the design matrix may be written

X = X d ⊗ • • • ⊗ X 2 ⊗ X 1
where X i has dimensions p i × n i . We define:

• The H-transform H(X, A) of an array A by a matrix X as the array obtained by creating the matrix A * from A by flattening all dimensions except for the first one, computing A * X and reinstating the flattened dimensions. The H-transform generalize the usual matrix product in higher dimensions.

• The rotation R(A) of an array A obtained by applying a permutation to the dimensions of A so that the first dimension becomes the last.

• The rotated H-transform ρ(X, A) of an array A by a matrix X is the combination of both previous operations ρ(X, A) = R(H(X, A))

Let Θ (k) (p 1 ו••×p d ) , D (n 1 ו••×n d ) and D (k) (n 1 ו••×n d ) be the array forms of θ (k) , d and d (k) , i.e. vec Θ (k) = θ (k) , vec D = d, vec D (k) = d (k)
Then the linear functions Xθ (k) and X (d -d k )is obtained using rotated H-transforms:

•

Xθ (k) = vec ρ(X d , . . . , ρ(X 2 , ρ(X 1 , Θ (k) )) . . . ) • X (d -d k ) = vec ρ(X d , . . . , ρ(X 2 , ρ(X 1 , D -D (k) )) . . . )
Let us introduce for a matrix X (n,p) the row tensor matrix G(X) = (X ⊗ 1 p ) * (1 p ⊗ X). Then the inner product X W (k) X may be computed using

X W (k) X (p 1 ו••×p d ,p 1 ו••×p d ) ≡ ρ(G(X d ) , . . . , ρ(G(X 2 ) , ρ(G(X 1 ) , D (k) )) . . . ) (p 2 1 ו••×p 2 d )
where ≡ indicates that both expressions contain the same elements but in a different order.

In order to obtain the elements of X W (k) X in the right order:

• Computation of ρ(G(X d ) , . . . , ρ(G(X 2 ) , ρ(G(X 1 ) , D (k) )
) . . . ) should be performed

• The result must be stored in an array of dimensions p 1 × p 1 , . . . , p d × p d

• A permutation of the array dimensions must then be made with the permutation vector (1, 3, . . . , 2d-1, 2, 4, . . . , 2d) so that the odd dimensions get in front of the even dimensions

• The array must then be finally converted in a

p 1 × • • • × p d , p 1 × • • • × p d array, effectively yielding the result X W (k) X
In a similar manner, diag(X ΨX ) may be computed but in this case the reordering must be performed on the matrix Ψ in a reversed order compared to the previous case:

• Values of Ψ(p 1 ו••×p d ,p 1 ו••×p d )
must be placed in an array with dimensions (p 1 , . . . , p d , p 1 , . . . , p d )

• A permutation of the array dimensions must then be made with the permutation vector

(1, d + 1, 2, d + 2, . . . , d -1, 2d -1, d, 2d)
• Finally the array should be converted in a

p 2 1 × • • • × p 2 d array Ψr
Then we have the following relation

diag(X ΨX ) = ρ(G(X d ), . . . , ρ(G(X 2 ), ρ(G(X 1 ), Ψr )) . . . )
In the special case where the design matrix is of the form X = (X 1 :

• • • : X c ) where X i = X i,d ⊗ • • • ⊗ X i,1
and X i,j is of dimensions n i,j × p i,j , the inner product X W (k) X should be computed by blocks. For two matrices X 1 and X 2 of respective dimensions p 1 × n 1 and p 2 × n 2 , we define their row tensor matrix as

G 2 (X 1 , X 2 ) = (X 1 ⊗ 1 p 2 ) * (1 p 1 ⊗ X 2 ).
We then have:

X W (k) X =     X 1 W (k) X 1 . . . X 1 W (k) X c . . . . . . X c W (k) X 1 . . . X c W (k) X c     with X j W (k) X k (p j,1 ו••×p j,d ,p k,1 ו••×p k,d ) ≡ ρ(G 2 (X j,d , X k,d ) , . . . , ρ(G 2 (X j,2 , X k,2 ) , ρ(G 2 (X j,1 , X k,1 ) , D (k) ))) (p j,1 ×p k,1 ,...,p j,d ×p k,d )
A similar expression may easily be obtained for diag(X ΨX ).

In order to find the optimal smoothing parameters according to BIC, we use a brute-force approach and fit the model over a grid of values for the scale of the penalty. We use scales of the form 2 k for k in a reasonable range (in practice k ∈ [-5, 20] contained all our optimal parameters with a good margin). To speed-up the process, some quantities in the algorithm that does not depend on the penalty scale are computed only once, and the fitted values for the parameters for one value of the scale are used as starting values for the next scale. In practice the code required in this paper can be run in under 5 minutes on an ordinary office computer.

Autonomous mortality and incidence in LTC

We rely on data from a French private insurance portfolio containing information about more than 200,000 contributors with over 20,000 observed claims. For autonomous mortality and incidence in LTC we perform simple smoothing over the age dimension. The transition intensity is modelled by log λ x = α x where α x = B x θ x with θ x a vector of size nb x contains the scaling parameters for the B-splines and B x is the associated regression matrix. The penalty matrix is P = π x D 2,nbx D 2,nbx and there is no constraint in this case. The previously introduced scoring algorithm is used to fit the model for different values of π x . Figure 5 gives the value of π x which maximizes the BIC and has been selected as the optimal choice. Figures 6 shows the fitted transition intensities for autonomous mortality and incidence in LTC, the associated deviance residuals and extrapolation for all ages between 50 and 120. To preserve confidentiality of business-related information, the exposure in our data has been multiplied by an arbitrary coefficient, which results in a simple translation of the α x coefficients on the logarithmic scale and no impact on the results or their interpretation.

The autonomous mortality increases almost exponentially for both genders and is significantly higher for males than for females. This behaviour reminds of the general mortality with which the autonomous mortality is indeed highly correlated. As regards the incidence in LTC it also has an exponential shape for both genders but males and females incidence are much closer in this case with a higher incidence rate for males before age 85 and a slightly higher incidence rate for female after 85. The linear shape of the extrapolation is a direct consequence of our choice of an order 2 penalty. Given the linear shape of the fitted curve, we feel confident about using a linear asymptote for the extrapolation. Finally let us point out that the Mort1Dsmooth function from the MortalitySmooth [START_REF] Camarda | Mortalitysmooth: An R package for smoothing poisson counts with P-splines[END_REF] package on the statistical software R (R Core Team, 2019) could have been used directly to obtain similar results. 

Mortality in LTC

While the inference of autonomous mortality and incidence in LTC is pretty straightforward, additional work is required for mortality in LTC which cannot be reasonably modelled without accounting for time spent in LTC. We nevertheless start this section by applying the same one-dimensional smoothing methodology that for other biometric laws. Figure 7 provides the selected smoothing parameters and illustrate the results of this approach by giving the fitted and extrapolated rates. Mortality in LTC is consistently higher for males than for females. However, a look at the residuals on the top left corner of Figure 16 is enough to see that there is a strong impact of duration of LTC that cannot be ignored. 

Non-parametric approach

Once the duration in LTC has been identified as a relevant dimension to study the risk, a natural approach is to perform smoothing over both the age and duration in LTC dimensions. We refer the reader to [START_REF] Currie | Smoothing and forecasting mortality rates[END_REF] for more details about smoothing in 2 dimensions using P-splines. We note AxD the associated model. In this case, we have log λ x,z = A x,z with A x,z = B x,z θ x,z where θ x,z is of size nb x ×nb z and B x,z = (B z ⊗B x ). The penalty is the sum on a row penalty and a column penalty P = P x ⊗ I nbz + I nbx ⊗ P z where P x and P z are one-dimension penalties with respectives scaling constant π x and π z . The scoring algorithm is used to fit the model. The Mort2Dsmooth function from the MortalitySmooth [START_REF] Camarda | Mortalitysmooth: An R package for smoothing poisson counts with P-splines[END_REF] package could also have been used to obtain those results.

As mortality in LTC sharply decline during the first year in LTC, the assumption of constant transition intensity over one-year intervals is not realistic. We therefore use a finer level of granularity by computing exposure and number of death on a monthly basis for the first year in LTC. There is no obstacle to use the P-spine methodology with different levels of granularity in the data. However, P-splines work on the transition intensity at the middle point of the one-year intervals λ x+1/2 . The 1/2 index can be easily omitted when working with annual rates because the distance between two consecutive observations is 1 no matter what. However when mixing monthly and yearly rates, one needs to pay attention as the distance between the rates for the 11th month and for the second year is 13/24 and not 1/12. 

Parametric approach

In this parametric approach, we aim at finding patterns for the role of the age and duration components by restricting the interaction between them. The idea would be to a have a simpler model in the spirit of Clayton and Schifflers (1987a) or [START_REF] Lee | Modeling and forecasting US mortality[END_REF]. We start with a very basic decomposition and then consider a second model with a non-linear interaction term.

Age Duration model

The Age-Duration (AD) model is given by log λ x,z = α x + γ z where α x = B x θ x and γ z = B z θ z , θ x and θ z being of respective sizes nb x and nb z . We have log E(D x,z ) = Xθ + log e c x,z with penalty matrix P and under constraints Hθ = c where The constraint has been introduced to make the model identifiable, otherwise an infinite number of solutions may be generated by simply translating both α x and γ z in opposite directions. Figure 12 represents the fitted coefficients and their extrapolations. The γ z plot shows a sharp decline of mortality in LTC during the first few months followed by a rather flat slope for males and a slow but steady increase for females. Regarding the extrapolation, we still use an order 2 penalty for extrapolation on the age component. As regards the duration component we prefer to use a mixed penalty for the side-effect of the horizontal asymptote. It is equivalent to making an assumption that there is some value of duration in LTC after which it no longer impacts the risk. As our data cover duration in LTC up to 8 years for males and 10 years for females, this assumption has a limited impact on the risk as only few LTC claims last more than 8 or 10 years. After 12 years the slope on γ z is flat which means there is no need to compute rates for higher durations in LTC, which proves convenient to build experience tables.

X = (1 z ⊗ B x : B z ⊗ 1 x ) P = P x 0 0 P z θ = θ x θ z H = 0 * 1 x B x 1 z B z c = 0.

Augmented Age Duration model

The duration effect γ z may be interpreted as a mixture effect linked to the presence of several groups of pathologies in the population [START_REF] Biessy | Semi-Markov modeling of the loss of autonomy among elderly people: application to long-term care insurance[END_REF] with different associated mortality levels.

In this regard, one can expect the relative weight of those groups in the population of newly disabled to vary with age at entry in LTC. To take this phenomenon into account we add an additional set of parameters β x to modulate the amplitude of the duration effect by age. We call the resulting model Augmented Age-Duration (AAD) model, defined by log λ x,z = α x + β x γ z where α x = B x θ x and γ z = B z θ z . Due to the presence of a non-linear interaction term, it can no longer be fitted by using a single GLMs. Instead, the scoring algorithm must be applied to alternatively update the following GLMs: In this case an additional constraint is required and we take the mean value of β x across the sample to be 1 in order for γ z to take similar values than in the Age-Duration model. Figure 14 represent the fitted values for the AAD model. The coefficients β x decrease with respect to age, the coefficient at age 75 being approximately 50 % higher than the coefficient at age 95 for both genders. The other parameters α x and γ z retain the same shape as in the AD model.

GLM 1 : log E(D x,z ) = [γ z ⊗ B x ] X 1 θ 1 + 1 z ⊗ α x + log e c x,z offset for GLM 1 GLM 2 : log E(D x,z ) = 1 z ⊗ B x : B z ⊗ β x X 2 θ 2 + log e c x,z offset for GLM 2 with constraints H 1 θ 1 = c 1 , H 2 θ 2 = c 2 where θ 1 = θ 1 x P 1 = P 1 x H 1 = (1 x B x ) c 1 = n x θ 2 = θ 2 x θ z P 2 = P 2 x 0 0 P z H 2 = 0 * 1 z B z 1 z B z c 2 = 0.
Regarding the extrapolation we use the same order of penalties as in the age duration model for both the α x and γ z components. For β x , we use a mixed penalty as the amplitude of the duration effect is bounded as the weights of the different pathology groups are themselves bounded between 0 and 1. 

Models comparison

A comparison of the different models used in this section is provided by Figure 15 Using the AAD model over the AxD model also provides additional advantages. Firstly, empirical rates may be obtained in the AAD model while in the AxD model many cells contain less than 10 observed death, if any. Then, the AAD model allows for decomposition of mortality in LTC on several 1-dimension scales. It proves especially useful when comparing experience data to a reference mortality law. Indeed when working with the AxD model, the only natural way of positioning the experience according to the reference would be to define either a single coefficient for every cell or a full of matrix of coefficients. With the AAD model this comparison may be done on each of α x , β x and γ z , allowing for intermediate solutions. One may for example wish to use the same β x and γ z as in the reference and determine the α x parameters on the experience data. 

Discussion

In this paper, we introduce a framework for modelling the Long-Term Care risk where 3 transition intensities need to be inferred: the incidence in LTC as well as the active an disabled mortality. We assume observed deaths or entries in LTC to follow a Poisson distribution with log link and specify a model for transition intensities directly, considering central exposure to risk as an offset. This gives us a convenient framework to infer each of the transition intensity, that we combine with smoothing methodology based on penalized basis splines. The disabled mortality depends not only on age but also on time already spent in the LTC state, requiring the use of 2-dimension smoothing and we provide two different approaches to tackle this issue: a direct non-parametric 2-dimension smoothing and an approach with restricted interaction terms between the age and duration in LTC component. Inside this second approach, we start by removing any interaction between the two components and then further refine the model into an Augmented Age Duration model (AAD) by allowing for a multiplicative interaction term between age and duration in LTC. The AAD model proves accurate and parsimonious and offers a clearer view of the underlying effects that take part in mortality in LTC. It thus offers more flexibility when comparing experience data to a reference table.

Compared to the approach developed in [START_REF] Tomas | Multidimensional smoothing by adaptive local kernel-weighted log-likelihood: Application to long-term care insurance[END_REF], our approach offers additional flexibility as the granularity of the data may consist of both monthly and yearly rates. The AAD model allows for easy extrapolation of the mortality rates on both the age and duration dimension, a real strength compared to non-parametric methods such asGuibert and Planchet (2018). While Biessy (2017) also provides similar advantages such as parsimony and interpretation of parameters, as a fully parametric model it comes with restrictive assumptions that are absent from the AAD model.

This approach was illustrated on the case of LTC but it may naturally be extended to other biometric risks such as Disability or Critical Illness. It could also be used for the inference of lapse rates in any life insurance portfolio. The methodology we introduce in this paper is inspired from an innovative formulation of the [START_REF] Lee | Modeling and forecasting US mortality[END_REF] model with smoothing of coefficients using P-splines [START_REF] Eilers | Flexible smoothing with B-splines and penalties[END_REF] that was developed in [START_REF] Currie | Smoothing constrained generalized linear models with an application to the lee-carter model[END_REF]. The Lee-Carter model is a stochastic model which aims at forecasting mortality. In this paper we traded the calendar year dimension for duration in LTC. It is however possible to develop a stochastic version of the introduced models by bringing back the calendar year dimension, making it a 3-dimension inference problem with smoothing on the age and time spent in LTC dimensions and no smoothing on the calendar year dimension. This stochastic model extension will be explored in further research.
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 2 Figure 2: B-splines of degrees 0 to 3 and their derivatives
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 34 Figure 3: Basis of B-splines of degree 3 which consists in 5 internal knots, 6 external knots and 7 splines for observations in the range from x = 3 to x = 7.
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 56 Figure 5: Optimal smoothing parameters for autonomous mortality (top) and incidence in LTC (bottom) for males (left) and females (right)

Figure 7 :

 7 Figure 7: Age model; top: smoothed age coefficients for males (blue) and females (red), fitted (left) and with extrapolations (right); bottom: selected smoothing parameters
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 8910 Figure8: Age x Duration model for males, with minimal smoothing (left) and optimal smoothing according to BIC (right). Top: males; Bottom: females Figure8show the results of this two-dimensional smoothing approach for the selected smoothing parameters represented on Figure9. For clarity sake, the left panel of those figures represent a slightly smoothed version of the empirical rates who are very volatile as some cells contains very few observations. Mortality in LTC is very high during the first year in LTC, for males and females, especially for lower ages at entry in LTC. Residuals on the top right corner of Figure16show no obvious pattern. Finally, Figure10provides an extrapolation of the mortality surfaces for ages 50 to 120 and duration up to 15 years.
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 12 Figure 11: Age Duration model: optimal smoothing parameters according to BIC
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 13 Figure 13: Augmented Age Duration model: optimal smoothing parameters according to BIC

Figure 14 :

 14 Figure 14: Augmented Age Duration model: age (top) duration (bottom) and age-modulating (middle) coefficients for males (blue) and females (red). Left: fitted values; right: extrapolations

Figure 15 :

 15 Figure 15: Comparison of mortality in LTC for the 4 different models; Top: males; Bottom: females

Figure 16 :

 16 Figure 16: Residuals of mortality in LTC for the 4 different models; Top: males; Bottom: females

  whereas 16 contains the associated residuals. The AxD model obtained by 2-dimension smoothing presents the most features while the age model is clearly missing paramount duration related effects. The AD and AAD models lie in-between. With the exception of the age model, all models exhibit very similar residuals. Table1provide the values of deviance, degrees of freedom and BIC for all 4 models. Looking at deviance or BIC the age model does a very poor job at estimating mortality in LTC. The AD model is less accurate than the AxD model but compensates with a lower degree of freedom. According to BIC, it even proves a better choice than the AxD model for females. The AAD model combines a low deviance, roughly the same as the AxD model with a low degree of freedom, very close to the AD model. According to BIC or other metrics based on deviance, it therefore proves the best choice of the four models.

Table 1 :

 1 Comparison of models for mortality in LTC

	Model Gender deviance	df	BIC
	A	male	1632.58	3.05 1651.64
	AxD	male	562.63 16.15	663.65
	AD	male	619.76 10.56	685.82
	AAD	male	560.36 11.73	633.74
	A	female	1538.31	3.31 1559.32
	AxD	female	598.98 21.19	733.46
	AD	female	632.61 13.86	720.56
	AAD	female	598.33 14.74	691.88
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