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Quantum Walks as simulators of neutrino oscillations in vacuum and matter
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We analyze the simulation of Dirac neutrino oscillations using quantum walks, both in vacuum
and in matter. We show that this simulation, in the continuum limit, reproduces a set of coupled
Dirac equations that describe neutrino flavor oscillations, and we make use of this to establish a
connection with neutrino phenomenology, thus allowing one to fix the parameters of the simulation
for a given neutrino experiment. We also analyze how matter effects for neutrino propagation can
be simulated in the quantum walk. In this way, important features, such as the MSW effect, can be
incorporated. Thus, the simulation of neutrino oscillations with the help of quantum walks might
be useful to illustrate these effects in extreme conditions, such as the solar interior or supernovae.

I. INTRODUCTION

Quantum simulation is important for the ability to ex-
plore the behavior of a quantum system under conditions
that are experimentally difficult to access. A clear exam-
ple is the simulation of the Dirac equation, which allows
one for the visualization of effects like the zitterbewe-
gung or the Klein paradox [1–3], which can in fact be
easily simulated on a classical computer, but are hard to
verify on the laboratory. Related to this application of
quantum simulations, we will consider in this paper an-
other problem, that concerns the simulation of neutrino
oscillations using the quantum walk (QW). Neutrino os-
cillations were proposed by B. Pontecorvo in 1957 [4],
under the form of neutrino-antineutrino oscillations, in
analogy to Kaon oscillations, and afterwards as "flavor
transitions” by Maki, Nakagawa and Sakata in 1962 [5].
This kind of oscillations appear because the three types
of flavor states for neutrinos (νe, νµ and ντ ) that have
a definite interaction in the Standard Model of particle
interactions (SM) do not coincide with the mass eigen-
states of the Hamiltonian described by the same model.
Instead, there is a unitary transformation that relates
both sets of states. As a consequence, a neutrino which is
produced e.g. as an electron neutrino νe can be detected,
with a given probability, as any of the three flavors at a
later time (see, for example [6, 7]). Neutrino oscillations
have given rise to very rich phenomena, ranging from the
solution to the Solar neutrino problem, supernovae [8],
reactor neutrinos [9], the Early Universe [10], or atmo-
spheric neutrinos [11].

QWs are quantum cellular automata in the one parti-
cle sector that can be viewed as formal generalizations
of classical random walks. They have been first consid-
ered by Feynman [12] as a possible discretization of the
free Dirac dynamics in flat space-time, and later intro-
duced in the physics literature in a systematic way by
Meyer [13], following the seminal work of Aharonov [14].
A continuous-time version first appeared in [15]. QWs
have been realized experimentally with a wide range of
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physical objects and setups [16–22], and are studied in a
large variety of contexts, ranging from fundamental quan-
tum physics [22, 23] to quantum algorithmics [24, 25],
solid-state physics [26–29] and biophysics [30, 31]. Fol-
lowing the Feynman’s idea, several authors have studied
the connection between quantum automata and quantum
field theory [32, 33]. In particular, it is well known that
the continuous limit of various QWs formally coincides
with the Dirac equation [34–36]. It has been shown re-
cently that several QWs can model the dynamics of free
Dirac fermions coupled to electromagnetic [37, 38] and
relativistic gravitational fields [3, 39–41].

Here, we will make use of the capabilities of the QW
as discretizations of quantum field theories, to establish a
connection between QWs and the phenomenology of neu-
trino oscillations in different scenarios. Given the known
bounds to the neutrino masses, we will concentrate in
relativistic neutrinos, an approximation that holds in the
vast majority of experimental situations. Neutrino oscil-
lations have been demonstrated by an optical analogical
experiment based on the two-state system of polarized
photons traveling through a birefringent crystal [42]. In
[43] the authors discuss the idea of simulating the coupled
Dirac equations describing the neutrino propagation with
trapped ions. A different proposal [44] consists in using
waveguide arrays. The QW, however, offers the possibil-
ity to perform the simulation by using a suitable modifi-
cation of some of the experimental setups already avail-
able, or proposed, for the QW dynamics. Experimen-
tal procedures allowing the implementation of DTQWs
with wave functions having more than two components
have been proposed in [45, 46]. In these procedures, the
DTQWs are implemented with single photons or classi-
cal light, for example in optical cavities or with atoms in
optical lattices.

A previous work has already motivated such study [47].
Here, we extend this work in two crucial directions. First,
we analyze the continuous version (in space and time)
of the proposed model. In this way, we can obtain the
resulting equations that describe the well-known Hamil-
tonian dynamics of (relativistic) neutrinos. This result,
not only is a verification of the model as describing neu-
trino oscillations, but also allows one to establish a clear
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correspondence between the parameters of the simulation
and the neutrino data for a given experiment. Secondly,
we show how matter effects can be incorporated into the
simulation. As it is well known, matter effects are crucial
for the explanation of the Solar neutrino problem, spe-
cially for the higher energy 8B neutrinos [7], and for long
baseline experiments [48, 49]. A quantum simulator can
then be used as an extra tool to visualize these effects
from the point of view of a discretized field theory.

This paper is organized as follows. In Sec. II we give a
short introduction to the phenomenon of neutrino oscilla-
tions, and illustrate it for the case of two flavors. In Sec.
III we define the dynamics of the QW model, and we show
that, in the continuous space-time limit, we recover the
dynamics of a set of coupled Dirac equations that can be
put in correspondence with the Hamiltonian formulation
of neutrino oscillations, thus allowing one to identify the
value of the parameters needed to simulate a given neu-
trino experiment. We make use of this correspondence,
in Sec. IV, to give an example of the simulation of three
flavors in vacuum. In Sec. V, we show how matter ef-
fects in the neutrino propagation can be incorporated in
the QW model. Our main conclusions are summarized in
Sec. VI. Along this paper we use natural units, defined
by ~ = c = 1.

II. NEUTRINO OSCILLATIONS

Neutrinos are produced as “flavor states” via charged
or neutral currents in nuclear reactors, stars, cosmic rays
and many other scenarios, in the way described by the
SM. These flavor states Ψ̃α (α = e, µ, τ) are related, at
a given space-point (t, x), to the mass eigenstates by an
unitary transformation R, such that

Ψ̃α(t, x) =
∑

i

Rαi Ψi(t, x), (1)

where Ψi(t, x) is the neutrino field with mass mi. The
field can, in principle, take either a Dirac or a Majo-
rana form although we will consider, for definiteness, a
Dirac field: The precise nature of the neutrino field is
still undetermined and, although important for the fun-
damental knowledge of neutrinos, is irrelevant in the case
of relativistic neutrinos considered here. Eq. (1) actu-
ally refers to the left chiral components of the neutrinos,
since only these components interact within the SM. We
will restrict ourselves to propagation along one spatial
dimension, then x refers to the coordinate along that di-
mension.

We will concentrate on neutrino eigenstates, with mo-

mentum ~k and energy Ei =

√

~k2 +m2
i of the Hamilto-

nian H of the theory:

H |νi〉 = Ei |νi〉. (2)

Suppose that, at time t = 0, a flavor neutrino |να〉 is pro-
duced, then at time t the neutrino state evolves according

to

|να〉t = e−iHt

3
∑

i=1

R∗
αi |νi〉 =

∑

i

|νi〉e−iEit R∗
αi. (3)

Therefore, at time t, the initial neutrino can be detected
as any flavor νβ . The probability of the να → νβ transi-
tion after a time t is then given by the following expres-
sion

P (να → νβ ; t) = |
3

∑

i=1

Rβi e
−iEi t R∗

αi|2. (4)

To illustrate the latter formula, let us analyze the case
with only two neutrino states (some interesting cases,
such as solar and atmospheric neutrinos, can be effec-
tively described in this way). The matrix R can be taken
as

R =

(

cosφ12 sinφ12
− sinφ12 cosφ12

)

, (5)

φ12 being the mixing angle. By approximating Ei ≃
|~k|+ m2

i

2|~k|
, Eq. (4) gives, for β 6= α:

P (να → νβ ; t) = sin2 2φ12 sin
2 ϕ(t), (6)

where

ϕ(t) ≡ ∆m2
12t

2|~k|
, (7)

with the notation ∆m2
12 = m2

2 −m2
1. Notice that, in the

latter equation, one can replace |~k| by E within the same
order of approximation as above, where E = E1 ≃ E2.
Also, it is customary to use the distance L ≃ t traveled
by the neutrinos from the production to the detection
point. Then, the argument of the oscillatory function in
(6) becomes

ϕ(L) ≃ 5.08
∆m2

12L

2E
, (8)

when ∆m2
12 is expressed in eV 2, L in Km and E in GeV

units.

III. THE MODEL

Consider a QW defined over discrete time and discrete
one dimensional space, labeled respectively by j ∈ N and
p ∈ Z. This QW is driven by an homogeneous coin act-
ing on the 2n-dimensional tensor-product Hilbert space
H = Hspin ⊗ Hn, where Hspin is 2-dimensional and Hn

describes the n-flavor Hilbert space of the walker. The
evolution equations read





ψ1
j+1,p

...
ψn
j+1,p



 =





⊕

h=1,n

SQh
ǫ









ψ1
j,p

...
ψn
j,p



 , (9)
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where Qh
ǫ ∈ SU(2), h = 1...n, and

Qh
ǫ =

(

cos(ǫθh) i sin(ǫθh)
i sin(ǫθh) cos(ǫθh),

)

(10)

is the quantum coin acting on each flavor state of
the walker depending on dimensionless real parameters
(ǫ, θh). The operator S is the usual spin-dependent
translation acting on each flavor component, ψh

j,p =

{ψ↑h
j,p, ψ

↓h
j,p} ∈ Hspin and defined as follows:

Sψh
j,p =

(

ψ
↑h
j,p+1, ψ

↓h
j,p−1

)⊤

. (11)

We note Ψ = (
⊕

h=1,n ψ
h)⊤ ∈ Hn.

Equations (9) describe the evolution of n independent
two-level systems, and it has been shown that each of
them recover, in the continuous limit, the Dirac equation
[3, 37, 39], where the parameter θh corresponds to the
mass of the fermion. Let us now consider an additional
unitary operator R and its inverse R−1 = R† acting on
Hn ⊗H2. The specific role of this operator is to mix the
flavor degrees of freedom, as in Eq. (1). The evolution
equation becomes:

Ψ̃j+1,p = R





⊕

h=1,n

SQh
ǫ



R†Ψ̃j,p (12)

where we call Ψ̃j,p = RΨj,p the flavor eigenstates. In
the next section we will prove that this simple model re-
covers, in the continuous limit, the oscillatory dynamical
behavior of Dirac neutrinos in vacuum.

A. Generalized Dirac equation for neutrinos

In order to compute the continuous limit of equations
(9), we first consider that Ψ̃j,p are the ‘values’ Ψ̃(tj , xp)

taken by a two-component wave-function Ψ̃ at space-time
point (tj = jǫ, xp = pǫ). We assume that Ψ̃ is at least
twice differentiable with respect to both space and time
variables for all sufficiently small values of ǫ. Assuming
the existence of the continuous limit imposes the follow-
ing constraint on the coin:

lim
ǫ→0



R





⊕

h=1,n

SQh
ǫ



R†



 = I2n. (13)

The above equation (13) is directly verified because Qi =
I2 as ǫ→ 0 and RR†= I2n by definition.
When we Taylor-expand (12) at first order in ǫ, the zero-
order terms cancel each other, since (13) is satisfied, and
the first-order terms provide the following system of par-
tial differential equations (PDEs):



∂t −





⊕

h=1,n

σz



 ∂x − iM



 Ψ̃(t, x) = 0, (14)

where Mr,s is the mass tensor, with indices r, s =
{1, ..., n}:

Mr,s =
∑

c=1,...,n

Rr,cQ̄cR
−1
r,c Q̄c = θ̄cσx. (15)

Equation (14) are standard Dirac equations for n rela-
tivistic flavor neutrinos in (1+1) continuous space-time.

Notice that, because Ψ̃(t, x) is a solution of the Dirac
equation, it is also a solution of the Klein-Gordon (KG)
equation. As usual, we can expand the neutrino field
in plane waves of the form Ψ̃(t, x) = Ψ̃k(t)e

ikx, so that

equation (14) transcribes in (∂2t +k
2+M†M)Ψ̃k(t) = 0,

where M†M = diag{θ̄21, ..., θ̄2n}. To describe relativistic
neutrinos, however, the condition k >> θ̄i has to be ful-
filled. In this limit, one can linearize the previous KG
equation as follows:

i∂tΨ̃k(t)− ΩkΨ̃k(t) = 0, Ωk = (k +R† |M|2
2k

R), (16)

where we have considered only the positive-energy prob-
ability amplitudes (neutrinos), and defined |M| =√
M†M. For negative-energy states (antineutrinos) a

global minus sign appears in equation (16). Following a
similar procedure as in Sec. II one can obtain, starting
from Eq. (16), the transition probability, which can be
written as

P (να → νβ ; t) = |
∑

k

ψ̃α∗
k (0)ψ̃β

k (t)|2. (17)

For example, in the case of two neutrino flavors, one
would arrive to Eq. (6), but with the phase ϕ(t) given
by

ϕ(t) =
θ̄22 − θ̄21

2k
t. (18)

IV. SIMULATION OF NEUTRINO

OSCILLATIONS IN VACUUM

The above equations were derived for any number of
neutrino generations. Writing them explicitly in terms of
mixing angles is extremely cumbersome in general. Let us
consider the three neutrino generations {e, µ, τ} in vac-
uum, respectively the electron, the muon and the tau
neutrino. The transformationR recovers the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) mixing matrix and de-
pends on three real parameters [50]:

R = eiφµτλ7eiφeτλ5eiφeµλ2 (19)

where the λ are the Gell-Mann matrices that correspond
to the spin-one matrices of SO(3). Each angle φij corre-
sponds to the mixing between two neutrino species. Let
us remark that when R is the identity, the solutions of Eq.
(16) are propagating plane waves ∝ e−i(Et−kx), where
k2 = E2 − θ̄2h, h ∈ {e, µ, τ}.
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The comparison between Eqs. (7) and (18) allows us
to establish a criterion to simulate a given neutrino os-
cillation experiment, by requiring that the accumulated
phase ϕ(t) takes the same value in both cases, where t
represents the number of timesteps in the QW simula-
tion. For example, one can choose the values θ̄2h as given
the neutrino square masses m2

i , expressed in eV2, and k
given by the energy in GeV. This will, in turn, fix the
number of required timesteps, for a given distance L. A
second condition, of course, is that the mixing angles φij
correspond to the observed values (see [51] for recent re-
sults).

In Fig. 1 we can observe the oscillatory behavior
of three flavor neutrinos starting from a pure electron-
neutrino initial state:

ψ̃i∗
k (0) =

1√
n

n−1
∑

p=0

e−i(k−k0)xp ⊗ (1, 0, 0, 0, 0, 0)⊤. (20)

One can observe that these plots reproduce the ones cor-
responding to actual calculations of neutrino oscillations
(see for example [52]).

V. NEUTRINO OSCILLATIONS IN MATTER

Wolfenstein (1978) was first to recognize that the
medium induces a modification of the neutrino dispersion
relation [53], and then Mikheyev and Smirnov showed
that oscillations can be resonant when neutrinos pass
through a density gradient, so that the flavor branches
of the dispersion relations have an avoided crossing
[54]. This Mikheyev-Smirnov-Wolfenstein (MSW) effect
is very important in astrophysics because neutrinos are
naturally produced in the interior of stars and stream
through a density gradient into empty space.
In order to model neutrino oscillations in a medium, let
us consider the case with only two flavors, which we freely
denote as νe and νµ. Notice that, as already mentioned,
many realistic experiments can be effectively reduced to
a two-neutrino oscillation. In that case we consider one
mixing angle and a 2-dimensional matrix R:

R =

(

cosφ sinφ
− sinφ cosφ

)

⊗ I2 (21)

Matter interaction is modeled by introducing a
position-dependent phase:

Ψj+1,p = VpR





⊕

h=1,2

SQh
ǫ



R†Ψj,p, (22)

where

Vp = diag(eiǫρp , 1)⊗ I2 (23)

By the same procedure presented in section A we can
derive the following Dirac equations:

i∂tΨ̃(t, x) −HmΨ̃(t, x) = 0, (24)
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Figure 1. (Color online) Time evolution of the probability
P (να → νβ; t), β ∈ {e, τ, µ} of a three flavor neutrino os-
cillation in vacuum, simulated by a QW. (Top) Short (in-
set) and medium time range (200 time steps). (Bottom)
Long time range (1000 time steps). The mass differences are
∆m2

eµ = 0.003 rad, ∆m2
µτ = 0.32 rad, ∆m2

eτ = 0.31 rad,
and the mixing angles φ12 = 0.34 rad, φ13 = 0.54, φ23 = 0.45
rad, whereas k0 = 100. The initial condition is defined in Eq.
(20).

Hm = i (σz ⊗ I) ∂x −M+ V(x) (25)

where the potential V reads as follows:

V(x) = γ5I4ρ(x), (26)

with I4 the 4-dimensional identity matrix, and γ5 = 1
2 (1+

σz). The transition probability from an electron neutrino
to the muon neutrino is given by:

P (νe → νµ; t) = |
∑

h

Uehe
−iωhtU∗

µh|2 (27)

where U = U(x) is position-dependent and reads:

U(x) =

(

cosΦ(x) sinΦ(x)
− sinΦ(x) cosΦ(x)

)

, (28)

and the mixing angle Φ(x) is related to the mixing angle
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-2 -1 0 1 2 3
x

-5

0

5
E

m

Figure 2. Level crossing scheme. Dependence of the eigenval-
ues of the Hamiltonian in matter with linear density ρ(x) = x

: E1m (lower curve) and E2m (upper curve) on the position
x for two different values of the mixing angle φ = 0.12 (solid
blue) and φ = 0.84 (dashed red line). The mass difference
is ∆m2

eµ = 0.72 rad (θe = 0.1 rad and θµ = 0.2 rad), and
k0 = 100.

in vacuum φ via the well-known relation:

sin2 2Φ(x) =
sin2 2φ

A(x)
, (29)

with A(x) =
[

cos(2φ)− 2Eρ(x)
∆2m

]

2+sin2 2φ the resonance

factor. Notice that, if matter density is not constant, it
is necessary to take into account the effect of ∂xU(x) in
the evolution equation in mass eigenstates. In fact:

UHmU
−1 = iU (σz ⊗ I) ∂xU−1 + diag. terms (30)

As mentioned above, the eigenvalues E1m and E2m of
the Hamiltonian (25) present an avoided crossing (see
Fig. 2) close to tthe resonance. The effect of the off-
diagonal terms proportional to ∂xΦ(x) in the evolution is
to generate transitions between the energy states close to
the resonance. However, if the derivative is much smaller
with respect to the diagonal terms such transitions are
negligible. To quantify the strength of the off-diagonal
terms it is useful to introduce the adiabaticity parameter:

γ =
∆m2

eµ

4k|∂xΦ(x)|
. (31)

If γ ≫ 1 for all x the evolution is adiabatic, otherwise
the probability of flavor transition reads:

P (νe → νµ; tf ) = −1

2
+ (

1

2
− Pc) cos 2Φ(tf) cos 2Φ(ti)

(32)
where tf and ti are the final and initial times (which can
be approximated by the final and initial position xf and
xi, for relativistic neutrinos), Pc is the crossing probabil-
ity for xf → ∞:

Pc =
exp(−π

2 γr)− exp(−π
2

γr

sinφ2 )

1− exp(−π
2

γr

sin φ2 )
, (33)

and γr is the adiabaticity parameter γ at the resonance
[55].

100 101 102t
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(ν

e
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 ν
µ
)

Vacuum
φ = 0.48
φ = 0.24
φ = 0.72
P(ν

e
 → ν

µ
;x

f
)

γ
r
 = 0.026

γ
r
 = 0.041

γ
r
 = 0.172

Figure 3. (Color online) Time evolution of the probability
P (να → νβ) in matter with linear density ρ(x) = x simulated
by a QW in 125 time steps. The mass difference and the ini-
tial energy is the same of Fig. 2. The dashed line (black) rep-
resents the asymptotic crossing probability at the resonance
given by formula (32), for different adiabaticity parameters
γr. The initial and final time steps are ti = 0, tf = 125. The
initial condition is as defined in Eq.(20).

In Fig (3) we have shown that a QW can mimic the
time evolution of two neutrino flavors in matter with a
linear density and for γr ≪ 1. In the long time be-
havior the transition probability simulated by the QW
converges to the asymptotic probability P (νe → νµ; tf ),
which confirms the agreement between the QW’s and the
neutrino’s dynamics in matter.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have analyzed the simulation of Dirac
neutrino oscillations both in vacuum and in presence of
matter effects using quantum walks, which can therefore
be regarded as a discretization of the underlying field the-
ory. We showed that, in fact, in the continuous limit one
recovers a set of coupled Dirac equations that describe
flavor oscillations. This fact allows us to establish a clear
connection with the neutrino phenomenology for a par-
ticular scenario, such as detection of solar, atmospheric,
reactor neutrinos, etc..., so as to fix the relevant parame-
ters of the simulation (e.g. the initial state, or the neces-
sary time steps). We have also introduced a way to sim-
ulate neutrino propagation in matter, an element which
is crucial for some experiments, such as detection of so-
lar neutrinos [7], or long baseline experiments [48, 49].
As discussed in Sec. V, the simulation correctly repro-
duces the flavor conversion probability for a wide range
of values of the adiabaticity parameter. The above re-
sults show that quantum walks can be used to simulate
these phenomena, thus allowing one for a visualization
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of the neutrino phenomenology in scenarios like the solar
interior or supernovae.
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