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Abstract We derive the topological derivatives
of the homogenized coefficients associated to a pe-
riodic material, with respect of the small size of a
penetrable inhomogeneity introduced in the unit cell
that defines such material. In the context of an-
tiplane elasticity, this work extends existing results
to (i) time-harmonic wave equation and (ii) second-
order homogenized coefficients, whose contribution
reflects the dispersive behavior of the material.
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Introduction Consider an elastic material oc-
cupying a 2D domain and characterized by pe-
riodic shear modulus µ and density ρ. The
unit cell Y has characteristic length `. Un-
der time-harmonic conditions, the antiplane dis-
placement u satisfies the wave equation:

∇ · (µ∇u) + ω2ρu = 0

For long-wavelength configurations (i.e. `� λ),
two-scale periodic homogenization of this equa-
tion in terms of ε = `/λ [4] leads to the equation
satisfied by the mean field U :

µ0 : ∇2U + ω2ρ0U

= −ε2
[
µ2 :: ∇4U + ω2ρ2 : ∇2U

]
+O(ε4),

where the leading-order and second-order ho-
mogenized coefficients (µ0, ρ0,µ2,ρ2) are con-
stant tensors and ∇kU stands for the k-th gra-
dient of U .

This study considers a periodic perturbation
of this material, whereby a penetrable inhomo-
geneity Ba, of size a and shape B, characterized
by contrasts (∆µ,∆ρ) is introduced at point
z ∈ Y (Fig. 1). Then, the leading-order ex-
pansion coefficients of (µ0, ρ0,µ2,ρ2) w.r.t. a,
namely their topological derivatives, are com-
puted, as in [3] for in-plane elastostatics.

Leading-order coefficients Let 〈·〉 = 1
|Y |
∫
Y ·

denote an average on the unit cell. The homog-
enized density ρ0 is defined by ρ0 = 〈ρ〉, so that

Figure 1: Perturbed periodic material

the perturbed coefficient ρ0a and the topological
derivative Dρ0 are exactly given by:

ρ0a = ρ0 + a2|Y |−1Dρ0; Dρ0 = |B|∆ρ.

The homogenized shear modulus µ0 is defined
by µ0 = 〈µ(I + ∇P )〉S, where I is the identity
tensor, the first cell function P [4] is the Y -
periodic and zero-mean vector-valued solution
of:

∇ · (µ(I + ∇P )) = 0 (1)

and the superscript ·S means symmetrization
w.r.t. all index permutations. Consequently,
µ0
a is computed as:

µ0
a = µ0 + 〈µ∇pa〉S + 〈χBa∆µ(I + ∇P a)〉S

where pa := P a−P is the perturbation of P .
The analysis of this perturbation is done by re-
formulating problem (1) and its perturbed coun-
terpart using domain integral equations [2]. With
the help of the adjoint state method, it leads to
the following leading-order expansion:

µ0
a = µ0 + a2|Y |−1Dµ0(z) + o(a2|Y |−1), (2)

with the topological derivative Dµ0 given by:

Dµ0(z) =
[
(I + ∇P ) ·A · (I + ∇P )T

]
(z)

and A(z) = A(B, µ(z),∆µ) is the polarization
tensor [1] associated to shape B and moduli
µ(z) and µ(z) + ∆µ. Under notational adjust-
ments, this result is similar to [3]. For homo-
geneous background materials, in which case
P = 0, it reduces to Dµ0 = A as shown by [1].
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Second-order coefficients The second-order
homogenized density is defined by ρ2 = 〈ρQ〉S,
where the second cell function Q is the Y -perio-
dic, zero-mean, tensor-valued solution of:

∇·(µ(P ⊗I+∇Q))

= −µ(I+∇P ) + (ρ/ρ0)µ0 (3)

Relying on the same integral equation frame-
work, and with careful analysis of the influence
of the source terms involving P a when adressing
the perturbed cell functionQa, we show that ρ2a
has an expansion of the same form as (2), with
its topological derivative Dρ2 given by:

Dρ2(z) =
[
(I + ∇P ) ·A ·

(
βI + ∇X̂[β]

)T
− (P ⊗ I + ∇Q) ·A ·∇β

−
(
Dµ0 − (Dρ0/ρ0)µ0

) 〈
ρ(β/ρ0)

〉
−Dρ0

(
(β/ρ0)µ0 −Q

) ]S
(z). (4)

The above expression features (i) various com-
binations of the previously computed cell solu-
tions and topological derivatives and (ii) two
new adjoint fields β and X̂[β] defined as the
(Y -periodic, zero-mean) solutions of:

∇·(µ∇β) = −(ρ− ρ0)
and ∇·(µ(βI+∇X̂[β])) = −µ∇β.

In particular, all the fields involved in (4) solve
problems posed on the unperturbed cell.

The second-order homogenized shear mod-
ulus is defined by µ2 = 〈µ(Q ⊗ I + ∇R)〉S in
terms of Q and a third cell function R. Once
again, an analysis of the problems satisfied by
R and Ra is conducted. As a result, µ2

a is
found to have an expansion similar to (2), and
its topological derivative Dµ2 (not shown here
for brevity) is expressed in terms of the cell solu-
tions (P ,Q,R) and the previously determined
topological derivatives (Dρ0,Dµ0,Dρ2).

Perspectives. The obtained expansions of the
homogenized coefficients are useful on their own
right, e.g. for computing quickly an approxima-
tion of the properties of a perturbed periodic
material for several trial inhomogeneity loca-
tions z without solving the new cell problems.
As an example, an approximation of µ0

a is ob-
tained by neglecting the remainder in (2), as
illustrated on Fig. 2 for a chessboard-like cell.

Figure 2: Relative error on shear modulus
µ0
a approximated by expansion (2) for an el-

lipsoidal inhomogeneity of semi-axes (a, 0.2a)
placed at z = (0.25, 0.25) in a chessboard-like
cell Y = [0, 1]2. In this case, since the medium
is locally homogeneous around z, the remainder
can be shown to be in O(a4) as observed.

However, as already intended in [3], the main
usefulness of such expansions occurs for opti-
mizing a periodic structure towards some de-
sirable property. Since they address the time-
harmonic case and the second-order homoge-
nized coefficients, our results should notably al-
low to tune the dispersive properties of the ho-
mogenized material, in particular the so-called
band-gaps (forbidden frequencies for which no
wave propagates through the structure).
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