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ABSTRACT

In this paper we propose to introduce the corrector schemas corresponding to the Baumgarte stabili-
sation into bond graph language. In a mechanical context, the Baumgarte stabilisation method aims at
controlling the violation of constraints present in a system. This corresponds to a regulation process
of the constraints with respect to the numerical perturbations. These perturbations stem from slight
errors in initial conditions and/or the propagation of round-off errors occuring during integration.

In order to incorporate the Baumgarte stabilisation method we add a block diagram to the bond
graph. It consists of a PID corrector in the case of holonomic constraint equations (figure A) and a PD
corrector in the case of non-holonomic constraint equations (figure B).

First we present roughly the Baumgarte stabilisation theory. Then we propose to augment the
multibond graph representation with a block diagram in which the stabilisation schemas, respectively
for holonomic and non-holonomic constraint equations, are included. Coupling the block diagram
to the multibond graph representation reveals to be an attractive way of synthesizing the use of the
Baumgarte stabilisation method. Finally we illustrate this with the academic example of a pendulum.
This underlines the role of this method in a strategy of modelisation with a view to simulation and

the equation generation mecanism.
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Figure A: Baumgarte stabilisation schema for holonomic Figure B: Baumgarte stabilisation schema for non
constraints holonomic constraints
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ABSTRACT

In this paper we propose to introduce the corrector schemas corresponding to the Baumgarte stabilisation into bond graph language. In
a mechanical context, the Baumgarte stabilisation method aims at controlling the violation of the constraints present in a system. This
corresponds to a regulation process of constraints with respect to the numerical perturbations. These perturbations stem from slight errors
in initial conditions and/or the propagation of round-off errors occuring during integration.

In order to incorporate the Baumgarte stabilisation method we add a block diagram to the bond graph. It consists of a PID corrector in
the case of holonomic constraint equations and a PD corrector in the case of non-holonomic constraint equations.

First we present roughly the Baumgarte stabilisation theory. Then we propose to augment the multibond graph representation with a block
diagram in which the stabilisation schemas, respectively for holonomic and non-holonomic constraint equations, are included. Coupling the
block diagram to the multibond graph representation reveals to be an attractive way of synthesizing the use of the Baumgarte stabilisation
method. Finally we illustrate this with the academic example of a pendulum. This underlines the role of this method in a strategy of

modelisation with a view to simulation and the equation generation mecanism.

1. INTRODUCTION

Concerning the mechanical system simulation, the dynamic
equations to be numerically resolved are most of the time
differential-algebraic equations (DAE). This feature raises the
problem of efficient simulation and depends on the simulation
model index (see e.g. [12] or [13] in the bond graph framework).

Beside the use of numerical integration methods used for
DAE, several solutions exist at the mathematical formulation
stage of the system to circumvent the numerical problems at-
tached to this type of equation. In the independant coordinate
formulations we can use, for example, the extraction method
(or coordinate partitioning) or the method based on a projection
matrix [10], [9]. This necessitates finding a set of independant
coordinates and expressing the dynamic equations in terms of
these coordinates. The algebraic equations are then used to de-
termine the dependant coordinates against the independant ones.

Conceming the dependant coordinate formulations, we can
use the method again based on a projection matrix but also
the Baumgarte stabilisation method or the penalty formulation
method [1], [11], [9], [2] when Lagrange multipliers are used
for setting up the equations of motion. The dependant coordi-
nate formulations consist of resolving simultaneously both dy-
namic and algebraic equations.

In this paper we deal with the Baumgarte stabilisation method
and the way it can be introduced into the multibond graph lan-
guage. Multibond graph notation enables the juxtaposition of
energy domains to be represented in bond graph formalism in
a concise manner. This notation has been introduced by Bon-
derson [3] and it has been complety formalized by Breedveld
[5] [6]. It is well suited for the three dimensional domain of
mechanical systems.

In considering the Baumgarte stabilisation method through
bond graph language, the aim of this paper is to clearly show
what is the issue of this technique and how it is implemented
practically. First we present the Baumgarte stabilisation method

in the context of mechanical systems. Then we propose the in-
troduction of the corresponding schemas in the multibond graph
representation. Finally we illustrate this representation through
the academic example of a pendulum. This shows how the dy-
namic equations integrating this technique are derivated from
the exploitation of the causal bond graph.

2. BAUMGARTE STABILISATION METHOD

We present here the method introduced by Baumgarte in the
context of mechanical systems. Let us consider the following
Lagrange equations in terms of generalized coordinates g and
Lagrange multipliers A" relative to holonomic constraints and
A" relative to non holonomic constraints:

0 M

where F stems from the dynamic terms, (@ represents the

generalized forces, [@2]:[%] and [@g“]:[%}.

The numerical resolution of (1) consists of differentiating the
constraint equations with respect to time in order to obtain con-
traint equations in terms of acceleration. These latter are re-
solved together with the dynamic equations in terms of §, A"
and A" and then g is integrated twice to obtain ¢ and g.

Due to the derivation of the constraint equations, information
is lost about velocities and positions. A slight error in initial con-
ditions or the propagation of round-off errors occuring during
integration makes the solution diverge from the ideal solution.



Baumgarte proposed replacing the acceleration constraints by

(1)
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with [a], [3] and [v] diagonal constant matrices ([«] and [v]
are positive definite).

These corrector schemas enable the solutions @ of the con-
straints to be asymptotically stable towards zero. The element
Br of [3] can be interpreted as the natural frequency and the
element %:_L as the damping coefficient of the k' equation so-
lution of (2). # can be interpreted as the time constant of the
k™ equation solution of (3). The choice of these parameters is
guided by the automatic control theory about the behaviour of
first and second order linear differential equations.

3. INTRODUCTION IN THE MULTIBOND
GRAPH REPRESENTATION

The Baumgarte stabilisation method has been presented by
Brix and Allirand [7] in the context of bond graph language.
In holonomic case they construct, beside the bond graph repre-
sentation of a system, a bond graph composed of the multiport
elements I, ©, and IR connected to a 1-junction array. This
1-junction array is associated to the constraints in terms of ve-
locity.

We disagree with this representation because it would mean
that power is involved in the Baumgarte stabilisation method. In
fact, the A-multiplier coefficients in the dynamic equations of (1)
have the same expressions as when the stabilisation technique is
not applied. So Baumgarte stabilisation method is concerned
only with kinematic constraints and in this sense, this is a signal
point of view. It consists of a regulation process of constraints
with respect to the numerical perturbation.

Equations (2) and (3) act implicitly on the A-multipliers in
order for the generalized coordinate trajectories to be brought
back and maintained in the subspace defined by the constraint
equations during numerical integration.

In the bond graph representation, constraint equations are
available in a kinematic form i.e. ﬁjh =0 and $""=0, respectively
for holonomic and non-holonomic equations. They can be es-
tablished from flow balances on O-junction arrays as displayed
on the right-hand side of figure 1. In this figure we see clearly
that the mn + mnn constraint equations stem from a transforma-
tion of the n generalized velocities. Inversely the n generalized
forces @, + @, ,, = [®4]" A"+ [#2*]" A™" in the dynamic
equations corresponding to these constraints result from the dual
transformation of the my + mnn A-multipliers. Here we fully
use the synthetic feature of multibond graph notations.

We will now look at how the Baumgarte stabilisation schemas
can be integrated into the multibond graph representation. Since
it is a signal point of view the multibond graph representation is
augmented with a block diagram corresponding to the regulation
process of constraints.

Holonomic constraint equations (2)

The holonomic constraint equations in kinematic form éh =
0 stem from flow balances on O-junction arrays. The effort
vector attached to this O-junction array corresponds to a A-
multiplier A", Bos [4] and Van Dijk [13] have emphasized the
presence of the A-multipliers by adding an effort source ona 1-
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Figure 1: Multibond graph representation showing the con-

straint equations
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Figure 2: Artificial bond graph representation of Lagrange mul-
tiplier

junction, itself attached to the 0-junction corresponding to the
constraint (figure 2).

One must be aware that this representation is purely artifi-
cial in a model because A-multipliers physically exist indepen-
dently on any effort source. They are simply efforts attached
to O-junctions. However this representation has the advantage
of clearly showing how to handle problems formulated with the
Lagrange multiplier method (see section 4).

Concerning Baumgarte Stabilisation we obtain benefits from
this representation and introduce the control schema through the
block diagrams of figure 3. The output of this control schema
corresponds to the first member of equations (2). Then the can-
cellation of this output is resolved in terms of the A-multipliers.
This characterizes the modulation of the multiport effort source
corresponding to these multipliers. For holonomic constraints
the Baumgarte stabilisation consists of a PID action on these
constraints.

Non-holonomic constraint equations (3)

In the non-holonomic case the constraint equations @"" = 0
are also obtained from flow balances on O-junction arrays. We
use here the same type of multibond graph representation as for
the holonomic case. However, since the constraint equations
are not integrable, the stabilisation schema corresponds to a PD
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Figure 3: Baumgarte stabilisation schema for holonomic con-
straints
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Figure 4: Baumgarte stabilisation schema for non holonomic
constraints
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Figure 5: Sketch of a pendulum

action on these constraints (figure 4).

4. ACADEMIC EXAMPLE: A PENDULUM

We will illustrate here the application of what has been pre-
sented previously when the Baumgarte stabilisation method is
used on a very simple example. It shows the mecanism of equa-
tion generation from the causal bond graph. The figure 5 system
is a pendulum which consist of a point mass m located at the
end of a massless rigid link of length 1. The pendulum is in ro-
tation about the point 0. We look at the system in terms of the
absolute coordinates (x, y) of the point mass as the generalized
coordinates.

The pendulum described above has one degree of freedom.
So there is a constraint equation between the generalized coor-
dinates x and y of the form:

w+yt =1 @)

This constraint equation is holonomic. The kinematic form
of this constraint is simply given by differentiating with respect
to time the equation (4):

2w+ 2yy =0 (5)

For the model and the generalized coordinates chosen, the
figure 6 bond graph representation shows two storage elements
of type I corresponding to the moving mass on the axes & and
7 and an effort source for the gravity action on the mass. The
kinematic form (5) of the constraint equation and the associated
A-multiplier correspond respectively to the flow balance and the
effort on the O-junction. Moreover the modulated transform-
ers (2 and 2y) require the presence of integrators from the 1-
junctions corresponding to the flows # and y. The associated
initial conditions are respectively xo and yo. Due to the con-
straint equation these initial conditions are not independent and
must satisfy equation (4).
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Figure 6: Bond graph representation of a pendulum

Classical Lagrange equations

We now proceed with the causality assignment by choosing
both storage elements in preferential integral causality. Since
they are not independant we use the Lagrange multiplier method
to derive the system of equations and then install an artificial
effort source to point out the presence of the A-multiplier fig-
ure 7 on the O-junction. On the signal path modulating the ef-
fort source A, we install a differentiation block to emphasize the
mecanism of the entire set of equation generation.

The corresponding Lagrange equations (6) are derived by ex-
pressing (i) the accelerations & and y versus the efforts p, and
Py and (ii) these latter efforts in terms of A, the generalized co-
ordinates. These relations are obtained along the causal path in
the figure 7 causal bond graph.

f:%ﬁ;:—%A
i o ©

We now express the input signal & of the modulated source. It
results from the differentiation with respect to time of the kine-
matic constraint & and is expressed in terms of both the gener-
alized coordinates and velocities (equation 7). The expression
of & is obtained by following the algebraic relations in terms of
flow along the causal paths on the figure 7 causal bond graph.

&= %(23:5; +2yy) = 20 + 2y + 28 + 29° (D)

The effort A imposed by the (artificial) modulated effort
source is such that the constraint equation (in acceleration form)
®=0 must be verified (equation 8). In this equation the accel-
erations are replaced by their expressions (6) in order to obtain
an implicit algebraic equation in terms of A. This equation must
then be resolved to get A in terms of the generalized coordi-
nates and velocities. All the symbolic operations described in
this paragraph characterize the modulated effort source of figure
7.
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Figure 7: Causal bond graph representation when using A-
multiplier method

2wF + 2y 4+ 28° +29° =0

2z 2y <0 .2
2r(—— — —— - et
< 2z( A) + 2y(g A)+22°+2y" =0
m .2 2
& A=———(yg+z"+ 8
23:2+2y2(yg &4y ®)

Finally we re-introduce the expression found for A (equation
8) in the dynamic equations (6) to find a set of explicit ordi-
nary differential equations of second order, in terms of the gen-
eralised coordinates z and y (equations 9).
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Lagrange equations using Baumgarte stabilisation

The introduction of the Baumgarte stabilisation method leads
to the causal bond graph representation in figure 8. The differ-
entiation block of figure 7 has been replaced by the corrector
schema of the method. The input of the modulated effort source
is now identical to the first member of equation (2). We men-
tion the initial condition -1 indicated for the integrator block of
the corrector. This corresponds to the constant term in the equa-
tion (4) geometric constraint. It will be the subject of further
discussion in the conclusion below.

The set of equations (6) and (7) are the same when derived
from the causal bond graph of figure 8. Only the input of the
modulated effort source has changed. This effort source is now
characterized by the implicit equation (10). It is resolved to
obtain A in terms of the generalized coordinates and velocities
(equation 11). We note here the importance of having indicated
the initial condition -12.
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Figure 8: Causal bond graph representation when using the
Baumgarte stabilisation method

b+2ad+32®=0
(2 2y .2 .2
& 2x( m/\)+2y(g m)\)+23, +29° +
202z + 2uyy) + B2 + > —-F) =0  (10)

& [yg + 3° + 9 + 2a(zd + yy) +

m
= 2x? 4+ 2y?
Bz 4+ y* = 1%)/2] (11)

Finally the set of dynamic equations using the Baumgarte sta-
bilisation method is obtained by substituting A in the equations
(6) with its expression previously obtained in the equation (11):

& = —Tslyg + 4 + & + 20(zd + i)+
B (2® + 7 = 17)/2]
§=g— piprlve+ &% + 5 + 20(xd + yy)+
A(=* +y* = 17)/2]
(12)

5. CONCLUSION

This paper has no more pretention than presenting the Baum-
garte stabilisation method through the framework of bond graph
language. Bond graph has revealed itself to be an attractive for-
malism for understanding the issue of this method and the prac-
tical implementation of the mecanism of equation generation.

The Baumgarte stabilisation method has been presented in
a mechanical context with the Lagrange equation formalism.
There is absolutely no restriction for a generalisation in other
domains. In fact the pluridisciplinarity feature of the bond graph
language enables the Baumgarte stabilisation method to be ap-
plied in other physical fields. Moreover the formulation can be
entirely dualised in the sense of power variables. In this way the
corrector schemas (figure 3 or 4) can modulate a multiport flow
source. This multiport flow source would then be attached to a
1-junction array (with the go-between of an O-junction array)



corresponding to effort constraint equations. The transdisci-
plinarity and the duality of the Lagrange equation formalism us-
ing the A-multiplier method have been pointed out by Van Dijk
[13]. The Baumgarte stabilisation method presented here is just
an extension of these formulations. Also the Baumgarte stabil-
isation method may be used in combination with the Hamilton
equation formalism using the Lagrange multiplier method [8].
In both cases (Lagrange or Hamilton equation formalism) the
type of constraint equations i.e. holonomic or non holonomic
must be identified in order to apply the appropriate stabilisation
schemai.e. respectively figure 3 or 4, The constraint equation
type can be investigated through the transformers associated to
the transformations of generalized velocities to obtain the kine-
matic constraints (figure 1). The method of finding out the type
has been presented in [8].

The introduction of the Baumgarte stabilisation method in the
bond graph language shows the nature of this method i.e. a sig-
nal point of view. This is to be distinguished from the nature
of bond graph formalism itself which has an energetic point of
view. Moreover we mentioned in the introduction the penalty
formulations. Together with the method based on the singular
perturbation formulation (see [15], [14] in the bond graph con-
text) and in contrast to the Baumgarte stabilisation method, they
belong to the category of energetic methods for mathematically
reformulating the system of equations. The application of these
methods results in an augmentation of the bond graph represen-
tation with power bonds and bond graph elements instead of a
block diagram [8]. These energetic methods consist in relaxing
the contraints in the system by adding fast dynamic modes.

Finally we would like to point out some important observa-
tions resulting from the introduction of the Baumgarte stabilisa-
tion method in bond graph language. Equation generation has
showed the necessity of symbolically manipulating the relations
obtained from causal bond graph exploitation. We suggest that
a serious effort must be made to integrate symbolic methods in
software accepting bond graph for the model input. Furthermore
we have noticed the need for information not displayed a priori
in bond graph representation. This information is the integrated
forms of the kinematic constraints in the holonomic case. This
generally results in the loss of an integration constant. In the
example of the pendulum (section 4) this constant is -1* and ap-
pears neither in the figure 6 bond graph nor in the figure 7 bond
graph. This information is only present in the figure 8 bond
graph due to the integrator of the stabilisation schema. How-
ever outside the Baumgarte stabilisation context nothing gives
this information in bond graph representation. This is important
because it shows that the initial conditions xo and yo cannot be
chosen independently. We alert bond graph modellers to this
observation and propose to take this feature into account in the
bond graph representation, for example, as follows. On the 0
junction corresponding to a kinematic constraint we can attach
an arrow with the initial condition for the geometric constraint
as it is realized for integrators (figure 9). But the question is still
open and something better can possibly be found.

Figure 9: Initial condition for a geometric constraint
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