
HAL Id: hal-02065856
https://hal.science/hal-02065856

Submitted on 13 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sequence Hypergraphs: Paths, Flows, and Cuts
Kateřina Böhmová, Jérémie Chalopin, Matúš Mihalák, Guido Proietti, Peter

Widmayer

To cite this version:
Kateřina Böhmová, Jérémie Chalopin, Matúš Mihalák, Guido Proietti, Peter Widmayer. Sequence
Hypergraphs: Paths, Flows, and Cuts. Hans-Joachim Böckenhauer; Dennis Komm; Walter Unger.
Adventures Between Lower Bounds and Higher Altitudes, 11011, Springer, pp.191-215, 2018, 978-3-
319-98355-4. �10.1007/978-3-319-98355-4_12�. �hal-02065856�

https://hal.science/hal-02065856
https://hal.archives-ouvertes.fr

Sequence Hypergraphs: Paths, Flows, and Cuts?

Kateřina Böhmová1, Jérémie Chalopin2, Matúš Mihalák3, Guido Proietti4, and
Peter Widmayer1

1 Department of Computer Science, ETH Zurich, Zurich, Switzerland
asitak.kat@gmail.com, widmayer@inf.ethz.ch

2 Aix-Marseille Université, CNRS, Université de Toulon, LIS, Marseille, France
jeremie.chalopin@lis-lab.fr

3 Department of Data Science and Knowledge Engineering, Maastricht University,
Maastricht, The Netherlands

matus.mihalak@maastrichtuniversity.nl
4 DISIM, Università degli Studi dell’Aquila, Italy; and IASI, CNR, Roma, Italy

guido.proietti@univaq.it

Abstract. We introduce sequence hypergraphs by extending the concept
of a directed edge (from simple directed graphs) to hypergraphs. Specifi-
cally, every hyperedge of a sequence hypergraph is defined as a sequence
of vertices (not unlike a directed path). Sequence hypergraphs are moti-
vated by problems in public transportation networks, as they conveniently
represent transportation lines. We study the complexity of several funda-
mental algorithmic problems, arising (not only) in transportation, in the
setting of sequence hypergraphs. In particular, we consider the problem
of finding a shortest st-hyperpath: a minimum set of hyperedges that
“connects” (allows to travel to) t from s; finding a minimum st-hypercut: a
minimum set of hyperedges whose removal “disconnects” t from s; or find-
ing a maximum st-hyperflow: a maximum number of hyperedge-disjoint
st-hyperpaths. We show that many of these problems are APX-hard,
even in acyclic sequence hypergraphs or with hyperedges of constant
length. However, if all the hyperedges are of length at most 2, we show
that these problems become polynomially solvable. We also study the
special setting in which for every hyperedge there also is a hyperedge
with the same sequence, but in reverse order. Finally, we briefly discuss
other algorithmic problems such as finding a minimum spanning tree, or
connected components.

Keywords: Sequence hypergraphs, colored graphs, labeled problems,
transportation lines, algorithms, complexity

1 Introduction

Consider a public transportation network, e.g., a bus network, where every vertex
corresponds to a bus stop, and where every bus line is specified as a fixed sequence
? An extended abstract of this paper appeared at WG 2016, and it was at a workshop
of this lovely series on graph-theoretic concepts in computer science where the last
author had the joy of meeting the jubilarian for the first time.

2 K. Böhmová et al.

Bratislava

Paderborn

Kiel

Aachen

Zurich

Fig. 1. A bus line (actually, the career path of the jubilarian) in a transportation
network, and the corresponding hyperedge.

of bus stops. One can travel in the network by taking a bus and then following
the stops in the order that is fixed by the corresponding bus line. See Figure 1
for an illustration. Note that we think of a line as a sequence of stops in one
direction only, since there might be one-way streets or other obstacles that cause
that the bus can travel the stops in a single direction only. Then, interesting
questions arise: How can one travel from s to t using the minimum number of
lines? How many lines must break down, so that t is not reachable from s? Are
there two ways to travel from s to t that both use different lines?

These kinds of questions are traditionally modeled and studied by algorithmic
graph theory, but no model appears to capture all the necessary aspects of the
problems above. We propose the following very natural way to extend the concept
of directed graphs to hypergraphs.

A hypergraph H = (V, E) with an ordering of the vertices of every hyperedge
is called a sequence hypergraph. Formally, the sequence hypergraph H consists
of the set of vertices V = {v1, v2, . . . , vn}, and the set of (sequence) hyperedges
E = {E1, E2, . . . , Ek}, where each hyperedge Ei = (vi1 , vi2 , . . . , vil

) is defined
as a sequence of vertices without repetition. We remark that this definition
substantially differs from the commonly used definition of directed hypergraphs [1,
2,14], where each directed hyperedge is a pair (From,To) of disjoint subsets of
V. We note that the order of vertices in a sequence hyperedge does not imply
any order of the same vertices in other hyperedges. Furthermore, the sequence
hypergraph does not impose any global order on V.

There is another way to look at sequence hypergraphs coming from our
motivation in transportation. For a sequence hypergraphH = (V, E), we construct
a directed colored multigraph G = (V,E, c) as follows. The set of vertices V is
identical to V , and for a hyperedge Ei = (vi1 , vi2 , . . . , vil

) from E , the multigraph
G contains l− 1 edges (vij , vij+1) for j = 1, . . . , l− 1, all colored with color c(Ei),
with c(Ei) 6= c(Ei′) for i 6= i′. Therefore, each edge of G is colored by one of the
k = |E| different colors C = {c(E1), c(E2), . . . , c(Ek) | Ei ∈ E}. Clearly, the edges
of each color form a directed path in G. We refer to G as the underlying colored
graph of H. We denote by m the number of edges of G.

In this article, we study several standard graph-algorithmic problems in the
setting of sequence hypergraphs. In particular, we consider the problem of finding
a shortest st-hyperpath: an st-path that uses the minimum number of sequence
hyperedges; the problem of finding a minimum st-hypercut: an st-cut that uses

Sequence Hypergraphs: Paths, Flows, anc Cuts 3

Table 1. Summary of the complexities admitted by some classic problems in the setting
of colored (labeled) graphs and sequence hypergraphs. The last row indicates whether
the sizes of the maximum st-flow and the minimum st-cut equal in the considered
setting. The cells in gray show our contribution.

Colored/Labeled Graphs Sequence Hypergraphs
General Span 1 General Acyclic Backward Length≤ 2

Shortest st-path APX-hard P APX-hard P P P
Minimum st-cut APX-hard P APX-hard APX-hard NP-hard P
Maximum st-flow APX-hard P APX-hard APX-hard NP-hard P
MaxFlow-MinCut Duality ×

√
× × ×

√

the minimum number of sequence hyperedges; and the problem of finding a
maximum st-hyperflow: a maximum number of hyperedge-disjoint st-hyperpaths.

We show that the shortest st-hyperpath is NP-hard to approximate within a
factor of (1− ε) lnn, for any ε > 0, in general sequence hypergraphs, but can be
found in polynomial time if the given sequence hypergraph is acyclic (Section 3).
On the other hand, we show that both maximum st-hyperflow and minimum st-
hypercut are APX-hard to find even in acyclic sequence hypergraphs (Sections 4
and 5). We then consider sequence hypergraphs with sequence hyperedges of
constant length, where the length of a hyperedge is the number of its vertices
minus one. We note that the shortest st-hyperpath problem remains hard to
approximate even with hyperedges of length at most 5, and we show that the
maximum st-hyperflow problem remains APX-hard even with hyperedges of
length at most 3. On the other hand, we show that if all the hyperedges are
of length at most 2, all 3 problems become polynomially solvable (Section 6).
We also study the complexity in a special setting in which for each hyperedge
there also is a hyperedge with the same sequence, but in the opposite direction.
We show that the shortest st-hyperpath problem becomes polynomially solvable,
but both maximum st-hyperflow and minimum st-hypercut are NP-hard to find
also in this setting, and we give a 2-approximation algorithm for the minimum
st-hypercut problem (Section 7). Finally, we briefly study the complexity of other
algorithmic problems, namely, finding a minimum spanning tree, or connected
components, in sequence hypergraphs (Section 8). For a summary of the results
see Table 1. The table also shows known results for the related labeled graphs
(discussed below). The result on the APX-hardness of the shortest st-hyperpath
problem (Theorem 1) appeared also, in a different context, in [4].

2 Related Work

Recently, there has been a lot of research concerning optimization problems in
(multi)graphs with colored edges, where the cost of a solution is measured by
the number of colors used, e.g., one may ask for an st-path using the minimum
number of colors. The motivation comes from applications in optical or other

4 K. Böhmová et al.

communication networks, where a group of links (i.e., edges) can fail simultane-
ously and the goal is to find resilient solutions. Similar situations may occur in
economics, when certain commodities are sold (and priced) in bundles.

Formally, colored graphs or labeled graphs are (mostly undirected) graphs
where each edge has one color, and in general there is no restriction on a set of
edges of the same color. Note that some of the studies consider a slightly different
definition of colored graphs, where to each edge a set of colors is associated
instead of a single color. Since the computational complexity of some problems
may differ in the two models, the transformations between the two models have
been investigated [8].

The minimum label path problem, which asks for an st-path with a minimum
number of colors, is NP-hard and hard to approximate [5–7, 16, 17, 22]. The 2
label disjoint paths problem, which asks for a pair of st-paths such that the sets
of colors appearing on the two paths are disjoint, is NP-hard [18]. The minimum
label cut problem, which asks for a set of edges with a minimum number of
colors that forms an st-cut, is NP-hard and hard to approximate [7, 23]. The
minimum label spanning tree problem, which asks for a spanning tree using edges
of minimum number of colors, is NP-hard and hard to approximate [17,20].

Hassin et al. [17] give a log(n)-approximation algorithm for the minimum
label spanning tree problem and a

√
n-approximation algorithm for the minimum

label path problem, where n is the number of vertices of the input colored graph.
Zhang et al. [23] give a

√
m-approximation algorithm for the minimum label cut

problem, where m is the number of edges of the input colored graph. Fellows et
al. [13] study the parameterized complexity of minimum label problems. Coudert
et al. [7, 8] consider special cases when the span is 1, i.e., each color forms a
connected component; or when the graph has a star property, i.e., the edges of
every color are adjacent to one vertex.

Note that since most of these results consider undirected labeled graphs, they
provide almost no implications on the complexity of similar problems in the
setting of sequence hypergraphs. In our setting, not only we work with directed
labeled graphs, but we also require edges of each color to form a directed path,
which implies a very specific structure that, to the best of our knowledge, has
not been considered in the setting of labeled graphs.

On the other hand, we are not the first to define hypergraphs with hyperedges
specified as sequences of vertices. However, we are not aware of any work that
would consider and explore this type of hypergraphs from an algorithmic graph
theory point of view. In fact, mostly, these hypergraphs are taken merely as a
tool, convenient to capture certain relations, but they are not studied further.
We shortly list a few articles where sequence hypergraphs appeared, but we do
not give details, since there is very little relation to our area of study. Berry
et al. [3] introduce and describe the basic architecture of a software tool for
(hyper)graph drawing. Wachman et al. [21] present a kernel for learning from
ordered hypergraphs, a formalization that captures relational data as used in
Inductive Logic Programming. Erdős et al. [12] study Sperner-families and as an

Sequence Hypergraphs: Paths, Flows, anc Cuts 5

s
ta) b)

s

t

Fig. 2. In both figures, the green-dotted curve and the red solid curve depict two
sequence hyperedges. a) The length of the st-hyperpath is 2, but the number of
switches is 7. b) The st-hyperpath consists of two sequence hyperedges that also form
a hypercycle.

application of a derived result they study the maximum number of edges of a
so-called directed Sperner-hypergraph.

3 On the Shortest st-Hyperpath

In this section, we consider the shortest st-hyperpath problem in general sequence
hypergraphs and in acyclic sequence hypergraphs.

Definition 1 (st-Hyperpath). Let s and t be two vertices of a sequence hy-
pergraph H = (V, E). A set of hyperedges P ⊆ E forms a hyperpath from s to t
if the underlying (multi)graph G′ of the subhypergraph H′ = (V, P) contains an
st-path, and P is minimal with respect to inclusion. We call such an st-path an
underlying path of P. The length of an st-hyperpath P is defined as the number
of hyperedges in P . The number of switches of an st-hyperpath P is the minimum
number of changes between the hyperedges of P , when following any underlying
st-path of P .

We note that each hyperpath may have multiple underlying paths. Also note
that, even though the number of switches of an st-hyperpath P gives an upper
bound on the length of P , the actual length of P can be much smaller than the
number of switches of P (see Figure 2a).

Proposition 1. Given a sequence hypergraph, and two vertices s and t, an
st-hyperpath minimizing the number of switches can be found in polynomial time.

Such an st-hyperpath can be found, e.g., by a modified Dijkstra algorithm
(starting from s, following the outgoing sequence hyperedges and for each vertex
storing the minimum number of switches necessary to reach it).

Conversely, we show that finding a shortest st-hyperpath (minimizing the
number of hyperedges) is hard to approximate. On the other hand, if the given
sequence hypergraph is acyclic, we show that the shortest st-hyperpath problem
becomes polynomially solvable.

Definition 2 (Acyclic Sequence Hypergraph). A set of hyperedges O ⊆ E
forms a hypercycle, if there are two vertices a 6= b such that O contains both
a hyperpath from a to b, and a hyperpath from b to a. A sequence hypergraph
without hypercycles is called acyclic.

6 K. Böhmová et al.

s = v0 v6 = tx1 x2 x3 x4 x5 x6
v1 v2 v3 v4 v5

X = {x1, x2, . . . , x6}
S1 = {x1, x2, x5}

S2 = {x1, x3, x5}

S3 = {x2, x3, x6}

S4 = {x3, x4, x6}

S5 = {x4, x5, x6}

Fig. 3. Finding a shortest st-hyperpath is at least as hard as the minimum set cover
problem.

Observe that an st-hyperpath may also be a hypercycle (see Figure 2b).

Definition 3 (Edges of a Hyperedge). Let E = (v1, v2, . . . , vk) be a hyperedge
of a sequence hypergraph H. We call the set of directed edges {ei = (vi, vi+1)| i =
1, . . . , k − 1} the edges of E. The edges of E are exactly the edges of color c(E)
in the underlying colored graph of H. The length of a hyperedge is defined as the
number of its edges (which is the number of its vertices minus one).

For a fixed order V O = (v1, v2, . . . , vn) of vertices V, an edge e of a hyperedge
E is called a forward edge with respect to V O if its orientation agrees with the
order V O. Similarly, e is a backward edge if its orientation disagrees with V O.

Theorem 1. Finding a shortest st-hyperpath in sequence hypergraphs is NP-hard
to approximate within a factor of (1− ε) lnn for any ε > 0, unless P = NP. The
problem remains APX-hard even if every hyperedge has length at most 5.

Proof. We construct an approximation-preserving reduction from the set cover
problem. The reduction is similar to that presented in [22] for the minimum
label path problem in colored graphs. An instance I = (X,S) of the set cover
problem is given by a ground set X = {x1, . . . , xn}, and a family of its subsets
S = {S1, . . . , Sm}. The goal is to find a smallest subset S ′ ⊆ S such that the
union of the sets in S ′ contains all elements from X. The set cover problem
is known to be NP-hard to approximate within a factor of (1 − ε) lnn, unless
P = NP [10]. Moreover, if each subset of S is of size at most 3, the problem
remains APX-hard [9].

From I we construct a sequence hypergraph H = (V, E) as follows (cf. Figure 3
along with the construction). The set of vertices V = {v0, v1, . . . , vn} contains one
vertex vi for each element xi of the ground set X, plus one additional vertex v0.
Let V O be the order of vertices in V naturally defined by their indices. The set of
sequence hyperedges E = {E1, . . . , Em} contains one hyperedge for each set in S.
For a set Si ∈ S, consider the set of vertices that correspond to the elements in
Si and order them according to V O, to obtain a sequence Q = (vi1 , vi2 , . . . , vir

),
where i1 < i2 < · · · < ir. First, let us consider the simplest case where none of
the vij and vij+1 (for j = 1, . . . , r − 1) are consecutive in the order V O, that is,
ij + 1 6= ij+1. Then the sequence of the hyperedge Ei corresponding to Si is

Sequence Hypergraphs: Paths, Flows, anc Cuts 7

(vir−1, vir , vi(r−1)−1, vi(r−1) , . . . , vi1−1, vi1) (e.g., the hyperedge corresponding to
S2 in Figure 3). In other words, Ei consists of forward edges: one forward edge
(vij−1, vij

) for each vij
in Q; and backward edges that connect the forward edges

in the order opposite to Q. Now, for the more general case, if for some j, vij
and

vij+1 are consecutive vertices with respect to V O, i.e., ij + 1 = ij+1, the sequence
constructed as above would contain vertices repeatedly, which is not allowed (each
sequence hyperedge has to be mapped to a path in the underlying graph). To
avoid this, we construct Ei as follows. For simplicity of the explanation, instead
of describing the sequence of the hyperedge, we specify Ei by listing the edges of
the hyperedge and the path to which Ei is mapped. The hyperedge Ei consists of
the same forward edges as before: one forward edge (vij−1, vij

) for each vij
in Q.

Whenever two or more vertices of Q are consecutive in V O, their corresponding
forward edges form a path. Clearly, the forward edges of Ei then determine a
set of (non-overlapping) paths p1, p2, . . . , pr′ (uniquely ordered according to V O).
The backward edges of Ei then connect these paths in the order opposite to
V O into a single path (which specifies Ei). In particular, the last vertex of pr′

connects to the first vertex of pr′−1, the last vertex of pr′−1 connects to the first
vertex of pr′−2, . . . , and the last vertex of p2 connects to the first vertex of p1.

Note that the length of each sequence hyperedge Ei is bounded by 2|Si| − 1,
where |Si| is the size of the set Si ∈ S corresponding to Ei. This follows from the
fact that Ei consists of |Si| forward edges and at most |Si| − 1 backward edges
to connect the forward edges. In particular, if each subset of S is of size at most
3, all the hyperedges are of length at most 5.

We set the source vertex s to v0, and the target vertex t to vn, and we show
that a shortest st-hyperpath in H of length k provides a minimum set cover
for I of the same size, and vice versa. First, notice that all the forward edges
(with respect to V O) of the hyperedges in E are of the form (vi, vi+1) for some
i = 0, . . . , n − 1. Together with the fact that t is smaller than s in the order
V O, it follows that any path from s to t in the underlying graph of H goes via
all the vertices, in the order V O. Thus, there is an underlying path p of the
shortest st-hyperpath P in H, such that p does not use any backward edges of the
hyperedges in E . Clearly, by choosing a hyperedge Ei into the st-hyperpath P ,
one also chooses its forward edges and this way “covers” some sections of the
underlying path of P . Since there is a one-to-one mapping between the hyperedges
in E and the sets in S, by finding an st-hyperpath P of length k, one finds a
set cover of size k for the given instance. On the other hand, each set cover of
size k can be mapped, using the same direct one-to-one mapping in the opposite
direction, to an st-hyperpath of length k.

Thus, the described reduction is approximation-preserving. By reducing from
the general set cover problem we obtain the first part of the claim, and by
reducing from the set cover problem with all subsets of size at most 3 we obtain
the second part of the claim. ut

We complement the hardness result with a positive one.

Theorem 2. The problem of finding the shortest st-hyperpath in acyclic sequence
hypergraphs can be solved in polynomial time.

8 K. Böhmová et al.

Proof. Let H = (V, E) be an acyclic sequence hypergraph. Since H is acyclic,
let V O be an order of the vertices V such that all the edges of each hyperedge
are forward edges with respect to this order. This implies that for every st-
hyperpath, there is an underlying path where all the edges of each hyperedge
appear consecutively (the last edge of a hyperedge E appearing in an underlying
path is reachable by E from the first appearing edge of E). Therefore, finding the
shortest st-hyperpath P in H is the same as finding a hyperpath minimizing the
number of switches, which can be done in polynomial time by Proposition 1. ut

4 On the Maximum st-Hyperflow

We consider the problem of finding a number of hyperedge-disjoint st-hyperpaths.
Capturing a similar relation as in graphs (between a set of k edge-disjoint st-paths
and an st-flow of size k, when all the capacities are 1), for simplicity and brevity,
we refer to a set of hyperedge-disjoint st-hyperpaths as an st-hyperflow.

Definition 4 (st-Hyperflow). Let s and t be two vertices of a sequence hyper-
graph H = (V, E). Let F ⊆ 2E be a set of pairwise hyperedge-disjoint st-hyperpaths
F = {P1, . . . , Pk}. Then, F is an st-hyperflow of size |F| = k.

We show that deciding whether a given sequence hypergraph contains an
st-hyperflow of size 2 is NP-hard, and thus finding a maximum st-hyperflow is
inapproximable within a factor of 2− ε unless P = NP. This remains true even
for acyclic sequence hypergraphs with all the hyperedges of length at most 3.

Theorem 3. Given an acyclic sequence hypergraph H = (V, E) with all hyper-
edges of length at most 3, and two vertices s and t, it is NP-hard to decide whether
there are two hyperedge-disjoint st-hyperpaths.

Proof. We construct a reduction from the NP-complete 3-Sat problem [15]. Let I
be an instance of the 3-Sat problem, given as a set of m clauses C = {c1, . . . , cm}
over a set X = {x1, . . . , xn} of Boolean variables. Recall that the goal of the
3-Sat problem is to find an assignment to the variables of X that satisfies all
clauses of C.

From I we construct a sequence hypergraph H = (V, E) as follows (cf. Figure 4
along with the construction). The set V consists of 2+(m+1)+(n+1)+

∑
ci∈C |ci|

vertices: a source vertex s and a target vertex t; a vertex ci for each clause ci ∈ C
and a dummy vertex cm+1; a vertex xj for each variable xj ∈ X and a dummy
vertex xn+1; and finally a vertex xjci for each pair (xj , ci) such that xj ∈ ci,
and similarly, xjci for each xj ∈ ci. Let us fix an arbitrary order CO of the
clauses in C. The set E consists of 4 + 2n+ |I| hyperedges: There are 2 source
hyperedges (s, c1) and (s, x1), and 2 target hyperedges (cm+1, t) and (xn+1, t).
There are 2n auxiliary hyperedges (xi, xick) and (xi, xick′) for i = 1, . . . , n, where
ck, or ck′ is always the first clause (with respect to CO) containing xi or xi,
respectively. If there is no clause containing xi (or xi), the corresponding auxiliary
hyperedge is (xi, xi+1). Finally, there are |I| lit-in-clause hyperedges as follows.

Sequence Hypergraphs: Paths, Flows, anc Cuts 9

c1

c1

c2

c2

c3

c3

c4

x1

+

−
x1

x2

+

−
x2

x3

+

−
x3

x4

+

−
x4

x5

s t

x1c1 x2c1 x3c1x1c2 x2c2

x1c3 x3c3 x4c2

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3)

Fig. 4. Deciding st-hyperflow of size 2 is at least as hard as 3-Sat.

For each appearance of a variable xj in a clause ci as a positive literal there is
one lit-in-clause hyperedge (ci, ci+1, xjci, xjck), where ck is the next clause (with
respect to CO) after ci where xj appears as a positive literal (in case, there is no
such ck, then the hyperedge ends in xj+1 instead). Similarly, if xj is in ci as a
negative literal, there is one lit-in-clause hyperedge (ci, ci+1, xjci, xjck), where
ck is the next clause containing the negative literal xj (or it ends in xj+1).

Clearly, each hyperedge is of length at most 3. We now observe that the
constructed sequence hypergraph H is acyclic. All the hyperedges of H agree
with the following order: the source vertex s; all the vertices ci ∈ C ordered
according to CO, and the dummy vertex cm+1; the vertex x1 followed by all the
vertices x1ci ordered according to CO, and then followed by the vertices x1ci

again ordered according to CO; the vertex x2 followed by all x2ci and then all
x2ci; . . . ; the vertex xn followed by all xnci and then all xnci; and finally the
dummy vertex xn+1; and the target vertex t.

We show that the formula I is satisfiable if and only if H contains two
hyperedge-disjoint st-hyperpaths. There are 3 possible types of st-paths in the
underlying graph of H: the first one leads through all the vertices c1, c2, . . . , cm+1
in this order; the second one leads through all the vertices x1, x2, . . . , xm+1 in
this order and between xj and xj+1 it goes either through all the xjc∗ (here, and
later, ∗ is used as a wildcard) vertices or through all the xjc∗ vertices (this may
differ for different j); and the third possible st-path starts the same as the first
option and ends as the second one. Based on this observation, notice that there
can be at most 2 hyperedge-disjoint st-hyperpaths: necessarily, one of them has
an underlying path of the first type, while the other one has an underlying path
of the second type.

From a satisfying assignment A to the variables of I we can construct the
two disjoint st-hyperpaths as follows. The underlying path of one hyperpath
leads from s to t via the vertices c1, c2, . . ., cm+1, and to move from ci to ci+1
it uses a lit-in-clause hyperedge that corresponds to a pair (l, ci) such that l
is one of the literals that satisfy the clause ci in A. The second hyperpath has

10 K. Böhmová et al.

s

t

Fig. 5. Acyclic sequence hypergraph with minimum st-hypercut of size 2, and no two
hyperedge-disjoint st-hyperpaths.

an underlying path of the second type, it leads via x1, x2, . . . , xn+1, and from
xj to xj+1 it uses the vertices containing only the literals that are not satisfied
by the assignment A. Thus, the second hyperpath uses only those lit-in-clause
hyperedges that correspond to pairs containing literals that are not satisfied by
A. This implies that the two constructed st-hyperpaths are hyperedge-disjoint.

Let P and Q be two hyperedge-disjoint st-hyperpaths of H. Let P have an
underlying path p of the first type and Q have an underlying path q of the second
type. We can construct a satisfying assignment for I by setting to TRUE the
literals opposite to those that occur in the vertices on q. Then, the hyperpath P
describes how the clauses of I are satisfied by this assignment. ut

5 On the Minimum st-Hypercut

Quite naturally, we define an st-hypercut of a sequence hypergraph H as a set C
of hyperedges whose removal from H leaves s and t disconnected.

Definition 5 (st-Hypercut). Let s and t be two vertices of a sequence hy-
pergraph H = (V, E). A set of hyperedges X ⊆ E is an st-hypercut if the
subhypergraph H′ = (V, E \X) does not contain any hyperpath from s to t. The
size of an st-hypercut X is |X|, i.e., the number of hyperedges in X.

For directed (multi)graphs, the famous MaxFlow-MinCut Duality Theo-
rem [11] states that the size of a maximum st-flow is equal to the size of a
minimum st-cut. In sequence hypergraphs, this duality does not hold, not even
in acyclic sequence hypergraphs as Figure 5 shows. But, of course, the size of
any st-hyperflow is a lower bound on the size of any st-hypercut. We showed
the maximum st-hyperflow problem to be APX-hard even in acyclic sequence
hypergraphs (see Theorem 3). It turns out that also the minimum st-hypercut
problem in acyclic sequence hypergraphs is APX-hard.

Theorem 4. Minimum st-hypercut in acyclic sequence hypergraphs is NP-hard
to approximate within a factor of 2− ε under UGC, or within a factor 7/6− ε
unless P = NP.

Proof. We construct an approximation-preserving reduction from the vertex
cover problem, which has the claimed inapproximability [19]. An instance of
the vertex cover problem is an undirected graph I = (U,F), with the vertex
set U = {u1, . . . , un} and the edge set F = {f1, . . . , fm}. The goal is to find a

Sequence Hypergraphs: Paths, Flows, anc Cuts 11

s
t

v(1,1) v(1,2) v(1,3)
u1

p1

v(2,1) v(2,2) v(2,3)
u2

p2

v(3,1) v(3,2) v(3,3)

u3 p3

v(4,1) v(4,2) v(4,3)

u4

p4

f1

f2

f3
f4

Fig. 6. Minimum st-hypercut is at least as hard as minimum vertex cover.

smallest subset U ′ ⊆ U such that U contains at least one vertex from each edge
f ∈ F .

To construct from the instance I an instance I ′ of the minimum st-hypercut
problem in acyclic sequence hypergraphs, we fix an order of the vertices and
edges of I as follows. Let UO = (u1, . . . , un) be an arbitrary order on the vertices
of U . From every edge in F we create an ordered edge, where the vertices of the
edge are ordered naturally according to UO. Let F ′ denote the set of the created
ordered edges, and let FO be the edges F ′ ordered lexicographically according
to UO.

We construct the sequence hypergraph H = (V, E) of I ′ as follows (cf. Figure 6
along with the construction). The set of vertices V consists of 3m+ 2 vertices:
a source vertex s, a target vertex t, and for each edge fi ∈ FO, i = 1, . . . ,m,
there are three vertices v(i,1), v(i,2), and v(i,3). The set of hyperedges E consists
of 2m+ n hyperedges. There are m source hyperedges of the form (s, v(i,1)), each
of them connects s to one vertex v(i,1). There are m target hyperedges of the
form (v(i,3), t), each of them connects one vertex v(i,3) to t. And finally, there
are n vertex hyperedges, each corresponding to one of the vertices in U , and is
constructed as follows.

For a vertex u ∈ U of I, we describe the sequence of vertices in the corre-
sponding vertex hyperedge Eu iteratively. We start with an empty sequence. We
consider the edges FO in order, and for each edge fi ∈ FO that contains u we
prolong the sequence of Eu as follows. If fi contains u as the first vertex, we
append v(i,1) and v(i,2) to Eu. Otherwise, fi contains u as the second vertex,
and we append v(i,2) and v(i,3) to Eu. Now consider the edges of the obtained
hyperedge Eu and let us distinguish two types. First, there are edges of the form
(v(i,1), v(i,2)) and (v(i,2), v(i,3)) for some i, and second, there are edges of the form
(v(i,2), v(j,1)), (v(i,3), v(j,2)), and (v(i,3), v(j,1)) for some i < j. Note that, due to
the fact that the edges in FO are ordered lexicographically, all the edges of the
vertex hyperedge Eu take one of the forms described above. Also note that, due to
the direct correspondence between the vertices in U and vertex hyperedges, each
tuple (v(i,j), v(i,j+1)) is part of (i.e., an edge of) exactly one of the hyperedges.

12 K. Böhmová et al.

Clearly, by the construction, the sequence hypergraph is acyclic, since the
ordering V O = (s, v(1,1), v(1,2), v(1,3), . . . , v(m,1), v(m,2), v(m,3), t) is a topological
sorting of the underlying graph G.

Let us now observe that there always exists a minimum st-hypercut that does
not contain any source or target hyperedges. Notice that in the underlying graph
G of H, the only outgoing edge from v(i,1) leads to v(i,2), for i = 1, . . . ,m, and
similarly, the only incoming edge to v(i,3) comes from v(i,2). Since for each i, the
tuple (v(i,j), v(i,j+1)) is an edge of exactly one hyperedge, every source hyper-
edge (s, v(i,1)) in an st-hypercut C can be substituted by the vertex hyperedge
containing the edge (v(i,1), v(i,2)); and every target hyperedge (v(i,3), t) can be
substituted by the vertex hyperedge containing the edge (v(i,2), v(i,3)); and the
resulting set is an st-hypercut of size equal or smaller than C. Thus, there exists
an optimal solution that contains only vertex hyperedges.

Now observe that any minimum st-hypercut C consisting of vertex hyperedges
only, must for each i = 1, . . . ,m “hit” either the edge (v(i,1), v(i,2)) or (v(i,2), v(i,3))
(i.e., one of those two edges is an edge of some hyperedge in C). Otherwise, the
underlying graph of (V, E \C) would contain an st-path pi = s, v(i,1), v(i,2), v(i,3), t.

We show that the described construction gives us an approximation-preserving
reduction: for an st-hypercut of size k, we can construct a solution for the vertex
cover problem of the same size, and vice versa. Let S ′ ⊆ H be an optimal
solution to the instance I ′ that contains only vertex hyperedges. Recall that
there is a direct one-to-one mapping between the vertex hyperedges and the
vertices U of the instance I. There is also a direct mapping between each triple
(v(i,1), v(i,2), v(i,3)) and an edge from F . Since the solution S ′ hits one of the edges
(v(i,1), v(i,2)) or (v(i,2), v(i,3)) for each i, we can use the mapping to construct a
solution S ⊆ U to the instance I of the original minimum vertex cover problem,
such that |S| = |S ′|. On the other hand, every solution to the original vertex
cover instance can be mapped, using the same direct one-to-one mapping in the
opposite direction, to an st-hypercut of H of the same size. ut

6 Sequence Hypergraphs with Hyperedges of Length ≤ 2

We have seen that some of the classic, polynomially solvable problems in (directed)
graphs become APX-hard in sequence hypergraphs. Note that this often remains
true even if all the hyperedges are of constant length. In particular, Theorem 1
states that the shortest st-hyperpath is hard to approximate even if all the
hyperedges are of length at most 5; Figure 4 illustrates that the duality between
minimum st-hypercut and maximum st-hyperflow breaks already with a single
hyperedge of length 3; and Theorem 3 yields that the maximum st-hyperflow is
hard to approximate even if all hyperedges are of length at most 3.

It is an interesting question to investigate the computational complexity of
the problems for hyperedge lengths smaller than 5 or 3. We show that, if all the
hyperedges of the given sequence hypergraph are of length at most 2, the shortest
st-hyperpath, the minimum st-hypercut, and the maximum st-hyperflow can all
be found in polynomial time.

Sequence Hypergraphs: Paths, Flows, anc Cuts 13

s t

u

v w

pi
pj

s t

u

v w

pi
pj

Fig. 7. Transforming st-paths into hyperedge-disjoint st-hyperpaths.

Theorem 5. The shortest st-hyperpath problem in sequence hypergraphs with
hyperedges of length at most 2 can be solved in polynomial time.

Proof. Consider a shortest st-hyperpath P in a given sequence hypergraph with
hyperedges of length at most 2. Clearly, whenever both edges of a hyperedge are
part of an underlying path of P , they must appear consecutively on it. Thus,
all the edges of each hyperedge appear consecutively on any underlying path
of P . Therefore, the length of the shortest st-hyperpath P is again the same as
the minimum number of switches of P , and such a shortest st-hyperpath can be
found in polynomial time (Proposition 1). ut

Theorem 6. The maximum st-hyperflow problem in sequence hypergraphs with
hyperedges of length at most 2 can be solved in polynomial time.

Proof. Let H = (V, E) be a sequence hypergraph with hyperedges of length at
most 2, and let s and t be two of its vertices. Then, using standard graph algo-
rithms we can find a maximum st-flow f in the underlying directed multigraph G
of H with edge capacities 1. Thus, the flow f of size |f | gives us a set of |f |
edge-disjoint st-paths p1, . . . , p|f | in G (note that any directed cycle in f can be
easily removed).

We iteratively transform p1, . . . , p|f | into a set of st-paths such that all the
edges of each hyperedge appear on only one of these paths. Let E = (u, v, w) be
a hyperedge that lies on two different paths (see Figure 7), i.e., (u, v) ∈ pi and
(v, w) ∈ pj , for some i, j ∈ [|f |]. Then, pi consists of an su-path, edge (u, v), and
a vt-path. Similarly, pj consists of an sv-path, edge (v, w), and a wt-path. Since
all these paths and edges are pairwise edge-disjoint, by setting pi to consist of the
su-path, edge (u, v), edge (v, w), and the wt-path, and at the same time setting
pj to consist of the sv-path, and the vt-path, we again obtain two edge-disjoint
st-paths pi and pj . However, now the hyperedge E is present only on pi. At
the same time, since each hyperedge is of length at most 2, all the edges of any
hyperedge appear on any st-path consecutively, and any hyperedge that was
present on only one of pi or pj is not affected by the above rerouting and still is
present on one of the two paths only.

Thus, the rerouting decreased the number of hyperedges present on more
paths, and after at most |E| iterations of this transformation we obtain |f |
hyperedge-disjoint st-paths, which gives us an st-hyperflow of size |f |. It is easy
to observe that the size of the hyperflow is bounded from above by the size of
the flow in the underlying multigraph. Thus, we obtain a maximum st-hyperflow
in H. ut

14 K. Böhmová et al.

Theorem 7. The minimum st-hypercut problem in sequence hypergraphs with
hyperedges of length at most 2 can be solved in polynomial time.

Proof. Let H = (V, E) be a sequence hypergraph with hyperedges of length at
most 2, and let s and t be two of its vertices. As in proof of Theorem 6, we find
a maximum st-flow f (of size |f |) in the underlying directed multigraph G of
H and obtain a maximum st-hyperflow F in H of the same size, i.e., |F | = |f |.
Since in directed multigraphs the size of the minimum cut equals the size of
the maximum flow [11], it follows that we can find |F | edges e1, . . . , e|F | of G
that form a minimum cut of G. Observe that each of these edges corresponds to
exactly one hyperedge. Thus, we obtain a set C of at most |F | hyperedges that
forms an st-hypercut. Since the size of any st-hypercut is bounded from below
by the size of the hyperflow, C is a minimum st-hypercut. ut

Note that we proved Theorem 7 by first constructing an st-hyperflow and
then finding an st-hypercut of the same size. Since this is always possible, it
follows that the equivalent of the MaxFlow-MinCut Duality Theorem holds in
this setting with hyperedges of length at most 2.

7 Sequence Hypergraphs with Backward Hyperedges

We consider a special class of sequence hypergraphs where for every hyperedge,
there is the exact same hyperedge, but oriented in the opposite direction.

Definition 6 (Backward Hyperedges). Let E = (v1, v2, . . . , vk) be a hy-
peredge of a sequence hypergraph H = (V, E). We say that E′ is a backward
hyperedge1 of E if E′ = (vk, . . . , v2, v1). If for every E of E, there is exactly one
backward hyperedge in E, we refer to H as sequence hypergraph with backward
hyperedges.

Such a situation arises naturally in urban public transportation networks, for
instance most of the tram lines of the city of Zurich have also a “backward” line
(which has the exact same stops as the “forward” line, but goes in the opposite
direction). We study the complexities of shortest st-hyperpath, minimum st-
hypercut, and maximum st-hyperflow under this setting.

We show that, in this setting, we can find a shortest st-hyperpath in polynomial
time. On the other hand, we show that minimum st-hypercut and maximum
st-hyperflow remain NP-hard, and we give a 2-approximation algorithm for
the minimum st-hypercut. Also observe in Figure 8 that the equivalent of the
MaxFlow-MinCut Duality Theorem does not hold in sequence hypergraphs with
backward hyperedges. The positive results in this section are based on existing
algorithms for standard hypergraphs, the negative results are obtained by a
modification of the hardness proofs given in Sections 4 and 5.

Theorem 8. The shortest st-hyperpath problem in sequence hypergraphs with
backward hyperedges can be solved in polynomial time.

1 Note, if E′ is a backward hyperedge of E, also E is a backward hyperedge of E′.

Sequence Hypergraphs: Paths, Flows, anc Cuts 15

s

t

Fig. 8. Sequence hypergraph with backward hyperedges with minimum st-hypercut of
size 4, and only three hyperedge-disjoint st-hyperpaths. For every displayed hyperedge,
there is also a backward hyperedge, which is for simplicity omitted from the figure.

Proof. Let H = (V, E) be a sequence hypergraph with backward hyperedges,
and let s and t be two vertices of H. We construct a (standard) hypergraph
H∗ = (V∗ = V, E∗) from H in such a way that for each sequence hyperedge E
of E , E∗ contains a (non-oriented) hyperedge E∗ that corresponds to the set of
vertices of E. Note that E and its backward hyperedge E′ consist of the same
set of vertices, thus the corresponding E∗ and E′∗ are the same. A shortest
st-hyperpath2 P ∗ in the (standard) hypergraph H∗ can be found in polynomial
time. Observe that the size of P ∗ gives us a lower bound |P ∗| on the length of
the shortest path in the sequence hypergraph H.

In fact, we can construct from P ∗ an st-hyperpath in H of size |P ∗| as follows.
Let us fix p∗ to be an underlying path of P ∗. Let (s = v1, v2, . . . , v|P∗|+1 = t) be
a sequence of vertices, subsequence of p∗, such that for each i = 1, . . . , |P ∗|, there
is a hyperedge E∗ in P ∗ that contains both vi and vi+1, vi is the first vertex of
E∗ seen on p∗, and vi+1 is the last vertex of E∗ seen on p∗. Since every hyperedge
E∗ of E∗ corresponds to the set of vertices of some hyperedge E of E , there is a
sequence of sequence hyperedges (E1, E2, . . . , E|P∗|), Ei ∈ E , such that vi, vi+1
are vertices in Ei. Since H is a sequence hypergraph with backward hyperedges,
for every hyperedge E of E and a pair of vertices vi and vi+1 of E, there is a
vivi+1-hyperpath in H of size 1, which consists of E or its backward hyperedge
E′. Therefore, there is an st-hyperpath of size |P ∗| in H. ut

Theorem 9. The maximum st-hyperflow problem in sequence hypergraphs with
backward hyperedges is NP-hard.

Proof. We construct a reduction from the NP-complete 3-Sat problem [15]. Let I
be an instance of the 3-Sat problem, given as a set of m clauses C = {c1, . . . , cm}
over a set X = {x1, . . . , xn} of Boolean variables.

From I we construct a sequence hypergraph H = (V, E) as follows (cf. Figure 9
along with the construction). The construction is very similar to that in the proof
of Theorem 3, so we highlight the changes in bold. One major change is that now
for every hyperedge there is a backward hyperedge. For simplicity, we divide all
the sequence hyperedges into pairs of mutually backward sequence hyperedges,
and we refer to one sequence hyperedge of each pair as forward hyperedge (and
to the other as its backward hyperedge). For simplicity of the construction, we
2 An st-hyperpath P ∗ and its underlying path are defined as in sequence hypergraphs.

16 K. Böhmová et al.

c1

c1

c2

c2

c3

c3

c4

x1

+

−
x1

x2

+

−
x2

x3

+

−
x3

x4

+

−
x4

x5

s t

x1c1 x2c1 x3c1x1c2 x2c2

x1c3 x3c3 x4c2

ux1c1 vx1c1

ux2c1 vx2c1

ux3c1 vx3c1

ux1c2 vx1c2

ux2c2 vx2c2

ux4c2 vx4c2

ux1c3 vx1c3

ux3c3 vx3c3

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3)

Fig. 9. Maximum st-hyperflow in sequence hypergraphs with backward hyperedges is
NP-hard.

describe explicitly only the forward hyperedges, and each of them implicitly
defines a backward hyperedge.

Let |I| be the size of I (i.e., |I| =
∑

ci∈C |ci|). The set of vertices V consists of
2+(m+1)+(n+1)+3|I| vertices: a source vertex s and a target vertex t; a vertex
ci for each clause ci ∈ C and a dummy vertex cm+1; a vertex xj for each variable
xj ∈ X and a dummy vertex xn+1; and finally three vertices xjci, uxjci, and
vxjci for each pair (xj , ci) such that xj ∈ ci, and similarly, xjci, uxjci, and
vxjci for each xj ∈ ci. Let us fix an arbitrary order CO of the clauses in C. The set
of hyperedges E contains 4 + 2n+ 3|I| forward hyperedges (plus the same amount
of the corresponding backward hyperedges that we do not specify explicitly).
There are 2 + |I| source hyperedges: (s, c1) and (s, x1); for each pair (xj , ci),
xj ∈ ci, there is (s, uxjci), and for each xj ∈ ci, there is (s, uxjci). There are
2 + |I| target hyperedges: (cm+1, t) and (xn+1, t); for each pair (xj , ci), xj ∈ ci,
there is (vxjci, t), and for each xj ∈ ci, there is (vxjci, t). There are 2n auxiliary
hyperedges (xi, xick) and (xi, xick′) for i = 1, . . . , n, where ck or ck′ is always the
first clause (with respect to CO) containing xi or xi, respectively. In case there is
no clause containing xi (or xi), the corresponding auxiliary hyperedge is (xi, xi+1).

Sequence Hypergraphs: Paths, Flows, anc Cuts 17

Finally, there are |I| lit-in-clause hyperedges as follows. For each appearance of a
variable xj in a clause ci as a positive literal there is one lit-in-clause hyperedge
(vxjci, uxjci,ci, ci+1, xjci, xjck), where ck is the next clause (with respect to
CO) after ci where xj appears as a positive literal (in case there is no such ck,
the hyperedge ends in xj+1 instead). Similarly, if xj is in ci as a negative literal,
there is one lit-in-clause hyperedge (vxjci, uxjci,ci, ci+1, xjci, xjck), where ck

is the next clause containing the negative literal xj (or the hyperedge ends in
xj+1).

We show that the formula I is satisfiable if and only if the sequence hypergraph
H contains 2+|I| hyperedge-disjoint st-hyperpaths. Since there are exactly 2+|I|
source hyperedges, and no other hyperedge (including backward hyperedges)
originates from the source vertex s, all these source hyperedges have to be used to
get 2 + |I| hyperedge-disjoint st-hyperpaths. Similarly, all the target hyperedges
have to be used. But then, each of the |I| vertices vxjci or vxjci has to be
on one of the underlying st-paths. However, vxjci can only be reached (unless
passing via t) from uxjci using a backward hyperedge of a lit-in-clause hyperedge.
Similarly, vxjci can only be reached from uxjci using a backward hyperedge of
a lit-in-clause hyperedge. This all implies that there can be 2 + |I| hyperedge-
disjoint st-hyperpaths only if |I| of them are composed in one of the two following
ways: a source hyperedge (s, uxjci), a backward hyperedge of some lit-in-clause
hyperedge to get from uxjci to vxjci, and a target hyperedge (vxjci, t); or a
source hyperedge (s, uxjci), a lit-in-clause backward hyperedge to get from uxjci

to vxjci, and a target hyperedge (vxjci, t). Thus, the backward hyperedges of
all |I| lit-in-clause hyperedges are used and cannot appear in the remaining
st-hyperpaths. Also note that all other backward hyperedges are useless to reach
t from s, since they lead only backwards. This implies a situation equivalent
to that in the proof of Theorem 3. That is, the formula I is satisfiable if and
only if the sequence hypergraph H contains 2 hyperedge-disjoint st-hyperpaths,
when considering forward hyperedges only, without the |I| source and |I| target
hyperedges already used above.

Then, there are 3 possible types of st-paths in the underlying graph of H: the
first one leads through all the vertices c1, c2, . . . , cm+1 in this order; the second
one leads through all the vertices x1, x2, . . . , xm+1 in this order and between
xj and xj+1 it goes either through all the xjc∗ vertices or through all the xjc∗
vertices (again, ∗ is used here as a wildcart); and the third possible st-path starts
the same as the first option and ends as the second one. Based on this observation,
notice that there can be at most 2 hyperedge-disjoint st-hyperpaths: necessarily,
one of them has an underlying path of the first type, while the other one has an
underlying path of the second type.

From a satisfying assignment A of I we can construct the two disjoint st-
hyperpaths as follows. One hyperpath leads from s to t via the vertices c1, c2, . . .,
cm+1, and to move from ci to ci+1 it uses a lit-in-clause hyperedge that corresponds
to a pair (l, ci) such that l is one of the literals that satisfy the clause ci in A.
The second hyperpath has an underlying path of the second type, it leads via
x1, x2, . . . , xn+1, and from xj to xj+1 it uses the vertices containing only the

18 K. Böhmová et al.

literals that are not satisfied by the assignment A. Thus, the second hyperpath
uses only those lit-in-clause hyperedges that correspond to pairs containing literals
that are not satisfied by A. This implies that the two constructed st-hyperpaths
are hyperedge-disjoint.

Let P and Q be two hyperedge-disjoint st-hyperpaths of H, considering only
the forward hyperedges, without the source hyperedges that lead to vertices
ux∗c∗ or ux̄∗c∗. Let P have an underlying path p of the first type and Q has an
underlying path q of the second type. We can construct a satisfying assignment
for I by setting to TRUE the literals opposite to those that occur in the vertices
on q. Then, the hyperpath P suggests how the clauses of I are satisfied by this
assignment. ut

Theorem 10. The minimum st-hypercut problem in sequence hypergraphs with
backward hyperedges is NP-hard.

Proof. We construct a reduction from the NP-hard vertex cover problem. Let I be
an instance of the vertex cover problem, given as an undirected graph I = (U,F),
with the vertex set U = {u1, . . . , un}, and the edge set F = {f1, . . . , fm}.

To construct from I an instance I ′ of the minimum st-hypercut problem in
acyclic sequence hypergraphs, we fix an order of the vertices and edges of I as
follows. Let UO = (u1, . . . , un) be an arbitrary order on the vertices of U . From
every edge in F we create an ordered edge, where the vertices of the edge are
ordered naturally according to UO. Let F ′ denote the set of the created ordered
edges, and let FO be the edges F ′ ordered lexicographically according to UO.

We construct the sequence hypergraphH = (V, E) of I ′ as follows (cf. Figure 10
along with the construction). The construction is very similar to that in the proof
of Theorem 4, so we highlight the changes in bold. One major change is that now
for every hyperedge there is a backward hyperedge. For simplicity, we divide all
the sequence hyperedges into pairs of mutually backward sequence hyperedges,
and we refer to one sequence hyperedge of each pair as forward hyperedge (and
to the other as its backward hyperedge). For simplicity of the construction, we
describe explicitly only the forward hyperedges, and each of them implicitly
defines a backward hyperedge.

The set of vertices V consists of 3m+ 2 + 2n vertices: a source vertex s and
a target vertex t; for each edge fi ∈ FO, i = 1, . . . ,m, there are three vertices
v(i,1), v(i,2), and v(i,3); and finally, for each vertex uk ∈ UO, k = 1, . . . , n, there
are two vertices ak and bk. The set of hyperedges E contains 2m+ 3n forward
hyperedges (plus the same amount of the corresponding backward hyperedges
that we do not specify explicitly). There are m type-1 source hyperedges of the
form (s, v(i,1)), each of them connects s to one vertex v(i,1), and there are n
type-2 source hyperedges of the form (s, ak), connecting s to ak, for k = 1, . . . , n.
There are m type-1 target hyperedges of the form (v(i,3), t), each of them connects
one vertex v(i,3) to t, and there are n type-2 hyperedges of the form (bk, t),
connecting bk to t, for k = 1, . . . , n. And finally, there are n vertex hyperedges,
each corresponds to one of the vertices in U , that are constructed as follows.

For a vertex uk ∈ U of the graph I, we describe the sequence of vertices in
the corresponding vertex hyperedge Euk

iteratively. We start with a sequence

Sequence Hypergraphs: Paths, Flows, anc Cuts 19

s

tv(1,1) v(1,2) v(1,3)

u1

p1

v(2,1) v(2,2) v(2,3)
u2

p2
v(3,1) v(3,2) v(3,3)u3

p3
v(4,1) v(4,2) v(4,3)

u4

p4

q4
q3
q2
q1

f1

f2

f3
f4

a4

b4

a3

b3

a2

b2

a1

b1

Fig. 10. Minimum st-hypercut in sequence hypergraphs with backward hyperedges is
NP-hard.

containing Euk
= bk. We consider the edges FO in order, and for each edge

fi ∈ FO that contains uk we prolong the sequence of Euk
as follows. If fi contains

uk as the first vertex, we append v(i,1) and v(i,2) to Euk
. Otherwise, fi contains

uk as the second vertex, and we append v(i,2) and v(i,3) to Euk
. Once all edges

containing uk have been considered, we append ak to Euk
. We denote by E′uk

the corresponding backward vertex hyperedge.
Now consider the edges of the obtained hyperedge Euk

and note the form
they can have. The first edge is an edge (bk, v(i,j)) for some j ∈ {1, 2} and
some i ∈ [m]. The last edge is an edge (v(i,j), ak) for some j ∈ {2, 3} and some
i ∈ [m]. The remaining edges are of two main types: There are edges of the form
(v(i,1), v(i,2)) and (v(i,2), v(i,3)) for some i ∈ [m], and there are edges of the form
(v(i,2), v(j,1)), (v(i,3), v(j,2)), and (v(i,3), v(j,1)) for some i < j, i, j ∈ [m]. Note that,
due to the fact that the edges in FO are ordered lexicographically, all the edges
of the vertex hyperedge Euk

take one of the forms described above. Also note
that, due to the direct correspondence between the vertices in U and vertex
hyperedges, each tuple (v(i,j), v(i,j+1)) is part of (i.e., an edge of) exactly one of
the hyperedges.

Let us now observe that there always exists a minimum st-hypercut that does
not contain any type-2 source hyperedges or type-2 target hyperedges. Clearly,
none of the backward type-2 source hyperedges or type-2 target hyperedges are in

20 K. Böhmová et al.

a minimum st-hypercut, since each consists of a single edge that either leads to s
or from t. Notice that in the underlying graph G of H, for each k = 1, . . . , n, there
is only one outgoing edge from ak (other than to s), and this edge belongs only
to the backward vertex hyperedge E′uk

. Similarly, there is only one incoming edge
from bk (other than from t) and this edge belongs only to the backward vertex
hyperedge E′uk

. Consequently, every forward type-2 source hyperedge or type-2
target hyperedge in an st-hypercut C can be substituted for a backward vertex
hyperedge, and the resulting set is an st-hypercut of size equal to or smaller
than C. Thus, there exists a minimum st-hypercut C which does not contain
type-2 source or type-2 target hyperedges. Now observe that such an st-hypercut
C has to contain all the backward vertex hyperedges, as otherwise, for some k,
the underlying graph of (V, E \ C) would contain an st-path using the type-2
source hyperedge from s to ak, the backward vertex hyperedge E′uk

from ak to
bk, and the type-2 target hyperedge from bk to t. Now we show that each type-1
source or type-1 target hyperedge in C can be substituted by a forward vertex
hyperedge. Let B be the set of all backward vertex hyperedges. Notice that in the
underlying graph of (V, E \B), the only outgoing edges from v(i,1) lead to s or
v(i,2), for i = 1, . . . ,m; and similarly, the only incoming edges to v(i,3) come from
t or v(i,2). (And clearly, the hyperedges (v(i,1), s) and (t, v(i,3)) are not part of
any st-hyperpath.) Since for each i, the tuple (v(i,j), v(i,j+1)) is an edge of exactly
one hyperedge, every type-1 source hyperedge (s, v(i,1)) in an st-hypercut C can
be substituted by the forward vertex hyperedge containing the edge (v(i,1), v(i,2));
and every type-1 target hyperedge (v(i,3), t) can be substituted for the forward
vertex hyperedge containing the edge (v(i,2), v(i,3)), and the resulting set is an
st-hypercut of size equal to or smaller than C. Thus, there exists an optimum
solution that contains only vertex hyperedges, and in particular, it contains all
the backward vertex hyperedges.

Now observe that any minimum st-hypercut C consisting of vertex hyperedges
only must for each i = 1, . . . ,m “hit” either the edge (v(i,1), v(i,2)) or (v(i,2), v(i,3))
(i.e., one of those two edges is an edge of some hyperedge in C). Otherwise, the
underlying graph of (V, E \C) would contain an st-path pi = s, v(i,1), v(i,2), v(i,3), t.

Let S ′ ⊆ H be an optimum solution to the instance I ′ that contains only
vertex hyperedges. Since S ′ contains all n backward vertex hyperedges, it contains
|S ′|−n forward vertex hyperedges. Recall that there is a direct one-to-one mapping
between the forward vertex hyperedges and the vertices U of the instance I.
There is also a direct mapping between each triple (v(i,1), v(i,2), v(i,3)) and an edge
from F . Since the solution S ′ hits one of the edges (v(i,1), v(i,2)) or (v(i,2), v(i,3))
for each i, we can use the mapping to construct a solution S ⊆ U to the instance
I of the original minimum vertex cover problem, such that |S| = |S ′| − n. On
the other hand, every solution of size k to the original vertex cover instance can
be mapped, using the same direct one-to-one mapping in the opposite direction,
to an st-hypercut of H of size k + n. Therefore, an optimum solution for I ′ gives
us an optimum solution for I. ut

Theorem 11. The minimum st-hypercut problem in sequence hypergraphs with
backward hyperedges can be 2-approximated.

Sequence Hypergraphs: Paths, Flows, anc Cuts 21

s
v1 v2 v3 v4 v5 v6

X = {x1, x2, . . . , x6}
S1 = {x1, x2, x5}

S2 = {x1, x3, x4}

S3 = {x2, x3, x6}

S4 = {x3, x4, x6}

S5 = {x4, x5, x6}

Fig. 11. Minimum s-rooted spanning hypergraph is at least as hard as the minimum
set cover problem.

Proof. Let H = (V, E) be a sequence hypergraph with backward hyperedges, and
let s and t be two vertices of H. Note that we can partition E into |E|/2 pairs of
hyperedges (each pair contains a hyperedge and its backward hyperedge). We
construct a (standard) hypergraph H∗ = (V∗ = V, E∗) from H in such a way
that for each pair of mutually backward sequence hyperedges E and E′ of E , E∗
contains exactly one (non-oriented) hyperedge E∗ that corresponds to the set of
vertices of E (and thus also E′). Note that E∗ may contain multiple hyperedges
corresponding to the same set of vertices, and we get that E∗ contains exactly
|E|/2 hyperedges.

Next, we find a minimum st-hypercutX∗ inH∗ (this can be done in polynomial
time by a transformation of H∗ into a directed graph and solving a maximum
flow problem in it). Clearly, |X∗| is a lower bound on the size of a minimum
st-hypercut in H. Recall that every hyperedge in X∗ corresponds to 2 sequence
hyperedges in H, thus, by removing all sequence hyperedges corresponding to
hyperedges in X∗, we obtain an st-hypercut in H of size 2 |X∗|. ut

8 On Other Algorithmic Problems

We briefly consider some other standard graph algorithmic problems in sequence
hypergraphs.

Definition 7 (Rooted Spanning Hypergraph). Let H = (V, E) be a se-
quence hypergraph. An s-rooted spanning hypergraph T is a subset of E such
that for every v ∈ V, T is an sv-hyperpath. The size of T is |T |.

Theorem 12. Finding a minimum s-rooted spanning hypergraph in acyclic se-
quence hypergraphs is NP-hard to approximate within a factor of (1 − ε) lnn,
unless P = NP.

Proof. We construct an approximation-preserving reduction from the set cover
problem, which has the claimed inapproximability [10]. Let I = (X,S) be an
instance of the set cover problem, given by a ground set X = {x1, . . . , xn}, and
a family of its subsets S = {S1, . . . , Sm}.

22 K. Böhmová et al.

We construct from I an instance I ′ of the minimum s-rooted spanning
hypergraph problem in sequence hypergraphs (see Figure 11 for an example).
Let H = (V, E) be the following sequence hypergraph. The set of vertices V =
{s, v1, . . . , vn} contains one vertex vi for each xi ∈ X, and a source vertex s. Let
V O be an arbitrary fixed order on the vertices V. There are m hyperedges in
E = {E1, . . . , Em}, one for each set in S. For a set Si ∈ S, let us take the vertices
that correspond to the elements in Si and order them according to V O to obtain
(vi1 , vi2 , . . . , vir

). Then the sequence of the hyperedge Ei corresponding to Si is
simply (s, vi1 , vi2 , . . . , vir

). The constructed sequence hypergraph is acyclic, as
all the edges of its hyperedges agree with V O.

It remains to show that from a minimum s-rooted spanning hypergraph T
for I ′ a minimum set cover for I of the same size can be constructed. By definition,
T is the smallest subset of E that allows to reach from s any other vertex in V.
Moreover, since H is acyclic and each hyperedge starts at s, for each vertex v ∈ V ,
it is enough to choose one of the hyperedges in E (containing v) to reach v from
s. This, together with the one-to-one correspondence between the hyperedges in
E and sets in S, provides us with a prescription for a minimum set cover for I of
size |T |. On the other hand, we can map any solution of the original minimum set
cover instance to a minimum s-rooted spanning hypergraph of the same size. ut

Definition 8 (Strongly Connected Component). Let H = (V, E) be a se-
quence hypergraph. We say that a set C ⊆ E forms a strongly connected com-
ponent if for every two vertices u, v ∈ V ′, with V ′ being all the vertices of V
present in C, the set C contains a uv-hyperpath. We say that the vertices in V ′
are covered by C.

Clearly, we can decide in polynomial time whether a given set of hyperedges
C forms a strongly connected component as follows. Consider the underlying
graph G of H induced by the set of sequence hyperedges C and find a maximum
strongly connected component there. If this component spans the whole G, then
C is a strongly connected component in H.

Theorem 13. Given a sequence hypergraph H = (V, E), it is NP-hard to find a
minimum number of hyperedges that form a strongly connected component C so
that a) C is any non-empty set, or b) all the vertices in V are covered by C.

Proof. Variant b) is clearly NP-hard by a reduction from the Hamiltonian cycle
problem: Consider a standard directed graph G = (V,E) and view it as a sequence
hypergraph, where each sequence hyperedge is just an edge of G. Then, by finding
a strongly connected component that covers all the vertices of V and uses the
minimum number of sequence hyperedges (i.e., normal edges) we can solve the
Hamiltonian cycle problem in G (either the component consists of |V | edges or
more).

We show NP-hardness of variant a) by a reduction from the APX-hard set
cover problem [10]. Let I = (X,S) be an instance of the set cover problem, given
by a ground set X = {x1, . . . , xn}, and a family of its subsets S = {S1, . . . , Sm}.

Sequence Hypergraphs: Paths, Flows, anc Cuts 23

s
v1 v2 v3 v4 v5 v6 t

u1 u2 u3 u4 u5 u6

X = {x1, x2, . . . , x6}
S1 = {x1, x2, x5}

S2 = {x1, x3, x4}

S3 = {x2, x3, x6}

S4 = {x3, x4, x6}

S5 = {x4, x5, x6}

Fig. 12. For a given sequence hypergraph, it is NP-hard to find a minimum non-empty
set of sequence hyperedges that forms a strongly connected component.

From I we construct a sequence hypergraph H = (V, E) as follows (see
Figure 12 for an example). The set of vertices V = {s, t, v1 . . . , vn, u1 . . . , un}
contains one vertex vi and one vertex ui for each xi ∈ X, a source vertex s,
and a target vertex t. Let XO be an arbitrary fixed order on the elements of X.
The set of sequence hyperedges E consists of m+ n+ 1 hyperedges. There are
n element hyperedges: for each element xi in X (i-th element of X in the order
XO), there is a hyperedge (vi, ui, ui−1), the hyperedge (v1, u1, s) corresponding
to x1 ends at s instead. There is one target hyperedge (t, un). Finally, there are
m set hyperedges, one for each set in S defined as follows. For every set Si ∈ S,
we take the vertices from {v1, . . . , vn} that correspond to the elements in Si and
order them according to XO to obtain (vi1 , vi2 , . . . , vir). Then the sequence of
the hyperedge Ei corresponding to Si is simply (s, vi1 , vi2 , . . . , vir , t).

It remains to show that a minimum set cover for I can be constructed from
a minimum non-empty set of sequence hyperedges of H that form a strongly
connected component. Let O be such a non-empty set of hyperedges. First
observe that if O contains any set hyperedge, then O must contain all the
element hyperedges and the target hyperedge. This follows from the fact that if
O contains a set hyperedge, then s and t are covered by O, and O must contain a
ts-hyperpath, but the only ts-hyperpath clearly consists of all element hyperedges
plus the target hyperedge. Clearly, if O contains an element hyperedge or a
target hyperedge, then either some vi or t is covered by O, and thus O must
contain a hyperpath that leads to vi or t, respectively. However, the only sequence
hyperedges that can reach vi or t are the set hyperedges. Therefore, O always
contains at least one set hyperedge and all the element hyperedges and the target
hyperedge. However, this implies that all the vertices have to be covered by O,
which, in particular, implies that O must contain an svi-hyperpath for each vi.
Therefore, O consists of all element hyperedges, the target hyperedge, and the
smallest subset of the set hyperedges that allows to reach from s any vertex
vi ∈ V. In other words, for each vertex vi ∈ V, O must contain a set hyperedge
that can reach vi from s. This, together with the one-to-one correspondence
between the set hyperedges in E and sets in S, provides us with a prescription
for a minimum set cover for I of size |O| − n− 1. On the other hand, using the
same mapping in the opposite direction, we can map any solution of the original

24 K. Böhmová et al.

minimum set cover instance to a minimum non-empty set of sequence hyperedges
of H that form a strongly connected component. ut

Theorem 14. Given a sequence hypergraph H = (V, E), finding a maximum
number of hyperedges that form a strongly connected component C so that a) C is
any non-empty set, or b) all the vertices in V are covered by C, is polynomial-time
solvable.

Proof. As discussed above, for a given set of hyperedges, we can decide in
polynomial time whether it forms a strongly connected component or not. Thus, in
particular, we can check whether the set E forms a strongly connected component.
In case it does, variant b) is solved trivially by taking all the hyperedges in E .
Otherwise, this variant has no solution, because there is no strongly connected
component covering all vertices in V.

To solve variant a), we start with te set of all hyperedges E and during the
process, we iteratively remove those hyperedges that cannot be part of a feasible
solution. Iteratively, we find strongly connected components in the underlying
graph induced by the current set of hyperedges and remove all the sequence
hyperedges that occur in two or more components (as these cannot be a part of
a single strongly connected component), and repeat. Once no more hyperedges
can be removed, we reached a situation, where each of the remaining hyperedges
is in exactly one strongly connected component. Thus, the solution is defined by
the component that contains the maximum number of hyperedges. ut

References

1. Ausiello, G., Franciosa, P.G., Frigioni, D.: Directed hypergraphs: Problems, algorith-
mic results, and a novel decremental approach. In: Theoretical Computer Science,
pp. 312–328. Springer (2001)

2. Ausiello, G., Giaccio, R., Italiano, G.F., Nanni, U.: Optimal traversal of directed
hypergraphs. Tech. rep. (1992)

3. Berry, J., Dean, N., Goldberg, M., Shannon, G., Skiena, S.: Graph drawing and
manipulation with LINK. In: GD 1997. pp. 425–437. Springer (1997)

4. Böhmová, K., Mihalák, M., Pröger, T., Sacomoto, G., Sagot, M.F.: Computing and
Listing st-Paths in Public Transportation Networks. In: CSR 2016. vol. 9691, pp.
102–116. Springer (2016)

5. Broersma, H., Li, X., Woeginger, G., Zhang, S.: Paths and cycles in colored graphs.
Australasian journal of combinatorics 31, 299–311 (2005)

6. Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.V.: On the red-blue set cover
problem. In: SODA 2000. vol. 9, pp. 345–353. Citeseer (2000)

7. Coudert, D., Datta, P., Pérennes, S., Rivano, H., Voge, M.E.: Shared risk resource
group complexity and approximability issues. Parallel Processing Letters 17(02),
169–184 (2007)

8. Coudert, D., Pérennes, S., Rivano, H., Voge, M.E.: Combinatorial optimization in
networks with Shared Risk Link Groups. Research report, INRIA (Oct 2015)

9. Crescenzi, P., Kann, V., Halldórsson, M., Karpinski, M., Woeginger, G.: A com-
pendium of NP optimization problems. URL: http://www. nada. kth. se/˜ vig-
go/problemlist/compendium. html (1997)

Sequence Hypergraphs: Paths, Flows, anc Cuts 25

10. Dinur, I., Steurer, D.: Analytical Approach to Parallel Repetition. In: STOC 2014.
pp. 624–633. ACM, New York, NY, USA (2014)

11. Elias, P., Feinstein, A., Shannon, C.E.: A note on the maximum flow through a
network. Information Theory, IRE Transactions on 2(4), 117–119 (1956)

12. Erdős, P.L., Frankl, P., Katona, G.O.: Intersecting Sperner families and their convex
hulls. Combinatorica 4(1), 21–34 (1984)

13. Fellows, M.R., Guo, J., Kanj, I.A.: The parameterized complexity of some minimum
label problems. In: WG 2009. pp. 88–99. Springer (2009)

14. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applica-
tions. Discrete applied mathematics 42(2), 177–201 (1993)

15. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of
NP-completeness. W. H. Freeman & Co., New York, NY, USA (1979)

16. Goldberg, P.W., McCabe, A.: Shortest Paths with Bundles and Non-additive
Weights Is Hard. In: CIAC 2013. vol. 7878, pp. 264–275. Springer (2013)

17. Hassin, R., Monnot, J., Segev, D.: Approximation algorithms and hardness results
for labeled connectivity problems. Journal Combinatorial Optimization 14(4), 437–
453 (2007)

18. Hu, J.Q.: Diverse routing in optical mesh networks. Communications, IEEE Trans-
actions on 51(3), 489–494 (2003)

19. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon.
Journal of Computer and System Sciences 74(3), 335–349 (2008)

20. Krumke, S.O., Wirth, H.C.: On the minimum label spanning tree problem. Infor-
mation Processing Letters 66(2), 81–85 (1998)

21. Wachman, G., Khardon, R.: Learning from interpretations: a rooted kernel for
ordered hypergraphs. In: Proceedings of the 24th international conference on
Machine learning. pp. 943–950. ACM (2007)

22. Yuan, S., Varma, S., Jue, J.P.: Minimum-color path problems for reliability in mesh
networks. In: INFOCOM 2005. vol. 4, pp. 2658–2669. IEEE (2005)

23. Zhang, P., Cai, J.Y., Tang, L.Q., Zhao, W.B.: Approximation and hardness results
for label cut and related problems. Journal Combinatorial Optimization 21(2),
192–208 (2011)

	Sequence Hypergraphs: Paths, Flows, and Cuts

