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Abstract

Clément (2013) derived a second order ordinary differential equation (ODE)

satisfied by the free-surface Green function in the frequency domain. Since

then, similar ODEs for the gradient of the Green function have been developed.

Unfortunately, all these ODEs degenerate at zero frequency. Therefore, it is

not possible to initialize the numerical solution of these ODEs from this zero

frequency. Alternative methods based on the shifting of the initial condition to

frequencies strictly greater than zero have then been developed.

The present paper describes an alternative approach to address this issue.

It involves a new function which is the solution of a modified ODE which can

be solved from the zero frequency.

Finally, comparisons with evaluations of the Green function using the classi-

cal direct integration method are provided. They show that the new ODE can

provide accurate estimates of the Green function.

Keywords: ordinary differential equation, Green function, frequency domain,

singularity

1. Introduction

Boundary element method (BEM)-based codes are widely used in the indus-

try and in academia to investigate wave structure interactions effects on marine
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structures. BEM codes rely on the frequency domain linear free-surface poten-

tial flow theory which involves the free-surface Green function and its gradient.5

An important part of the numerical burden in BEM codes relates to the numer-

ous numerical evaluations of the free-surface Green function. Indeed, they must

be evaluated for a large set of geometrical configurations and for a wide range

of frequencies to assess the structure response across all possible incident wave

conditions.10

Various analytical formulations and algorithms for the calculation of the free-

surface Green function and its derivatives have been proposed. Pioneering work

was performed by Noblesse [1, 2, 3] and Newman [4, 5, 6] using sub-domains

methods with series expansions and polynomial approximations. Double Cheby-

shev polynomials approximations methods with special functions were proposed15

by Chen [7, 8] and Wang [9]. Other efficient methods include tabulated functions

with Lagrange interpolations [10], approximation methods with coordinates-

transformation [11, 12], eigen-function expansion [13], semi-analytical method

based on a singularity subtraction technique [14], multipole expansion method

[15]. Recently, Wu et al. [16, 17] proposed a global approximation based on20

Noblesse’s method [2, 3]. It uses a simple approximation involving elementary

functions for the local flow component. It does not required dividing the com-

putational domain into multiple sub-domains. All those methods were recently

reviewed in [18].

The analytical formulations typically include a source term, an image term,25

and a singular integral. The algorithms implemented in most common BEM

softwares (WAMIT [19], HydroStar [20] or NEMOH [21] for example) are based

on integral formulations.

A different approach was introduced by Clément [22] who showed that the

frequency domain Green function is the solution of a second order ordinary dif-30

ferential equation (ODE) of the frequency variable. Thus, the Green function

can be evaluated by integrating numerically this ODE, provided that initial con-

ditions are available. Since then, similar ODEs for the gradient of the frequency

domain Green function have been established (see [23] and [24]).
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The remaining challenge for the evaluation of the frequency domain Green35

function and its gradient using ODEs is the evaluation of the initial conditions.

Indeed, despite the values of the Green function and its first derivatives are

known for ω = 0, the method cannot be started from that point because the

ODEs degenerate for ω = 0. Thus, in [24], the ODEs are initialized at the non-

zero frequency ω = 1. A power-series expansion method is used to solve the40

ODEs for ω < 1 while a trigonometrically fitted block Numerov-type method is

used for ω ≥ 1. Note that it is not explained in [24] how the initial conditions

are obtained for ω = 1. In [23], initial conditions for arbitrary values of ω were

obtained using methods relying on the numerical approximations of the singular

integral.45

In this paper, we present an alternative method which enables using ω = 0

for the initial conditions. The ODEs for the Green function and its derivatives

are recalled in section 2. The singular behaviour for ω = 0 is highlighted.

In section 3, the singularity is extracted and a modified ODE is introduced.

Numerical results and comparisons with direct numerical integration are shown50

in section 4. Finally, a conclusion is given in section 5.

2. ODEs for the Green function and its derivatives

In this study, only the infinite water depth free-surface Green function is

considered. The coordinates and variables are depicted in Figure 1. The mean

free surface level is located at the plane z = 0. The vertical axis z points55

upwards. The gravity constant is denoted g. The source point P (xP , yP , zP )

and the field point M(xM , yM , zM ) are both lying on or under the free surface

(zP ≤ 0, zM ≤ 0). The image source point P ′(xP , yP ,−zP ) is the mirror of the

source point P with respect to the mean free surface. The horizontal distance

between the source point P and the field point M is denoted by r. The vertical60

distance between the image source point P ′ and the field point M is −Z. The

distance between the source and field points is denoted by R and the distance

between the image source point and the field point is R1 =
√
r2 + Z2. The
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angle θ is defined by cos θ = −Z/R1 and sin θ = r/R1. The relations between

the coordinates are given by:65

r =
√

(xM − xP )2 + (yM − yP )2

Z = zM + zP

R =
√

(xM − xP )2 + (yM − yP )2 + (zM − zP )2

(1)

Figure 1: Definition of source point (P), field point (M) and other notations

2.1. ODEs with nondimensional original variables

The wave frequency is denoted ω and the time dependent factor of the com-

plex potential is e−iωt. The frequency domain Green function G∞ can be writ-

ten:

−4πG∞(r, Z, ω) =
1

R
− 1

R1
+G(r, Z, ω) (2)

with70

G(r, Z, ω) = 2PV

∫ ∞
0

k

k − k0
ekZJ0(kr)dk + 2iπk0e

k0ZJ0(k0r) (3)

where k0 = w2/g is the wave number and J0(·) is the Bessel function of the first

kind and zero order.

Let us consider the nondimensional Green function Ḡ∞ = G∞L. Let: R̄ =

R/L, R̄1 = R1/L, r̄ = r/L, Z̄ = Z/L, k̄0 = k0L = ω2L/g = ω̄2, k̄ = kL, Ḡ =
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GL where L denotes a reference length. The non-dimensional Green function75

has the same form as the Green function with dimensional variables:

−4πḠ∞(r̄, Z̄, ω̄) =
1

R̄
− 1

R̄1
+ Ḡ(r̄, Z̄, ω̄) (4)

with

Ḡ(r̄, Z̄, ω̄) = 2PV

∫ ∞
0

k̄

k̄ − k̄0
ek̄Z̄J0(k̄r̄)dk̄ + 2iπk̄0e

k̄0Z̄J0(k̄0r̄) (5)

The ODEs for the nondimensional Green function and its derivatives can be

written [23]:

ω̄2

4
Ḡω̄ω̄ − ω̄(ω̄2Z̄ +

3

4
)Ḡω̄ + (ω̄4(r̄2 + Z̄2) + ω̄2Z̄ + 1)Ḡ =

2(1 + Z̄ω̄2)

(r̄2 + Z̄2)1/2
(6)

ω̄2

4
Ḡr̄ω̄ω̄− ω̄(ω̄2Z̄+

7

4
)Ḡr̄ω̄ +(ω̄4(r̄2 + Z̄2)+3ω̄2Z̄+3)Ḡr̄ =

−6r̄(1 + Z̄ω̄2)

(r̄2 + Z̄2)
3/2

(7)

ω̄2

4
ḠZ̄ω̄ω̄−ω̄(ω̄2Z̄+

7

4
)ḠZ̄ω̄+(ω̄4(r̄2+Z̄2)+3ω̄2Z̄+4)ḠZ̄ =

−4Z̄(2 + Z̄ω̄2) + 2r̄2ω̄2

(r̄2 + Z̄2)
3/2

(8)

For ω̄ = 0, the values of the Green function and its first gradient can be obtained80

from equation (5). They are given by:

Ḡ =
2

R̄1
, Ḡω̄ = 0 (9a)

Ḡr̄ =
−2r̄

R̄3
1

, Ḡr̄ω̄ = 0 (9b)

ḠZ̄ =
−2Z̄

R̄3
1

, ḠZ̄ω̄ = 0 (9c)

It can be observed that for ω̄ = 0, equations (6),(7) and (8) degenerate into

zero order equations. Thus, they cannot be used to obtain the second derivatives
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of the Green function for that frequency. This singularity prevents using ω̄ = 085

as the initial condition for the ODEs.

The ODEs apply both to the real and imaginary part of the Green function.

However, the imaginary part can be expressed analytically [18], [6], [2]. Thus, in

the following, we shall focus only on the evaluation of the real part of the Green

function. Moreover, the .̄ on top of the variables will be omitted as hereafter we90

only discuss the nondimensional Green function.

2.2. The singularity of the Green function for ω = 0

The difficulty to use ω = 0 as the initial condition for the ODEs arises not

only from the fact that they degenerate for that frequency but also because of

the singular behaviour of the Green function for ω = 0.95

Let us recall the modified Haskind representation of the Green function [25],

[26]:

G(r, Z, ω) =
2

R1
− πω2eω

2Z [H0(ω2r) + Y0(ω2r) +
2

π

∫ 0

Z

e−ω
2t

√
t2 + r2

dt] (10)

where H0(·) denotes the Struve function as defined by Abramowitz and Stegun

[27]. By using a Taylor expansion, the Green function can be rewritten:

G(r, Z, ω) =
2

R1
− 2ω2 ln(ω2)− 2ω2(γ + ln(

r2

2(Z +R1)
)) +O(ω4) (11)

where γ is the Euler’s constant.100

Let us now differentiate twice this last equation to obtain the second deriva-

tive of the Green function as function of ω. One can show that for ω → 0,

∂2G/∂ω2 → −8 lnω. Thus, the second derivative of the Green function tends

to infinity for ω = 0.

2.3. ODEs with nondimensional natural variables105

In [23], ODEs as function of the natural variables (µ,$) were introduced.

The natural variables are defined from the original variables through the change
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of variables (r, Z, ω)↔ (R1, µ,$):


r

Z

ω

⇒


R1 = (r2 + Z2)1/2

µ = −Z/(r2 + Z2)1/2 = −Z/R1

$ = ω(r2 + Z2)1/4 = ω
√
R1

(12)


R1

µ

$

⇒


r = R1

√
1− µ2

Z = −µR1

ω = $/
√
R1

(13)

Note that as Z has values in [−∞, 0] and r has values in [0,∞], the range of

possible values for µ is limited to [0, 1].110

The set of ODEs as function of the natural variables are [23]:

1

4
$2G̃$$ +$(µ$2 − 3

4
)G̃$ + ($4 − µ$2 + 1)G̃ = 1−$2µ (14)

1

4
$2G̃r$$+$(µ$2− 7

4
)G̃r$+($4−3µ$2+3)G̃r = −3

√
1− µ2(1−µ$2) (15)

1

4
$2G̃Z$$+$(µ$2− 7

4
)G̃Z$+($4−3µ$2 +4)G̃Z = 2µ(2−$2µ)+(1−µ2)$2

(16)

with G(r, Z, ω) = 2/R1G̃(µ,$).

The initial conditions for $ = 0 as function of the natural variables can be

obtained according to (9) are:

G̃ = 1, G̃$ = 0 (17a)

G̃r = − r

R1
, G̃r$ = 0 (17b)

G̃Z = − Z

R1
, G̃Z$ = 0 (17c)
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As for the case of the original variables, it can be observed that the ODEs115

degenerate for $ = 0. Thus, the ODEs as function of the natural variables

cannot be integrated from $ = 0 either.

2.4. Relations between the Green function and its spatial derivatives

The vertical derivative of the Green function can be obtained directly from

the Green function itself [18], [6], [2]. In the following, we show that the same120

applies to the horizontal derivative.

Let us recall the nondimensional time-domain free-surface Green function,

F∞(r, Z, t) [27], [28]:

−4πF∞(r, Z, t) = δ(t)

(
1

R
− 1

R1

)
+H(t)F (r, Z, t) (18)

with

F (r, Z, t) = 2

∫ ∞
0

J0(Kr)eKZ
√
K sin(

√
Kt)dK (19)

where t is the time variable, δ(·) is the Dirac delta function and H(·) is the125

Heaviside unit step function. The terms associated to the Dirac delta function

are often referred to the impulsive part of the Green function while the term

with the Heaviside unit step function is called the memory part.

F is solution of the following partial differential equation :

∂2F

∂t2
+
∂F

∂Z
= 0 Z ≤ 0;∀t ≥ 0 (20)

Using the change of variables (13) with τ = t/
√
R1, one can show:130

2F̃ττ + µτF̃τ − 2(1− µ2)F̃µ + 3µF̃ = 0 (21)

with F (r, Z; t) = 2R
−3/2
1 F̃ (µ, τ).

Applying the Fourier transform as in [22], one can show that the Green func-

tion as function of the natural variables is a solution of the partial differential

equation:

−µ$G̃$ − (2$2 − 2µ)G̃− 2(1− µ2)G̃µ = 2µ (22)

Thus, the derivative of the Green function G̃µ can be obtained from the135

knowledge of G̃ and G̃$.
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From G̃µ and G̃$, the horizontal derivative of G̃ can be obtained using:

G̃r = G̃µ
∂µ

∂r
+ G̃$

∂$

∂r
(23)

Recalling that G̃ = R1/2G, G̃$ =
√
R1/2Gω, the horizontal derivative of the

Green function as function of the original variables can be obtained by using:

Gr =
2

R1
G̃r −

r

R2
1

G (24)

Thus, equations (23) and (24) provide a way to evaluate the horizontal140

derivative of the Green function from the Green function itself without hav-

ing to solve an additional ODE.

3. A new ODE free of the singularity at the origin

3.1. Derivation

The ODEs (6, 7, 8, 14, 15, 16) can be written in a general form as follows:145

x2y′′ + (c21x
2 + c01)xy′ + (c40x

4 + c20x
2 + c00)y = c0 + c2x

2 (25)

where c21, c01, c40, c20, c00, c0, c2 are parameters independent on the variable x,

x ≥ 0. Note that x is the frequency variable, which is either ω or $ depending

on the considered ODE. y is the non-dimensional Green function or one of

its derivatives as function of the non-dimensional or natural variables. The

parameters are given for each equation in AppendixA.150

The initial conditions are:

y(0) = c0/c00 (26a)

y′(0) = 0 (26b)

According to (11), the asymptotic form for y when x is close to 0 is:

y(x) = c0/c00 + a1x
2 log x+ b1x

2 + o(x2) (27)
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with

a1 = −4, b1 = −2(γ + log(r2/(2(Z +R1)))), for G (28a)

a1 = 0, b1 = −4(
1

r
− r/(2R1(Z +R1))), for Gr (28b)

a1 = −2, b1 = log 2− γ − log(1 + µ), for G̃ (28c)

a1 = 0, b1 = µ
√

1− µ2/(R1(1 + µ)), for G̃r (28d)

The asymptotic form for the first derivative of y is:

y′(x) = a1x(2 log x+ 1) + 2b1x+ o(x) (29)

Let us define the new function z(x) as the difference of the original function155

y minus the two leading terms in (27):

z(x) = y(x)− c0/c00 − a1x
2 log x (30)

Thus, y(x) and its derivative are given by:

y(x) = z + c0/c00 + a1x
2 log x (31a)

y′(x) = z′ + 2a1x log x+ a1x (31b)

By introducing (31) into (25), one can show that z(x) is the solution of a

the following ODE:

x2z′′ + c(x)xz′ + d(x)z = x2f(x) (32)

with

c(x) = c21x
2 + c01 (33a)

d(x) = c40x
4 + c20x

2 + c00 (33b)

f(x) = −c40a1x
4 log x+ [−(2c21 + c20)a1 log x− c21a1 − c40c0/c00]x2 (33c)

+ [−(2 + 2c01 + c00)a1 log x− (3 + c01)a1 + c2 − c20c0/c00]

10



160

For the case y = G̃, the coefficients involved in the last bracket of f(x) are

c01 = −3, a1 = −2, c2 = −4µ, c20 = −4µ, c0 = 4 and c00 = 4 according to (14).

Thus, 2 + 2c01 + c00 = 0 and −(3 + c01)a1 + c2− c20c0/c00 = 0. It can be shown

that it is also the case for y = G, y = Gr and G̃r using (6), (7) and (15). f(x)

can then be rewritten:165

f(x) = −c40a1x
4 log x+ [−(2c21 + c20)a1 log x− c21a1 − c40c0/c00]x2 (34)

For x → 0, c(x) → c01 and d(x) → c00 according to equation (33) while

f(x)→ 0 according to equation (34).

Moreover, it can be noted that for x→ 0:

z(x) = b1x
2 + o(x2) (35a)

z′(x) = 2b1x+ o(x) (35b)

according to the asymptotic expression (30) of y(x). Thus, z(x) → 0 and

z′(x)→ 0 for x→ 0.

In comparison with the second-order ODE (25) for y(x), the second order170

ODE (32) for z(x) is of the same form on the left hand side. However, it has a

non-homogeneous term on the right hand side whose leading order is x4 log x for

x → 0. Therefore, in contrast to y′′(x), z′′(x) tends to a finite value for x → 0

(that is 0 according to equation (34)). The ODE for z equation (32) is free of

the singularity for x→ 0.175

3.2. Practical representation of the new ODE for its numerical integration

The direct application of a numerical integration scheme (e.g. Runge-kutta

(RK4)) for the ODE (32) remains difficult in practice because of the coefficient

x2 associated with z′′. Hereafter, we present a method to deal with this issue.

Let us assume that x 6= 0. The ODE (32) can be re-written as:180

z′′ + c(x)z′/x+ d(x)z/x2 = f(x) (36)
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Let us define the new variables (u, v) = (z′, z/x). Their derivatives are:

(u′, v′) = (z′′, u/x− v/x).

By introducing the new variables in the second-order ODE (36), one can

obtain the system of differential equations:

Y′ = F(x,Y/x) (37)

with Y and F defined by185

Y =

 u

v

 and F(x,Y/x) =

 f(x)

0

−
 c(x) d(x)

−1 1

Y/x (38)

The initial values for x→ 0 are

Y0 =

 0

0


Ŷ0 =

Y

x
|x→0 =

 2

1

 b1

F0 =

 −(c00 + 2c01)

1

 b1

(39)

in which we used (35) to obtain Ŷ0 and (33) for c(0) = c01, d(0) = c00 and

f(0) = 0 to obtain F0 defined by (38).

Both the initial values of Ŷ0 and F0 being finite, usual numerical integration

schemes can be used to integrate (37) in order to obtain values of the Green190

function from the initial conditions at x = ω = $ = 0. The coefficients in

equations (38) and (39) and relation between y(x) and z(x) for G, Gr, G̃, G̃r

are given in AppendixA.

4. Results

In this section, the results of the evaluation of the Green function and its195

horizontal derivative by using the ODE are compared to the results obtained

using the direct integration method as described in [23].
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The Green function as function of the original and natural variables are

evaluated by solving the system (37) by using the Runge-Kutta 4 method with

a constant step size ∆$ = 0.001.200

The initial conditions are for $ = 0 from equation (39). The results are

shown in Figure 2 for $ ∈ (0, 8], µ ∈ [0, 1). The error is defined as the differ-

ence between the values of the Green function obtained by integrating the ODE

and the direct integration method with 8 decimal accuracy [18]. One can see

that a 6 decimals (6D) accuracy is obtained. Thus, the method using the ODE205

is as accurate as the most accurate of the other numerical methods for evalu-

ating the Green function [18], that are based on the approximations of integral

formulations.

The horizontal derivative of the Green function is obtained from the Green

function itself using (23). The values and errors are shown in Figure 3 for210

$ ∈ (0, 8], and µ ∈ [0, 1). A satisfactory absolute accuracy of 4 decimals is

obtained.

Results for the Green function as function of the original variables and its

horizontal derivative are shown in Figure 4 and 5. A 6D accuracy is obtained.

Therefore, the ODE-based method can predict the Green function as accu-215

rately (6D accuracy) as existing alternative methods. Nevertheless, it can be

noted that 4D accuracy is expected to be sufficient for practical applications

according to[16, 17, 29]

13



(a) G̃ (b) G̃error

Figure 2: Results for the evaluation of G̃ with the ODE and error with the direct integration

method. The ODE is solved using the RK4 method with ∆$ = 0.001 $ ∈ (0, 8], and µ ∈ [0, 1)

(a) G̃r (b) G̃rerror

Figure 3: Results for the evaluation of G̃r and error with the direct integration method. The

ODE is solved using the RK4 method with ∆$ = 0.001 $ ∈ (0, 8], and µ ∈ [0, 1)

14



(a) G (b) Gerror

Figure 4: Results for the evaluation of G and error with the direct integration method. The

ODE is solved using the RK4 method with ∆ω = 0.001.

(a) Gr (b) Grerror

Figure 5: Results for the evaluation of Gr and error with the direct integration method. The

ODE is solved using the RK4 method with ∆ω = 0.001.

5. Conclusion

In this paper, we present a new ordinary differential equation for the evalua-220

tion of the frequency domain Green function. In contrast to original Clément’s

ODE, this modified ODE allows for the zero frequency to be used for the ini-

tial conditions. Comparisons with the direct integration method show that 6D

accurate estimates of the Green function can be obtained with this ODE. This

method may be used for calculating the Green function and its gradient. It will225

15



be investigated in future work whether it is more efficient than conventional

methods for the calculation of hydrodynamic coefficients in BEM codes.
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AppendixA. The coefficients of ODEs for G, Gr G̃, G̃r230

For sake of clarity, the parameters c21, c01, c40, c20, c00, c0, c2 for G, Gr G̃,

G̃r are listed in following. The c(x), d(x), f(x) and −(c00 + 2c01) in equations

(38), (39) are also given and y(x) is expressed by z(x).

• G

According to equation (6),235

c21 = −4Z; c01 = −3;

c40 = 4(r2 + Z2); c20 = 4Z; c00 = 4;

c0 = 8/R1; c2 = 8Z/R1;

(A.1)

Thus:

c(x) = −4Zx2 − 3 (A.2a)

d(x) = 4(r2 + Z2)x4 + 4Zx2 + 4 (A.2b)

f(x) = −4x2(R2
1a1x

2 log x− Za1 log x− Za1 + 2R1) (A.2c)

− (c00 + 2c01) = 2 (A.2d)

y(x) = z(x) + 2/R1 − 4x2 log x (A.2e)

• Gr

According to equation (7),

c21 = −4Z; c01 = −7;

c40 = 4(r2 + Z2); c20 = 12Z; c00 = 12;

c0 = −24r/R3
1; c2 = −24rZ/R3

1;

(A.3)
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Thus:

c(x) = −4Zx2 − 7 (A.4a)

d(x) = 4(r2 + Z2)x4 + 12Zx2 + 12 (A.4b)

f(x) = 8rx2/R1 (A.4c)

− (c00 + 2c01) = 2 (A.4d)

y(x) = z(x)− 2r/R3
1 (A.4e)

• G̃

According to equation (14),

c21 = 4µ; c01 = −3;

c40 = 4; c20 = −4µ; c00 = 4;

c0 = 4; c2 = −4µ;

(A.5)

Thus:

c(x) = 4µx2 − 3 (A.6a)

d(x) = 4x4 − 4µx2 + 4 (A.6b)

f(x) = −4x2(a1x
2 log x+ µa1 log x+ µa1 + 1) (A.6c)

− (c00 + 2c01) = 2 (A.6d)

y(x) = z(x) + 1− 2x2 log x (A.6e)

• G̃r240

According to equation (15),

c21 = 4µ; c01 = −7;

c40 = 4; c20 = −12µ; c00 = 12;

c0 = −12
√

1− µ2; c2 = 12µ
√

1− µ2;

(A.7)

17



Thus:

c(x) = 4µx2 − 7 (A.8a)

d(x) = 4x4 − 12µx2 + 12 (A.8b)

f(x) = 4
√

1− µ2 (A.8c)

− (c00 + 2c01) = 2 (A.8d)

y(x) = z(x)−
√

1− µ2 (A.8e)
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