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Abstract  

The motivation behind this research lies in understanding the physical mechanism of cavitation erosion 

in compressible liquid flows, with applications in the field of aerospace, hydrodynamics, diesel 

injectors etc. As a consequence of collapsing vapor cavities in cavitating flow near solid boundaries, 

high pressure impact loads are generated. These pressure loads are believed to be responsible for the 

erosive damages on solid surface observed in most applications. For our investigation, the initial 

geometry is a single vapor bubble near a solid boundary collapsing due to the pressure difference 

between the bubble and surrounding liquid. The numerical approach employs a simplified homogenous 

mixture or ‘single fluid’ model with barotropic assumption in a fully compressible finite-volume fluid 

solver. The numerical method is validated against the well-known Rayleigh collapse of a pure 3D 

vapour bubble. It is then used for the simulation of a 2D vapour bubble collapsing in the proximity of 

a solid boundary placed at a specified distance from the centre of the bubble. The pressure loads are 

computed from the evolving dynamics of collapsing bubble near a solid boundary which can be used 

to determine the resulting surface deformation. The developed compressible cavitation solver in the 

CFD code 𝑌𝐴𝐿𝐸𝑆2 can efficiently model small and large scale cavitating structures in a fully resolved 

three dimensional flow. 
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Introduction  

The collapse of cavitation structures formed due to the breaking down of the continuous liquid medium under very 

low pressures, near a solid surface leads to surface damage known as cavitation erosion. The driving mechanism for 

the cavitating structures is the local decrease in liquid pressure below typically vapor pressure at a given temperature 

[1]. The cavitating regions consist number of cavitation bubbles due to the rapid growth of initially present air nuclei 

in the liquid flow. These cavitation bubbles move along the liquid flow until they collapse in the areas of high pressure 

and disappear. The presence of air nuclei, amount of dissolved gas in the flow are determining factors for the amount 

and size of cavitation bubbles. The motivation of this research is to numerically investigate the unsteady compressible 

cavitation bubble behaviour in a continuum liquid flow, with associated compressibility effects inside the flow 

domain. It will be used to predict accurately the material surface response to these small time-scale, highly unsteady 

flow characteristics. The vapor bubble collapse is usually characterized by the shrinking of bubble surface, 

acceleration of liquid flow towards the centre of bubble and shock propagation during the collapse. During the final 

stages of the collapse, due to the collision of bubble surface and liquid jet at the center, a high impulse shock wave is 

produced and propagated into the surrounding liquid. The collapse of a cavitation bubble close to a solid boundary is 

significantly affected by the non-dimensional stand-off parameter (), defined as the ratio of distance of the bubble 

center from the solid boundary to the maximum bubble radius. The dynamics of the bubble collapse and its interaction 

with the solid boundary such as the liquid micro-jet formation, splashing and surface erosion is strongly dependent on 

the stand-off parameter. Comprehensive description of the effect of the stand-off parameter may be found in the paper 

of Philipp and Lauterborn [2]. For an isolated bubble, the collapse is basically symmetric and a shock wave forms 

near the center of the bubble which propagates into the surrounding liquid. For an asymmetric bubble collapse near a 

solid boundary, a liquid re-entrant micro-jet pierces through the bubble surface opposite to the solid boundary 

accelerating one side of the bubble towards the opposite surface. The liquid jet is directed towards the solid boundary 

and the estimated speed of the micro-jet is usually very high, several hundred meters per second. Multiple shock waves 

are emitted due to the impact of the liquid jet with the opposite bubble surface and eventually, the solid boundary. The 

high amplitude, localized pressure impulse at the solid boundary due to the emitted shock and micro-jet results in 

material surface damage or erosion. The collapse of a pure vapor bubble surrounded by a liquid can be represented as



 
 

as figure 1 where 𝑃𝑏𝑢𝑏𝑏𝑙𝑒  is the pressure inside the bubble and 𝑃𝑙𝑖𝑞𝑢𝑖𝑑 is the surrounding liquid pressure such that 

𝑃𝑙𝑖𝑞𝑢𝑖𝑑  ≫ 𝑃𝑏𝑢𝑏𝑏𝑙𝑒 .  

 
Figure 1: Vapor bubble collapse due to imposed pressure difference Pliquid  >> Pbubble; collapse of an isolated bubble - symmetric collapse (top);  

bubble collapse near a solid boundary - asymmetric collapse (bottom) 

Since one of the primary consequence of cavitation is its effect on nearby solid boundaries, a detailed investigation is 

needed on the final stage of bubble collapse with high temporal and spatial resolution. A feedback of solid material 

response can then be introduced into the fluid domain using a two-way coupled fluid-structure interaction model. The 

numerical investigation of collapsing cavitation bubble is challenging due to the need of high spatial and temporal 

resolution to capture the instantaneous high amplitude pressure loads.  

CFD Solver 𝒀𝑨𝑳𝑬𝑺𝟐 

A pressure-based semi-implicit algorithm is used in the multi-physics solver YALES2 [3] for compressible flows with 

a fractional-step method [4] which is based on a characteristic splitting of the Navier-Stokes equation. The method 

consists of an advection or predictor step and a pressure-correction step separating the acoustics from the advection. 

In the pressure-correction step, a Helmholtz equation for pressure is solved implicitly to remove the acoustic CFL 

limitation. The compressible formulation of the governing flow equations allows its hyperbolic treatment to include 

the time dependent flow characteristics in the solution. Liquid flows with cavitation undergo strong negative pressure 

gradients for liquid break up to initiate cavitation. The speed of sound may be quite small in the two-phase region of 

a cavitating flow. For cavitation phase transition in a compressible liquid flow numerical methodology should resolve 

a wide range of Mach numbers (𝑀), defined as the ratio of flow velocity to sound speed in the flow field. In the two-

phase liquid-vapor mixture, local Mach number can be extremely high 𝑀 ≫ 1 whereas pure liquid phase stays close 

to low Mach number regime 𝑀 → 0. In the low Mach limit, the compressible 𝑌𝐴𝐿𝐸𝑆2 solver tends towards an 

incompressible solver inheriting the same stability and efficiency. In the solver, the wall boundary condition is treated 

implicitly by imposing a no-slip velocity in the advection or predictor step. Outlet boundary conditions are treated 

explicitly with classical Navier–Stokes Characteristic Boundary Conditions (𝑁𝑆𝐶𝐵𝐶) [5] to enforce acoustically non-

reflecting boundaries. A consistent equation of state is used for the pure liquid phase using the Tait’s equation of state 

and for the two phase liquid-vapor mixture following an isentropic phase transition model proposed in Egerer et al. 

[6]. The two phase modelling using a homogenous mixture or ‘single fluid’ is widely accepted and implemented with 

the barotropic fluid assumption which specifies that the pressure is only a function of the fluid density.  The model 

uses a single set of governing equations for all phases with consistent equations of state and fluid viscosities. Since 

the cavitation model is assumed to be barotropic, the energy equation is decoupled from the system of governing 

equations in the solver. The speed of sound in the pure liquid phase is computed as 𝑐 =  √𝜕𝑃 𝜕⁄  whereas in the 

liquid-vapor phase it is constant equal to the speed of sound at 
𝐿
𝑠𝑎𝑡 . This is implemented to eliminate numerical 

instability of the pressure correction equation due to steep change in the speed of sound at the interface of pure liquid 

and liquid vapor mixture phase.  



 
 

Results 

The two phase model for compressible liquid is validated for an isolated 3D single bubble collapse case with the 

analytical model of Rayleigh-Plesset described in [1]. The analytical model considered assumes liquid 

incompressibility and no liquid viscosity, gravity and surface tension. The analytical model considers a bubble 

saturated with pure vapor whose pressure is equal to vapor pressure 𝑃𝑣𝑎𝑝 = 2194 𝑃𝑎 and surrounding liquid pressure 

𝑃 = 10 𝑀𝑃𝑎. The numerical simulation is carried out with a bubble filled with two phase mixture of 99% saturated 

vapor content inside or simply, a vapor void fraction  = 0.99 . The isentropic cavitation model implemented assumes 

that phase change from pure liquid to liquid-vapor mixture starts at 𝑃𝑣𝑎𝑝 = 2340 𝑃𝑎. The pressure decreases along an 

isentropic path as the density of liquid-vapor phase decreases, in other words, with increasing vapor void fraction in 

the bubble. At initialisation, the bubble is filled liquid-vapor mixture of phase density 10 𝑘𝑔/𝑚3and phase pressure 

of 2194 𝑃𝑎. The 3D spherical bubble is initialised inside the flow domain at time 𝑡 = 0 𝑠 with initial bubble radius 

𝑅0 = 500 µ𝑚. The surrounding liquid is initialized with a 𝑃 = 10 𝑀𝑃𝑎 and the bubble starts to collapse at 𝑡 > 0 𝑠 

under the influence of the surrounding liquid pressure. The computational domain for the 3D simulation is cubical in 

shape with numerical boundaries located at 25 𝑅0 away from the bubble center in all dimensions. The bubble is 

spatially resolved with 100 cells in the initial bubble radius 𝑅0. The bubble interface is defined by the variation of 

vapor void fraction  = 0 in the pure liquid to  = 0.99  inside the bubble. 

The time step for the resolved problem is  𝑡𝐶𝐹𝐷 = 510−10 𝑠 based on CFL and acoustic CFL condition. The total 

simulated collapse is completed within the computed Rayleigh time 𝑡𝑟𝑎𝑦𝑙𝑒𝑖𝑔ℎ of 4.610-6 s. The comparison of the 

simulated 3D bubble collapse by the developed 𝑌𝐴𝐿𝐸𝑆2 compressible cavitation solver and theoretical Rayleigh-

Plesset collapse is shown below in figure 2. The plot shows the evolution of bubble radius 𝑅 with respect to time 𝑡, 

both normalized by initial bubble radius 𝑅0 and Rayleigh time 𝑡𝑟𝑎𝑦𝑙𝑒𝑖𝑔ℎ respectively. The solid line is the solution 

obtained from Rayleigh-Plesset analytical equation and the dots represent the equivalent radius from the bubble vapor 

volume obtained from the simulation. A decent agreement between the analytical and numerical result is obtained 

during the collapse, demonstrating the ability of the developed compressible cavitation solver to predict the dynamics 

of bubble collapse effectively.  

 
 

 

Figure 2 :Simulation of a single 3D spherical bubble collapse with 𝑌𝐴𝐿𝐸𝑆2 and comparison with Rayleigh Plesset collapse model for Rmax= 500 

m, P=10 MPa. Numerical bubble collapse setup (left); evolution of non-dimensional radius with respect to non-dimensional time (right) 

 

Further, the collapse of an isolated vapor bubble attached to a solid boundary is investigated in a 2D setup. The initial 

radius of the bubble is  𝑅0 = 500 µ𝑚 and the bubble is placed near the boundary as such to obtain a stand-off 

parameter of 0.8. The bubble is initialised with a vapor void fraction  = 0.99 saturated inside at vapor pressure 

𝑃𝑣𝑎𝑝 = 2194 𝑃𝑎 and surrounded by liquid pressure of 𝑃 = 100 𝑀𝑃𝑎. The bubble is placed on the bottom surface of 

a rectangular domain which is numerically treated as a rigid boundary. An acoustically non-reflecting outlet boundary 



 
 

condition is imposed at other faraway boundaries of the rectangular domain situated 25𝑅0 distance away from bubble 

center to avoid the interaction of reflected shock waves with the final stages of the collapse. The bubble is spatially 

well resolved with 100 cells along the initial bubble radius 𝑅0. The problem was simulated with a temporal resolution 

of 𝑡𝐶𝐹𝐷 = 5. 10−10 𝑠 , chosen from the minimum time step computed from CFL and acoustic CFL condition during 

the moment of collapse and kept constant throughout the computation. Figure 3a shows the initial set up of the 2D 

bubble geometry at 𝑡 = 0 𝑠. The bubble interface remains well defined during the complex collapse phase and a liquid 

micro-jet is formed during the final stages of the collapse from the opposite side of the rigid boundary due to 

asymmetry of the problem. The pressure evolution at a point K on the bottom boundary surface is presented in figure 

3b, extracted at every 0.1 𝑛𝑠 during the simulated collapse. The considered point K is located right under the bubble 

to capture the pressure evolution due to impacting liquid jet and subsequent shock waves. The initial pressure on the 

point is the saturation vapor pressure 𝑃𝑣𝑎𝑝 = 2194 𝑃𝑎 due to the attached bubble on the boundary. It is assumed that 

there is no liquid film layer between the attached bubble and solid boundary. Until 𝑡 = 3.0326 𝑠, the pressure at the 

point remains at 𝑃𝑣𝑎𝑝 as the bubble shrinks and formation of micro-jet starts. Two distinct pressure peaks can be seen 

in the pressure plot  at 𝑡 = 3.0715 𝑠 and 𝑡 = 3.2079 𝑠 of 1986 𝑀𝑃𝑎 and 3920 𝑀𝑃𝑎 respectively. The first 

observed pressure peak is due to liquid jet impact and second peak due to the collapse of the bubble ring or torus, 

similar to the observations made in Chahine et al. [7].  

 
 

Figure 3a (left) : : Initial bubble setup with represented point K in the bottom solid boundary where pressure evolution is plotted; Figure 3b(right): 

Pressure evolution at point K in the bottom solid boundary, Rmax = 500 m,  = 0.8, P = 100 MPa 

The corresponding pressure and density contours for the observed pressure peaks are shown next in figure 4 and figure 

5. The first pressure peak of  1986 𝑀𝑃𝑎 is the liquid jet with an estimated velocity of 880 𝑚/𝑠 impacting the solid 

boundary and producing an instantaneous water hammer like pressure load at 𝑡 = 3.0715 𝑠.  

 

   
 



 
 

 

   

Figure 4: Pressure (top) and density (bottom) contour for a 2D bubble collapse showing the liquid micro-jet impacting the solid boundary, 

corresponding to the first pressure peak of 1986 MPa seen at time t = 3.0715 s 

The remaining bubble ring after the liquid micro-jet impact contracts due to the surrounding liquid pressure towards 

the center of the bubble. The impacting liquid jet rebounds from the solid boundary and contributes to the shrinking 

of remaining vapor bubble ring. The remaining bubble ring is thus, impacted by an inward moving flow surrounding 

the bubble and an outward moving flow from the liquid jet rebound. As the bubble ring collapses, two shock waves 

are emitted that travel through the domain with liquid speed of sound. The second pressure peak of 3920 𝑀𝑃𝑎 is 

created at 𝑡 = 3.2079 𝑠 due to the interaction of the travelling shock waves at the bubble center as seen in figure 5. 

 

   

 

 

   

Figure 5: Pressure (top) and density (bottom) contour for a 2D bubble collapse showing the interaction of shock waves after the collapse of the 

bubble torus, corresponding to the second pressure peak of 3920 MPa at t = 3.2079 s 



 
 

Conclusion  

This work has been devoted to the investigation of the dynamics of a single vapor bubble collapse. The fluid is assumed 

to be compressible and viscous for the problem. Using the described numerical method, a 3D bubble collapse in an 

unbounded fluid has been realised and compared with the analytical Rayleigh-Plesset result. There is good agreement 

between the numerical simulation and analytical result for the 3D bubble collapse case. The compressible cavitation 

solver developed is used to investigate the collapse dynamics of a vapor bubble near a solid boundary in a 2D set up, 

for an initial bubble radius 𝑅0 = 500𝑚  and stand-off parameter  = 0.8. The bubble collapses under the influence 

of surrounding liquid pressure 𝑃 = 100 𝑀𝑃𝑎 and two distinct pressure peaks are observed. The first peak of 

1986 𝑀𝑃𝑎 is due to impacting liquid micro-jet and a much stronger second pressure peak of 3920 𝑀𝑃𝑎 from the 

interacting shock waves after the collapse of bubble ring. This predicted instantaneous pressure will be used in the 

FSI methodology to predict the solid boundary response. 
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