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Abstract

This chapter introduces several state of the art techniques 
that could help to make deep underwater archaeological 
photogrammetric surveys easier, faster, more accurate, 
and to provide more visually appealing representations in 
2D and 3D for both experts and public. We detail how the 
3D captured data is analysed and then represented using 
ontologies, and how this facilitates interdisciplinary inter-
pretation and cooperation. Towards more automation, we 
present a new method that adopts a deep learning approach 
for the detection and the recognition of objects of interest, 
amphorae for example. In order to provide more readable, 
direct and clearer illustrations, we describe several tech-
niques that generate different styles of sketches out of 
orthophotos developed using neural networks. In the same 
direction, we present the Non-Photorealistic Rendering 
(NPR) technique, which converts a 3D model into a more 
readable 2D representation that is more useful to commu-
nicate and simplifies the identification of objects of inter-
est. Regarding public dissemination, we demonstrate how 
recent advances in virtual reality to provide an accurate, 

high resolution, amusing and appropriate visualization 
tool that offers the public the possibility to ‘visit’ an 
unreachable archaeological site. Finally, we conclude by 
introducing the plenoptic approach, a new promising 
technology that can change the future of the photogram-
metry by making it easier and less time consuming and 
that allows a user to create a 3D model using only one 
camera shot. Here, we introduce the concepts, the devel-
oping process, and some results, which we obtained with 
underwater imaging.

Keywords
Ontology · Machine learning · Non-photorealistic 
rendering · Virtual reality · Lightfield imaging

9.1	 �Introduction

Archaeological excavations are irreversibly destructive, 
and it is thus important to accompany them with detailed, 
accurate, and relevant documentation, because what is left 
of a disturbed archaeological complex is the knowledge 
and record collected. This kind of documentation is mainly 
iconographic and textual. Reflecting on archaeological 
sites is almost always done using recording such as draw-
ings, sketches, photographs, maps and sections, topogra-
phies, photogrammetry, maps, and a vast array of physical 
samples that are analyzed for their chemical, physical, and 
biological characteristics. These records are a core part of 
the archaeological survey and offer a context and a frame of 
reference within which artifacts can be analyzed, inter-
preted, and reconstructed. As noted by Buchsenschutz 
(2007, 5) in the introduction to the Symposium “Images et 
relevés archéologiques, de la preuve à la démonstration” in 
Arles in 2007, ‘Even when very accurate, drawings only 
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retain certain observations to support a demonstration, just 
as a speech only retains certain arguments, but this selec-
tion is not generally explicit.’ This is the cornerstone of 
archaeological work: the survey is both a metric representa-
tion of the site and an interpretation of the site by the 
archaeologist.

In the last century, huge progress was made on collecting 
3D data and archaeologists adopted analogue and then digi-
tal photography as well as photogrammetry. This was first 
developed by A. Laussedat in 1849, and the first stereo plot-
ter was built by C.  Pulfrich in 1901 (Kraus 1997). 
Furthermore, we saw the beginning of underwater archaeo-
logical photogrammetry (Bass 1966) and finally the dense 
3D point cloud point generation based on automatic homol-
ogous point description and matching (Lowe 1999). In a 
way, building a 3D facsimile of an archaeological site is not 
itself a matter of research even in an underwater context. 
Creation of a model does not solve the problem of producing 
a real survey and interpretation of the site according to a 
certain point of view – a teleological approach able to pro-
duce several graphical representations of the same site, 
according to the final goal of the survey. Indeed, the produc-
tion of such a survey is a complex process, involving several 
disciplines and emergent approaches. In this chapter we 
present the work of an interdisciplinary team, merging pho-
togrammetry and computer vision, knowledge representa-
tion, web semantic, deep learning, computational geometry, 
lightfield cameras dedicated to underwater archaeology 
(Castro and Drap 2017).

9.1.1	 �The Archaeological Context

This work is centered on the Xlendi shipwreck, named after 
its location, found off the Gozo coast in Malta. The ship-
wreck was located by the Aurora Trust, an expert in deep-sea 
inspection systems, during a survey campaign in 2008. The 
shipwreck is located near a coastline known for its limestone 
cliffs that plunge into the sea and whose foundation rests on 
a continental shelf at an average depth of 100 m below sea 
level. The shipwreck itself is therefore exceptional; first due 
to its configuration and its state of preservation which is par-
ticularly well-suited for our experimental 3D modelling 
project. The examination of the first layer of amphorae also 
reveals a mixed cargo, consisting of items from Western 
Phoenicia, and Tyrrhenian-style containers which are both 
well-dated to the period situated between the end of the 
eighth and the first half of the seventh centuries BC. The his-
torical interest of this wreck, highlighted by our work, which 
is the first to be performed on this site, creates added value in 
terms of innovation and the international profile of the proj-
ect (Drap et al. 2015).

9.2	 �Underwater Survey 
by Photogrammetry

The survey was done using optical sensors: photogrammetry 
is the best way to collect both accurate 3D data and color 
information in a full contactless approach and reduced the 
time on site to the necessary time to take the photographs. 
The survey had two goals: measuring the entire visible sea-
bed where the wreck is located and extracting known arte-
facts (amphorae), in order to position them in space and 
accurately represent them after laboratory study. The photo-
grammetric system used in 2014 (Drap et  al. 2015), was 
mounted on the submarine Remora 2000. In this version, a 
connection is established between the embedded sub system, 
fixed on the submarine and the pilot (inside the submarine) to 
ensure that the survey is fully controlled by the pilot. The 
photogrammetric system uses a synchronized acquisition of 
high and low-resolution images by video cameras forming a 
trifocal system. The three cameras are independently 
mounted in separate waterproof housings. This requires two 
separate calibration phases; the first one is carried out on 
each set of camera/housing in order to compute intrinsic 
parameters and the second one is done to determine the rela-
tive position of the three cameras which are securely mounted 
on a rigid platform. The second calibration can be done eas-
ily before each mission and it affects the final 3D model 
scale. This allow us to obtain a 3D model at the right scale 
without any interaction on site. More in detail, the trifocal 
system is composed of one high-resolution, full-frame cam-
era synchronized at 2  Hz and two low-resolution cameras 
synchronized at 10 Hz (Drap 2016).

The lighting, a crucial part in photogrammetry, must meet 
two criteria: the homogeneity of exposure for each image 
and its consistency between images (Drap et al. 2013). Of 
course, using only one vehicle, the lights are fixed on the 
submarine as far as possible from the camera. Hydrargyrum 
medium-arc iodide (HMI) lamps were used with an appro-
priate diffuser (note: in the current version overvolted LEDs 
are used as they are significantly more energy efficient). The 
trifocal system has two different goals: The first one is the 
real-time computation of system pose and the 3D reconstruc-
tion of the zone of seabed visible from the cameras. The 
operator can pilot the submarine using a dedicated applica-
tion that displays the position of the vehicle in real time. A 
remote video connection also enables the operator to see the 
live images captured by the cameras. Using the available 
data, the operator can assist the pilot to ensure the complete 
coverage of the zone to be surveyed. The pose is estimated 
based on the movement of the vehicle between two consecu-
tive frames. We developed a system for computing visual 
odometry in real time and producing a sparse point cloud of 
3D points on the fly (Nawaf et al. 2016, 2017).
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The second goal is to perform an offline 3D reconstruc-
tion of a high-resolution metric model. This process uses the 
high-resolution images to produce a dense model, scaled 
based on baseline distances. We developed a set of tools to 
bridge our visual odometry software to the commercial soft-
ware Agisoft Photoscan/Metashape in order to use the densi-
fication capabilities. After this step we obtained a dense 
pointcloud and a set of oriented high-resolution photographs 
describing accurately the entire site. This is enough to pro-
duce a high resolution orthophoto of the site (1 pixel/0.5 mm), 
as well as accurate 3D models. The ultimate goal of this pro-
cess is to study the cargo, hull remains, and remaining arti-
fact collection.

The second problem is to extract known objects for these 
data. We defined the amphorae typology and the correspond-
ing theoretical 3D models. The recognition process is com-
posed of two different phases: the first one is the artifact 
detection; and then the position and orientation estimation of 
each artefact is undertaken in order to calculate the exact size 
and location. The amphorae detection is done in 2D using the 
full orthophoto. We used a deep learning approach and 
obtained 98% of good results (Pasquet et  al. 2017). This 
allows us to extract the relevant part of the 3D data where the 
artifact is located. We then apply a 3D matching approach to 
compute the position, orientation and dimension of the 
known artifact.

It is important to note that during the last decade several 
excellent works have been done in this context for both 
underwater archaeology and marine archaeology (Aragón 
et  al. 2018; Balletti et  al. 2016; Bodenmann et  al. 2017; 
Bruno et al. 2015; Capra et al. 2015; Martorelli et al. 2014; 
McCarthy and Benjamin 2014; Pizarro et  al. 2017; Secci 
2017). Indeed, more technical details of this survey have been 
published (Drap et al. 2015). More generally, we can observe 
that entire workshops are now dedicated to photogrammetric 
survey for underwater archaeology (for example the work-
shop organized by CIPA/ISPRS, entitled ‘Underwater 3D 
recording and modeling’ in Sorrento, Italy in April 2015), 
hundreds of articles are written on photogrammetric under-
water survey for archaeology and substantial research is 
done on technical aspects, such as calibration (Shortis 2015; 
Telem and Filin 2010), stereo system (O’Byrne et al. 2018; 
Shortis et al. 2009) using structured light (Bruno et al. 2011; 
Roman et al. 2010) or more generally on underwater image 
processing (Ancuti et al. 2017; Chen et al. 2018; Hu et al. 
2018; Yang et al. 2017a, b). In the last few years this disci-
pline has attracted the attention of the industrial world and 
has been used to record and analyse complex objects of large 
dimensions (Menna et al. 2015; Moisan et al. 2015). The new 
challenge for tomorrow is producing accurate and detailed 
surveys from ROV and AUV in complex environments 
(Ozog et al. 2015; Zapata-Ramírez et al. 2016).

9.3	 �The Use of Ontologies

9.3.1	 �In Underwater Archaeology

The main focus behind this research is the link between mea-
surement and knowledge. All underwater archaeological sur-
vey is based on the study of a well-established corpus of 
knowledge, in a discipline which continues to redefine its 
standard practices. The knowledge formalization approach is 
based on ontologies; the survey approach proposed here 
implies a formalization of the existing practice, which will 
drive the survey process.

The photogrammetric survey was done with the help of a 
specific instrumental infrastructure provided by COMEX, a 
partner in the GROPLAN project (Drap et  al. 2015; 
GROPLAN 2018). Both this photogrammetry process and 
the body of surveyed objects were ontologically formalized 
and expressed in OWL2. The use of ontologies to manage 
cultural heritage advances every year and generates interest-
ing perspectives for its continued study (Bing et  al. 2014; 
Lodi et al. 2017; Niang et al. 2017; Noardo 2017). The ontol-
ogy developed within the framework of this project takes 
into account the manufactured items surveyed and the photo-
grammetry process which is used to measure them. Each 
modelled item is therefore represented from a measurement 
point of view and linked to all the photogrammetric data that 
contributed to the measurement process. To this extent we 
developed two ontologies: one dedicated to photogrammet-
ric measurement and georeferencing the measured items, 
and another dedicated to the measured items, principally the 
archaeological artefacts. The latter describes their dimen-
sional properties, ratios between main dimensions, and 
default values. Within this project, these two ontologies were 
aligned in order to provide one common ontology that covers 
the two topics at the same time. The development architec-
ture of these ontologies was performed with a close link to 
the Java class data structure, which manages the photogram-
metric process as well as the measured items. Each concept 
or relationship in the ontology has a counterpart in Java (the 
opposite is not necessarily true). Moreover, the surveyed 
resources are archaeological items studied and possibly 
managed by archaeologists or conservators in a museum. It 
is therefore important to be able to connect the knowledge 
acquired when measuring the item with the ontology 
designed to manage the associated archaeological 
knowledge.

The modelling work of our ontology started from the 
premise that collections of measured items are marred by a 
lack of precision concerning their measurement, assump-
tions about their reconstruction, their age, and origin. It was 
therefore important to ensure the coherence of the measured 
items and potentially propose a possible revision. This 
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collection work was presented in a previous study in the con-
text of underwater archaeology with similar problems (Curé 
et al. 2010; Hué et al. 2011; Seinturier 2007; Serayet 2010; 
Serayet et al. 2009).

Amongst the advantages of the photogrammetric process 
is the possibility of providing several 2D representations of 
the measured artefacts. Our ontology makes use of this 
advantage to represent the concepts used in photogrammetry, 
and to be able to use an ontology reasoner on the ABox rep-
resenting photogrammetric data. In other words, this photo-
grammetric survey is expressed as an ontology describing 
the photogrammetric process, as well as the measured 
objects, and that was populated both by the measurements of 
each artefact and by a set of corresponding data. In this con-
text, we developed a mapping from an Object Oriented (OO) 
formalism to a Description Logic (DL). This mapping is 
relatively easy to accomplish because we have to map a poor 
semantic formalism toward a richer one (Roy and Yan 2012). 
We need to manage both the computational aspects (often 
heavy in photogrammetry) implanted in the artefacts mea-
surable by photogrammetry, and the ontological representa-
tion of the same photogrammetric process and surveyed 
artefacts.

The architecture of the developed framework is based on 
a close link between, on the one hand, the software engineer-
ing aspects and the operative modelling of the photogram-
metry process, artefacts measured by photogrammetry in the 
context of this project and, on the other hand, with the onto-
logical conceptualization of the same photogrammetry pro-
cess and surveyed artefacts. The present implementation is 
based on a double formalism, JAVA, used for computation, 
photogrammetric algorithms, 3D visualization of photo-
grammetric models, and cultural heritage objects, and then 
for the definition of ontologies describing the concepts 
involved in this photogrammetric process, as well as on the 
surveyed artefacts.

To implement our ontological model, we opted for OWL2 
(Web Ontology Language), which has been used for decades 
as a standard for the implementation of ontologies 
(McGuinness and Harmelen 2004). This web ontology lan-
guage allows for modelling concepts (classes), instances 
(individuals), attributes (data properties) and relations 
(object properties). In fact, the main concern during the mod-
elling process is the representation of accurate knowledge 
from a measurement point of view for each concept in the 
ontology. On the other hand, the same issue presides over the 
elaboration of the JAVA taxonomy, where we have to man-
age constraints involving differences in the two hierarchies 
of concepts within the engineering software side. For this 
purpose, we developed a procedural attachment method for 
each concept in the ontology. This homologous aspect of our 
architecture leads to the fact that each individual of the ontol-
ogy can produce a JAVA instance since each concept present 

in the ontology has a homologous class in the JAVA tree. 
Note here that the adoption of an automatic binding between 
the ontology construction in OWL and the JAVA taxonomy 
cannot be produced automatically in our case. Hence, we 
have abandoned an automatic mapping using JAVA annota-
tion and JAVA beans for a manual extraction, even if this is a 
common way in literature (Horridge et al. 2004; Ježek and 
Mouček 2015; Kalyanpur et  al. 2004; Roy and Yan 2012; 
Stevenson and Dobson 2011).

The current implementation is based on a two aspects: 
JAVA, used for computation, photogrammetric algorithms, 
3D visualization of photogrammetric data and patrimonial 
objects, and OWL for the definition of ontologies describing 
the concepts involved in the measurement process and the 
link with the measured objects. In this way, reading an XML 
file used to serialize a JAVA instance set representing a state-
ment can immediately (upon reading) populate the ontology; 
similarly reading an OWL file can generate a set of JAVA 
instance counterparts of the individuals present in the ontol-
ogy. Furthermore, the link between individuals and instances 
persists and it can be used dynamically. The huge advantage 
of this approach is that it is possible to perform logical que-
ries for both aspects of the ontology and the JAVA represen-
tation, i.e. to perform semantic queries over ontology 
instances while benefiting from the computational capabili-
ties in the homologous JAVA side. We can thus read the 
ontology, visualize in 3D the artefacts present in the ontol-
ogy, and graphically visualize the result of SQWRL queries 
in the JAVA viewer.

A further step, after developing and populating the ontol-
ogy, is to find target ontologies to link to, following semantic 
web recommendations (Bizer et al. 2009); linking the newly 
published ontology to other existent ontologies in the web in 
order to allow ontologies sharing, exchanging and reusing 
information between them. In cultural heritage contexts, 
CIDOC CRM is our main target ontology since it is now well 
adopted by CH actors from theoretical point of view 
(Gaitanou et  al. 2016; Niccolucci 2016; Niccolucci and 
Hermon 2016) as well as applicative works (Araújo et  al. 
2018) and an interesting direction toward GIS application 
based on some connection with photogrammetric survey 
(Hiebel et al. 2014, 2016).

Several methodologies can be chosen regarding mapping 
these two ontologies. For example, Amico et  al. (2013) 
choose to model the survey location with an activity (E7) in 
CRM. They also developed a formalism for the digital sur-
vey tool mapping the digital camera definition with (D7 
Digital Machine Event). We see here that the mapping prob-
lem is close to an alignment problem, which is an issue in 
this case. Aligning two ontologies dealing with digital cam-
era definition is not obvious; a simple observation of the lack 
of interoperability between photogrammetric software shows 
the scale of the problem. We are currently working on an 
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alignment/extension process with Sensor ML which is an 
ontology dedicated to sensors. Although some work has 
already yielded results (Hiebel et al. 2010; Xueming et al. 
2010), it is not enough to support the close-range photo-
grammetry process, from image measurement to artefact 
representation.

Linking our ontology to CIDOC-CRM can provide more 
integrity between cultural heritage datasets and will allow 
more flexibility for performing federated queries cross dif-
ferent datasets in this community. Being a generic ontology, 
however, the current state of CIDOC-CRM does not support 
the items that it represents from a photogrammetric point of 
view, a simple mapping would not be sufficient and an exten-
sion with new concepts and new relationships would be nec-
essary. Our extension of the CIDOC-CRM ontology is 
structured around the triple <E18_Physical_Thing, P53_
has_former_or_current_location, E53_Place>, which pro-
vides a description of an instance of E53_Place as the former 
or current location of an instance of E18_Physical_Thing. 
The current version of this extension relates only to the TBox 
part of the two ontologies where we used the hierarchical 
properties rdfs:subClassOf and rdfs:subPropertyOf to extend 
the triple <SpatialObject, hasTransformation3D, transfor-
mation3D>, developed in this project. Note that the mapping 
operation is done in JAVA by interpreting a set of data held 
by the JAVA classes as a current identification of the object: 
3D bounding box, specific dimension. These attributes are 
then computed in order to express the right CRM 
properties.

Our architecture is based on the procedural attachment 
where the ontology is considered as a homologous side of 
the JAVA class structure that manages the photogrammetric 
survey and the measurement of artefacts. This approach 
ensures that all the measured artefacts are linked with all the 
observations used to measure and identify them.

A further advantage of adopting ontology is to benefit 
from the reasoning over the semantic of its intentional and 
extensional knowledge. For this purpose, the approach that 
we adopted so far, using the OWLAPI and the Pellet rea-
soner, allows for performing SQWRL queries using an 
extension of SWRL Built-In (O’Connor and Das 2006) 
packages. SWRL provides a powerful extension mechanism 
that allows for implementing user-defined methods in the 
rules (Keßler et  al. 2009). For this purpose, we have built 
some spatial operators allowing us to express spatial queries 
in SWRL (Arpenteur 2018), as for example the operator 
isCloseTo with three arguments which allows for selecting 
all the amphorae present in a sphere centred on a specific 
amphora and belonging to a certain typology. A representa-
tion of the artefacts measured on the Xlendi wreck, as well as 
an answer to a SWRL query, is shown in Fig. 9.1.

Our ontology also provides a spatial description as geore-
ferencing of each artefact and all the archaeological knowl-

edge, including relationships provided by archaeologists. 
Based on our procedural attachment approach, we built a 
mechanism which allows for the evaluation and visualization 
of spatial queries from SWRL rules. We are currently extend-
ing this approach in a 3D information system dedicated to 
archaeological survey based on photogrammetric survey and 
knowledge representation for spatial reasoning.

Finally, we draw the reader’s attention to the fact that our 
ontology has been recently published in the Linked Open 
Vocabulary (LOV 2018; Vandenbussche et al. 2017) which 
offers users a keywords search service indexing more than 
600 vocabularies in its current version. The LOV indexed all 
terms in our ontology and provides an online profile meta-
data ARP (2018) that offers our work a better visibility and 
allows terms reuse for the ontology meta-designers in differ-
ent communities.

9.3.2	 �Application in Nautical Archaeology

The applications to query, visualize, and evaluate survey data 
acquired through photogrammetric survey methods have the 
potential to revolutionize nautical archaeology (as evidenced 
by many chapters in this volume). Even the simplest utiliza-
tion of off-the-shelf photogrammetry software combined 
with consumer-grade portable computers and without the 

Fig. 9.1  3D visualization of a spatial resquest in SWRL: Amphorae(?a) 
^ swrlArp:isCloseTo(?a, “IdTargetAmphora”, 6.2) ^ 
hasTypologyName(?a, “Pitecusse_365”) -> sqwrl:select(?a). Means 
select all amphorae with the typology Pitecusse_365 and at a maximum 
distance of 6.2 m from the amphorae labelled IdTargetAmphora
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need for special graphics hardware, can greatly simplify and 
expedite the recording of underwater archaeological sites 
(Yamafune et  al. 2016). The development of a theory of 
knowledge in nautical archaeology will certainly change the 
paradigm of this discipline, which is hardly half a century 
old and is still struggling to define its aims and 
methodologies.

The first and most obvious implication of any process of 
automation of underwater recording, independent from the 
operating depths, is the economic benefit. Automated survey 
methods save time and can be more precise. The second 
implication is the treatment and storing of primary data, 
which is still artisanal and performed according to the taste 
and means of the archaeologists in charge; it is seldom stored 
with consideration for the inevitable reanalysis that new par-
adigms and the development of new equipment will eventu-
ally dictate. Primary data are traditionally treated in nautical 
archaeology as propriety of the principal investigator and are 
often lost, as archaeologists move on, retire, or die. The lack 
of a methodology to record shipwrecks (Castro et al. 2017) 
makes it difficult to develop comparative studies, aiming at 
finding patterns in trade, sailing techniques, and  
shipbuilding, to cite only three examples where data from 
shipwreck excavations are almost always truncated or 
unpublished.

The application of an ontology and a set of logical rules 
for the identification, definition, and classification of mea-
surable objects is a promising methodology to assess, gather, 
classify, relate, and analyse large sets of data. Nautical 
archaeology is a recent sub-discipline of archaeology and 
attempts to record shipwrecks under the standards com-
monly used in land archaeology started after 1960. The earli-
est steps of this discipline were concerned with recording 
methodology and accuracy in underwater environments. 
These environments are difficult and impose a number of 
practical constraints, such as reduced bottom working time, 
long decompression periods, cold, low visibility, a narrower 
field of vision, surge, current, or depth. Since the inception of 
nautical archaeology, theoretical studies aimed at identifying 
patterns and attempting to address larger anthropological 
questions related to culture change have emerged. The num-
ber of shipwrecks excavated and published, however, makes 
the sample sizes too small to allow for broad generalizations. 
Few seafaring cultures have been studied and understood 
well enough to allow a deep understanding of their history, 
culture, and development. Classical and Viking seafaring 
cultures provide two European examples where data from 
land excavations and historical documents help archaeolo-
gists to understand the ships and cargoes excavated, but there 
is a lack of an organized body of data pertaining to most 
maritime landscapes and cultures, and a lack of organization 
of the material culture in relational libraries. Through our 
work we hope to provide researchers from different marine 

sciences with both better archives and appropriate tools for 
the facilitation of their work. This in turn will improve the 
conditions to the development of broader anthropological 
studies, for instance, evaluating and relating cultural change 
in particular areas and time periods.

The study of the history of seafaring is the study of the 
relations of humans with rivers, lakes, and seas, which 
started in the Palaeolithic. An understanding of this part of 
our past entails the recovery, analysis, and publication of 
large amounts of data, mostly through non-intrusive survey 
methods. The methodology proposed in GROPLAN aims at 
simplifying the collection and analysis of archaeological 
data, and at developing relations between measurable 
objects and concepts. It builds upon the work of Steffy 
(1994), who in the mid-1990s developed a database of ship 
components. This shipbuilding information, segmented in 
units of knowledge, tried to encompass a wide array of 
western shipbuilding traditions—which developed through 
time and space—and establish relations between conception 
and construction traits in a manner that allowed compari-
sons between objects and concepts. Around a decade later 
Carlos Monroy transformed Steffy’s database into an onto-
logical representation in RDF-OWL, and expanded its scope 
to potentially include other archaeological materials 
(Monroy 2010; Monroy et  al. 2011). After establishing a 
preliminary ontology, completed through a number of inter-
views with naval and maritime archaeologists, Monroy 
combined the database with a multi-lingual glossary and 
built a series of relational links to textual evidence that 
aimed at contextualizing the archaeological information 
contained in the database. His work proposed the develop-
ment of a digital library that combined a body of texts on 
early modem shipbuilding technology, tools to analyse and 
tag illustrations, a multi-lingual glossary, and a set of infor-
matics tools to query and retrieve data (Monroy 2010; 
Monroy et al. 2006, 2007, 2008, 2009, 2011).

Our approach extends these efforts into the collection of 
data, expands the analysis of measurable objects, and lays 
the base for the construction of extensive taxonomies of 
archaeological items. The applications of this theoretical 
approach are obvious. It simplifies the acquisition, analysis, 
storage, and sharing of data in a rigorous and logically sup-
ported framework. These two advantages are particularly 
relevant in the present political and economic world context, 
brought about by the so-called globalization and the general 
trend it entailed to reduce public spending in cultural heri-
tage projects. The immediate future of naval and maritime 
archaeology depends on a paradigm change. Archaeology is 
no longer the activity of a few elected scholars with the 
means and the power to define their own publication agen-
das. The survival of the discipline depends more than ever 
on the public recognition of its social value. Cost, accuracy, 
reliability (for instance established through the sharing of 
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primary data), and its relationship with society’s values, 
memories and amnesias, are already influencing the amount 
of resources available for research in this area. Archaeologists 
construct and deconstruct past narratives and have the power 
to impact society by making narratives available that illus-
trate the diversity of the human experience in a world that is 
less diverse and more dependent on the needs of world com-
merce, labour, and capital.

The main objective of this work is the development of an 
information system based on ontologies and capable of estab-
lishing a methodology to acquire, integrate, analyse, gener-
ate, and share numeric contents and associated knowledge in 
a standardized and homogenous form. In 2001 the UNESCO 
Convention on the Protection of the Underwater Cultural 
Heritage established the necessity of making all archaeologi-
cal data available to the public (UNESCO 2001). According 
to UNESCO around 97% of the children of the planet are in 
school, and 50% have some access to the internet. In one gen-
eration archaeology ceases to be a closed discipline and it is 
likely that a diverse pool of archaeologists from all over the 
world will multiply our narratives of the past and enrich our 
experience with new viewpoints and better values. This work 
is fully built upon this philosophy, and shows a way to share 
and analyse archaeological data widely and in an organized 
manner.

9.4	 �Artefact Recognition: The Use of Deep 
Learning

9.4.1	 �The Overall Process Using a Deep 
Learning Approach

This work aims to detect amphorae on the orthophoto of the 
Xlendi shipwreck. This image, however, does not contain a lot 
of examples and so it is complicated to train a machine learn-
ing model. Moreover, we cannot easily train the model from 
another shipwreck to learn an amphorae model because it is 
difficult to find another orthophoto which contains amphorae 
with the same topology. So, we propose to use a deep learn-
ing approach that is proving its worth in many research fields 
and shows the best performance on different competitions as 
ImageNet (Russakovsky et al. 2014) with deep networks (He 
et al. 2015; Simonyan and Zisserman 2014; Szegedy et al. 
2014). We use a Convolution Neural Network (CNN) in 
order to train the shape of various and different amphorae 
and the context of the ground. Then we propose to use a 
transfer learning process to fine-tune our model over the 
Xlendi shipwreck amphorae. This approach allows us to 
train the model using a small part of the Xlendi database. 
Underwater objects are rarely found in a perfect state. Indeed, 
they can be covered by sediments or biological growth, or by 
another object, and they are often broken. It is common that 
amphora necks are separated from an amphora’s body. We 

want to detect all the amphora pieces by performing a pixel 
segmentation which consists of adopting a pixel-wise clas-
sification approach on the orthophoto (Badrinarayanan et al. 
2015; Shelhamer et  al. 2016). To improve the model, we 
define three classes: the underground, the body of the 
amphora and the head of the amphora; which are the rim, the 
neck and the handles respectively. After the pixel segmenta-
tion, we group pixels with similar probabilities together to 
get an object segmentation.

9.4.2	 �The Proposed Convolution Neural 
Network

The CNN is composed of a series of layers in which each 
layer takes as input the output of the previous layer. The first 
layer is named the input layer and takes as input the testing 
or the training image. The last layer is the output of the net-
work and gives a prediction map. The output of a layer, noted 
l in the network, is called a feature map and is noted fl. In this 
work, we use four different types of layers: convolution lay-
ers, pooling layers, normalization layers and deconvolution 
layers. We explain the different types of layers in the 
following:

Convolution layers are composed of convolutional neu-
rons. Each convolutional neuron applies the sum of 2D con-
volutions between the input feature maps and its kernel. In 
the simple case where only one feature map is passed to the 
input convolutional neuron, the 2D convolution between the 
kernel noted Kof size w × h and the input feature map I ∈ ℝ2 
is I ∗ K and is defined as:
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where (x,y) are the coordinates of a given pixel into the out-
put feature map.

In the case of neural convolutional neural networks, a 
neuron takes as input each of p feature maps of the previ-
ously layer noted Il with I ∈ {0. . p}. The resulting feature 
map is the sum of p2D convolutions between the kernel 
Kland the map Iland is defined as:
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Basically, we apply a nonlinear transformation after the con-
volution step in order to solve nonlinear classification prob-
lems. The most commonly used function is the Rectify 
Linear Unit (ReLU) which is defined by f(x) =   max  (x, 0) 
(Krizhevsky et al. 2012).

Pooling layers quantify the information while reducing 
the data volume. They apply a sliding window on the image 
which processes a specific operation. The two most used 
methods consist in selecting only the maximum or the mean 
value between different data in the sliding window.
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Normalization layers scale the feature maps. The two 
most used methods dedicated to normalizing are the Local 
Response Normalization (LRN) and the Batch 
Normalization (BN) (Ioffe and Szegedy 2015). In this 
work we use the batch normalization which scales each 
value of the feature maps depending on the mean and the 
variance of this value in the batch of images. Moreover, the 
batch normalization has two hyperparameters which are 
learned during the training step to scale the importance of 
the different feature maps in a layer and to add a bias value 
to the feature map.

Deconvolution layers are the transpose of the convolution 
layers.

To perform the learning step, parameters of convolution 
and deconvolution are tuned using a stochastic gradient 
descent (Bottou 1998). This optimization process is costly 
but is compatible with parallel processing. In this work we 
use the Caffe (Jia et  al. 2014) framework to train our 
CNN.  The results are obtained using a GTX 1080 card, 
packed in 2560 cores with a 1.733  GHz base. Our CNN 
architecture is composed of seven convolution layers, three 
pooling layers and three deconvolution layers.

9.4.3	 �Classification Results

We train our CNN on images coming from another site and 
then we use a small part of the Xlendi image to fine-tune the 

weights of the CNN. On the Xlendi Image we have only used 
20 amphorae as training examples. Results are given on 
Fig. 9.2 where we can see that all the amphorae in the testing 
image are detected. The false positives are mainly located on 
the grind stones. This error is due to the small size of the 
training database. Indeed, during the pre-training step there 
are not grinding stone examples in the used images, then dur-
ing the tuning step only a few grind stone examples are rep-
resented. On the segmentation pixel image, the recall is 
around 57% and the precision around 71%. The recall is low 
because the edges of the amphorae are rarely detected since 
the probability is the highest at the middle of each amphora 
and then it decreases rapidly toward the edges. For the object 
detection map, the noise is removed and so the recall is close 
to 100% and the precision is around 80% (Fig. 9.3).

9.5	 �2D Representation: From Orthophoto 
to Metric Sketch

Cultural heritage representation has been completely trans-
formed in the last 40 years. Computer graphics introduced in 
this field, high resolution 3D survey, and 3D modelling and 
image synthesis, built on surveys results nearly indistinguish-
able from reality. But even if this huge production of photo-
realism increased during the last decade, photorealism is far 
from a drawing made by an expert; the interpretation phase 
is missing even if it is accurate and detailed. On the other 
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Fig. 9.2  Representation of the architecture that we are proposing, using an example to activate the feature maps
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hand, 2D representations are still important, easy to manipu-
late, transfer, publish and annotate. We are working on pro-
ducing 2D accurate and detailed documents, easily accessible 
even if they have an important resolution. For example the 
high resolution orthophoto of the Xlendi site is accessible 
through the GROPLAN web site (Drap 2016) using IIPImage 
(Pitzalis and Pillay 2009).

Even if photorealistic 3D or 2D documents are still pro-
viding better quality images, we want to replicate the effects 
of hand-drawn documents, in 2D. These are designed to look 
like documents traditionally produced by archaeologists and 
merge two important qualities: they are detailed and accurate, 
and they respect a common graphical convention used by the 
archaeological community. These kinds of images, produced 
with Non-Photorealistic Rendering or Deep Learning as 
detailed below, have an extra meaning: ‘selection.’ 
Photorealism provides the same relevance to all objects in 
the scene. Hand-drawings and NPR images pick-up only 
objects with specific properties, hence a selection is made by 
knowledge. Here we present a work-in-progress and two 
research directions aimed to produce such products’; one 
uses 2D documents as orthophoto and the other is based on 
dense 3D models.

9.5.1	 �Style Transfer to Sketch the Orthophoto

Image style here is defined by the way of drawing without 
the content. The style transfer applies the style of a given 
image to another image. In deep learning this kind of method 
is well known, to transfer the style of an artist to a real image, 
see Fig. 9.4. Using the approach of (Gatys et al. 2016) we 
apply a sketch style to the image. The style A draws different 
patches of leafs on the output. The resulting image obtained 
with the style B is blurred and the edges are sheared because 
the sketch is composed of points, but not of a solid line.

The style D creates some horizontal patterns which are 
similar to the waves. The style C gives the best visual result, 
even if the representation of grind stones on the top of the 
image disappears. This type of image, however, is unusable 
by archaeologists because it is an artistic vision which does 
not spotlight the interest regions.

We propose to learn the relevant sketch using a machine 
learning process on a part of the Xlendi orthophoto. Then we 
propose to use an architecture similar to the previous one to 
learn the sketch process. The sketch of Xlendi created by the 
CNN is given on Fig. 9.7 (bottom right). The weakness of this 
approach is evident when objects that are not known by the 

Fig. 9.3  Pixel segmentation on the testing part of the Xlendi ortho-
photo. On the probability map, the wither the pixel, the higher the prob-

ability to be an amphora is. On the object detection map, the green 
circles represent the correctly detected amphorae and the red circles the 
false positive detections
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model are present, because they are not in the training data-
base. Figure 9.5 is focused on a grind stone with a yellow 
starfish above. Since there is no starfish in our database,  
the algorithm counts it as a rim of amphora. To avoid this 
error, we increase the number of examples in the training 
database.

9.5.2	 �From 3D Models to NPR:  
Non-photorealistic Rendering

Several archaeological representation styles found in techni-
cal manuals (Bianchini 2008) and published articles (Sousa 
et al. 2003) are in fact close to the NPR results. These kinds 
of representation are useful to communicate and to make 
illustration more readable, direct and clearer.

As of a few years ago, researchers have been trying to 
extract features from 3D models, such as lines, contours, 
ridges and valleys, apparent contours and so on, and to com-
pare their results with sketches. This kind of representation, 
NPR, has been developed for illustration but it is not so much 
used for archaeology and cultural heritage. Several typolo-
gies of representations for 3D archaeological artefacts have 
been studied during recent years (DeCarlo et al. 2003; Jardim 
and de Figueiredo 2010; Judd et  al. 2007; Raskar 2001; 

Roussou and Drettakis 2003; Tao et al. 2009; Xie et al. 2014). 
An interesting open source approach, called Suggestive 
Contour Software (DeCarlo and Rusinkiewicz 2007), allows 
visualization of 3D models built with mesh by NPR and 
gives several options to modify final results with various 
parameters (occlusion contours, suggestive contours, ridges 
and valley, etc.). The link between accuracy and sketch is a 
question considered by several scientists in the field of com-
puter vision and virtual reality (Bénard et  al. 2014). More 
recent research in this field now uses deep learning and AI 
(Bylinskii et al. 2017; Gatys et al. 2016).

Concerning cultural heritage and archaeological artefacts, 
some morphological properties of amphorae are well repre-
sented with NPR rendering (Fig. 9.6). It is simple to identify 
handles, rims and necks when we extract ‘contours’ or 
‘ridges and valleys’ because archaeologists and algorithms 
are looking at the same properties. The curvature of the body 
is substantial for an amphora and is one of the keys to iden-
tify its typology, but it is also a geometrical property 
enhanced by NPR algorithms. In contrast to image contour 
extraction, the NPR renderings studied here work on 3D 
models, which enable the use of the normal surface to accu-
rately extract contours from overlapping shapes.

An orthophoto of an excavation area has too much extra 
information, and the goal is to extract the important informa-

Fig. 9.4  Examples of different styles applied to the same image (C. Nigon)
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tion contained in the image and to leave out the rest. NPR 
algorithms can be useful for that because NPR acts as a filter, 
using information that is not available within the images: the 
surface normals. Beginning from a 3D model and a point of 
view, NPR rendering produces an image that is fairly close 
those obtained through expert interpretation (Fig. 9.7).

Nevertheless, these positive results from NPR are partially 
caused by a specific configuration of the scene: in Xlendi, 
amphorae are lying on a flat seabed or are partially covered by 
sediment. The seabed is mainly uniform and flat so the normal 
analysis done by the NPR process focus on protruding ampho-
rae and tend to minimize the seabed. These morphological dif-
ferences can be enhanced by tuning the numerous NPR 
parameters to highlight the relevant part of the 3D model. It 
seems that each kind of scene requires a bespoke set of param-
eters, so the most promising results need to involve knowledge 
of the process and the experiments in deep learning appear to 
present an opportunity to progress these ideas.

9.6	 �Virtual Reality for the General Public

Public dissemination is also important. Once we are able to 
offer an accurate and appropriate visualization tool to 
experts, with the correct graphical form, NPR for example, 

a visualization tool for the general public is possible.  
The collected data on site and photogrammetry can be used 
both to extract relevant knowledge, and to produce a fac-
simile of the site. Even if this approach does not generate 
specific archaeological knowledge, it offers the possibility 
to ‘visit’ an unreachable archaeological site. This can be an 
interesting feature for the general public, but of course it 
also allows experts from around the world to have access to 
an exceptional underwater archaeological site by means of a 
high resolution and accurate 3D modelling. We also propose 
to that users visualize and explore an archaeological site 
using Virtual Reality (VR) technology. This visualization is 
made of both photorealistic and semantic representations of 
the observed objects including amphorae and other archaeo-
logical material. A user can freely navigate the site, switch 
from one representation to another, and interact with the 
objects by means of dedicated controllers. The different rep-
resentations that are visualized in the tool, can be seen as 
queries mixing geometry, photorealistic rendering, and 
knowledge (for example: display the amphorae colorized by 
type on the site).

Although software rendering packages such as Unity, 
Sketchfab and Unreal Engine, or APIs such as OpenVR, HTC 
Vive, SDK already exist, we have chosen to develop our own 
solution.

Fig. 9.5  A part of Xlendi 
centered on a grind stone with 
a starfish (left), and the sketch 
of the image based on a CNN 
(right)

Fig. 9.6  Some amphorae on 
Xlendi site. On the left, an 
NPR image made using the 
called Suggestive Contour 
Software (DeCarlo et al. 
2003). On the right, the same 
portion of Xlendi site mesh 
model, acquired with 
photogrammetric survey
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The work presented here is based on the Arpenteur proj-
ect (2018; Drap 2017) that provides geometrical computa-
tion capabilities, photogrammetric features and 
representation and processing of knowledge within ontolo-
gies. We chose to use jMonkeyEngine (jME 2018) as a basis 
for our development, which is a game engine made espe-
cially for modern 3D development, as it uses shader tech-
nology. 3D games can be written for a large set of devices 
using this engine. jMonkeyEngine is written in Java and uses 
Lightweight Java Game Library (LWJGL 2018) as its ren-
derer. Indeed, it provides high level functionalities for scene 
description while retaining a power of display comparable 
to native libraries.

A first experiment of such a tool was presented during a 
CNRS symposium in Marseilles in May 2017. The innova-
tive exhibition (IE 2018) can be seen on Fig. 9.8. This dem-
onstrator enables the display of an underwater archaeological 
site in Malta. Inside the demonstrator, the user can view the 

site in a photorealistic mode. It can even simulate underwater 
conditions using a filter and for example visualize the site as 
if it was underwater or as if it was outdoors. The user can 
also display the cargo of the wreck as described by the 
archaeologists and mix the photorealism and the NPR. This 
demonstrator will be enhanced for visualizing the result of 
ontology-based queries and allowing an archaeologist to for-
mulate and verify hypotheses with the impression of being 
on the site. For the general public, the immersion capacity 
can be used to visit inaccessible sites.

9.7	 �New 3D Technologies: The Plenoptic 
Approach

In traditional photogrammetry, it is necessary to completely 
scan the target area with many redundant photos taken from 
different points of view. This procedure is time consuming 
and frustrating for large sites. For example, thousands of 
photos have been captured to cover Xlendi shipwreck. 
Whereas many 3D reconstruction technologies are devel-
oped for terrestrial sites relying mostly on active sensors 
such as laser scanners, solutions for underwater sites are 
limited. The idea of plenoptic camera (also called lightfield 
camera) is to simulate a 2D array of aligned tiny cameras. 
In practice, this can be achieved by placing an array of a 
micro-lenses between the image sensor and main lens as 
shown in Fig. 9.9. In this way, the raw image obtained con-
tains information about the position and direction of all 
light beams present in the image field, so that the scene can 
be refocused at any depth plane, but it is also possible to 
obtain different views from a single image after capturing. 
The first demonstration of this technique was published by 
Ng et al. (2005).

Fig. 9.7  The Xlendi wreck in Malta: (top left) orthophoto, (top right) 
hand-made design by Gina De Angelis (University of Rome III, Rome, 
Italy) on the orthophoto. (bottom left) NPR generated from the 3D 
mesh. (bottom right) A sketch of Xlendi created by the CNN

Fig. 9.8  Immersive experience on the Xlendi wreck for general 
public
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In a plenoptic camera, pairs of close micro lenses can be 
considered as a stereo pair under the condition of having 
parts of the scene appearing in both acquired micro images.1 
By applying a stereo feature points matching to those micro 
images it is possible to estimate a corresponding depth map. 
It is essential during image acquisition to respect a certain 
distance to the scene to remain within the working depth 
range. This working depth range can be enlarged but at a 
price of depth levels accuracy.2 In practice, the main lens 
focus should be set beyond the image sensor, in this case, 
each micro lens will produce a slightly different micro image 
for the object with respect to its neighbours. This allows the 
operator to have a depth estimation of the object.

Recent advances in digital imaging resulted in the devel-
opment and manufacture of high quality commercial plenop-

1 There is no common term in literature used for the projection of a 
single micro lens. In this book, we refer to it as micro image.
2 Despite the usage of subpixel accuracy, recovered depth is roughly 
discrete.

tic cameras. The main manufacturers are Raytrix (2017) and 
Lytro (Lytro 2017). While the latter is concentrating on 
image refocusing and off-line enhancement, the first is focus-
ing on 3D reconstruction and modelling. The plenoptic cam-
era used in this project is a modified version of Nikon D800 
by Raytrix. A layer that is composed of around 18,000 
micro-lenses is placed in front of the 36.3 mega pixels 
CMOS original image sensor. The micro-lenses are of three 
types, which differ in their focal distance. This helps to 
enlarge the working depth range, by combining three zones 
that correspond to each lens type; namely; near, middle and 
far range lens. The projection size of micro lens (micro 
images) can be controlled by changing the aperture of the 
camera. In our case, the maximum diameter of a micro image 
is around 38–45 pixels depending on lens type. Figure 9.10 
illustrates two examples of captured plenoptic images show-
ing micro images taken at two different aperture settings.

Our goal is to make this approach work in the marine 
environment so that only one shot is enough to obtain a prop-
erly scaled 3D model, which is a great advantage underwater, 

Fig. 9.9  Diagram showing 
plenoptic camera internal 
design

Fig. 9.10  Two examples of 
plenoptic zoomed images 
showing micro images. Taken 
at two different aperture 
settings (f/13 left, f/9 right) in 
the presence of a white filter
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where diving time and battery capacity are limited. The pro-
cedure to work with a plenoptic camera is described in the 
following. Figure 9.11 shows examples of plenoptic under-
water images and reconstructed 3D model.

Micro-lens Array (MLA)—Calibration step: computes the 
camera’s intrinsic parameters, which include the position and 
the alignment of the MLA. The lightfield camera returns an 
uncalibrated raw image containing the pixels’ intensity values 
read by the sensor during shooting. The position of each indi-
vidual micro lens is to be identified in the raw image. To local-
ize the exact position of each the micro lens in the raw image, 
a calibration image is taken using a white diffusive filter gener-
ating continuous illumination to highlight the edges and 

vignetting of each micro lens as shown in Fig. 9.10 (left). Using 
simple image processing techniques, it is possible to localize 
the exact position of each micro-lens which corresponds to its 
optical centre up to subpixel accuracy. In the same way, by tak-
ing another calibration image after changing the aperture of the 
camera so that the exterior edges of micro-lens are touching 
(Fig. 9.10), we could detect the micro-lens outer edges by cir-
cle fitting with the help of the computed centres positions. 
Hence, for any new image without the filter it is possible to 
extract micro images easily. Finally, a metric calibration must 
also be performed to convert from pixels to metric units. Here, 
the use of a calibration grid enables to determine accurately the 
internal geometry of the micro-lens array. The calibration 

Fig. 9.11  Underwater images taken using a plenoptic camera (first row), it shows also the repetition of an edge in the scene which is essential to 
perform the depth estimation. The processed total focus image (second row) and reconstructed 3D models (third row)
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results provide many parameters: intrinsic parameters, orienta-
tion of MLA, tilt of the MLA with respect to image sensor as 
well as distortion parameters.

MLA Imaging—each micro lens will produce an image 
for a small part of the scene, from the opposite side, every 
part of the captured scene is projected to several micro lenses 
at different angles. Hence, it is possible to produce a synthe-
sized image with a focus plane considered at some distance. 
This is done by defining for each point in the object space the 
micro lenses where a certain point is projected. By selecting 
the projected points in each micro image, the average pixel 
value is considered the final pixel colour in the focused 
image.

Total focus processing—in the used plenoptic camera 
from Raytrix (this holds also for other brands such as Lytro) 
there are three types of micro lenses with different focal 
throughout the MLA. Each type of micro lens is considered 
as a sub-array and it has certain depth of focus. So that the 
three depths of focus associated to the three types are added 
together for more depth range. Here, it is possible to recon-
struct a full focus image with a large field of depth using the 
all types of lenses to compute a single sharp image. For more 
details on the total focus process, we refer to Perwass and 
Wietzke (2012).

Depth map computation—a brute force stereo points 
matching is performed among neighbouring micro-lenses. 
The neighbourhood is an input parameter that defines the 
maximum distance on the MLA between two neighbouring 
micro-lenses. This process can be easily run in parallel. This 
is achieved using Raytrix RxLive software which relies 
totally on the GPU.  The total processing time does not 
exceed 400 milliseconds per image. Next, using the com-
puted calibration parameters, each matched point is triangu-
lated in 3D in order to obtain sparse point cloud.

Dense point cloud and surface reconstruction—in this 
step, all pixel data in the image are used to reconstruct the 
surface in 3D using iterative filling and bilateral filtering for 
smoother depth intervals.

9.8	 �Conclusions

This chapter addresses a number of relevant problems 
related to the acquisition, analysis, and dissemination of 
archaeological data from underwater contexts. Underwater 
archaeology is expensive and computers are streamlining its 
processes and, perhaps more importantly, promise to 
increase the accuracy of the recording process and make it 
available to a wider number of scholars. This trend is chang-
ing the enduring individualistic paradigm and pushing 
archaeology to a team-based discipline, where knowledge is 
acquired and narratives are constructed in a continuous, 
iterative process, more similar to that of the hard sciences. 

The circulation of primary data is a fundamental step in this 
trend, expected to transform archaeological interpretations 
into something closer to community projects, where narra-
tives are constructed and deconstructed in a much more 
exciting and dynamic process than the traditional ones, 
where publications often took decades to appear. We have 
presented several techniques that have the potential to make 
successful underwater archaeological surveys quicker, 
cheaper, and more accurate.

Data acquisition and processing using photogrammetry 
allow the capture of an impressive amount of underwater site 
features and details. The representation of photogrammetry 
data using ontologies has two main benefits. The first is to 
facilitate data sharing between researchers with different 
backgrounds, such as archaeologists and computer scientists. 
The second is to improve and expand data analysis and to 
identify patterns or to generate different statistics using a 
simple query language that is close to natural language. The 
proposed set of tools also allows researchers to create 
sketched images that are close to what is commonly used and 
produced by archaeologists. The proposed automatic detec-
tion and recognition method, using deep learning, promises 
to be tremendously useful, particularly at larger sites, given 
the amount of effort it saves. Our experiment with plenoptic 
cameras are is one of few attempts found in literature so far 
to apply this technique to underwater archaeology and 
appears fruitful. This is an avenue of research that we intend 
to pursue in the near future.

Finally, using virtual reality to visualize the 3D data has 
produced a countless number of applications, both for ped-
agogical purposes and as a means to share archaeological 
discoveries with the public, inviting a wider audience to 
participate in the production process, and promoting and 
raising the awareness of the underwater heritage. Survey 
and representation are always guided by intentions, like 
archaeological excavation: we try to find, or find out, to 
measure, and record. This human action is based on 
choices and selections, even if they appear to be uncon-
scious. The goal is not objectivity, but how we can guide 
and make those choices and selections explicit. Our answer 
is to enlarge the knowledge base using several resources: 
ontologies to create relations between measurable objects 
and concepts, improve analysis and sharing knowledge, 
and NPR and Deep Learning to improve object recognition 
and representation of artefacts.
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