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Determinism Enhancement of AFDX Networks via
Frame Insertion and Sub-Virtual Link Aggregation

Meng Li, Michaél Lauer, Guchuan Zhu, and Yvon Savaria

Abstract—AFDX is a standard proposed to implement deter-
ministic networks by providing predictable performance guaran-
tees. The determinism is enforced through the concept of Virtual
Link, which defines a logical unidirectional connection between
End Systems. Although an upper bounded end-to-end delay can
be obtained by using analysis based on, e.g., Network Calculus,
frame arrival uncertainty in destination End-System is a source
of non-determinism that introduces a problem with respect to
real-time fault detection. In this paper a mechanism based on
frame insertion is proposed to enhance the determinism of frame
arrival within AFDX networks. In order to mitigate network load
increase due to frame insertion, a Sub-Virtual Link aggregation
strategy, formulated as a multi-objective optimization problem,
is introduced. In addition, a brute force algorithm, a greedy
algorithm, and a greedy algorithm with pre-processing have
been developed to find solutions to the optimization problem.
Experiments are carried out and the reported results confirm
the validity and applicability of the developed approaches.

Index Terms—AFDX Networks, Determinism, Sub-Virtual
Link Aggregation, Optimization.

I. INTRODUCTION

VIONICS Full Duplex Switched Ethernet (AFDX) has

been proposed to meet increasing requirements of high
speed, high reliability, and low cost avionics communication
systems. This technology is standardized in ARINC 664 Part 7
[1] and is deployed in many current and future aircrafts such
as Airbus A380, A350, A400M, Boeing B787, Comac ARJ21,
and Bombardier CS100.

AFDX is a specialization of Ethernet whose purpose is
to provide a more deterministic network with predictable
performance guarantees. This determinism is enforced mainly
through the concept of Virtual Link (VL), inspired by the
concept of asynchronous transfer mode (ATM). As stated
in the standard, a VL is a conceptual communication link,
which defines: (1) a logical unidirectional connection from one
source End-System (ES) to one or more destination ESs; (2) a
maximum bandwidth allocated to this connection. Essentially,
two mechanisms are used to ensure that the bounded data
transmission bandwidth is respected. At the ingress of the
network, i.e. end-systems, traffic shaping is used to control the
flow for each VL in accordance with the so-called Bandwidth
Allocation Gap (BAG), which defines the minimum time inter-
val between successive frames in a VL. In the switches, traffic
policing is used to protect the network from babbling-idiot
failures. Furthermore, as the routes of the VLs are statically
defined off-line, the network offers a consistent performance
guarantee. In addition, AFDX is composed of two independent
and redundant networks, which provides the high reliability
required for ensuring its determinism.

AFDX networks aim at providing a guaranteed service with
a firm, mathematically provable, upper bound on end-to-end

frame transit delay. Hence the end-to-end delay analysis is
considered as a pivotal issue among the mandatory certifica-
tions. Much work has been dedicated to evaluate the delay
upper bounds. The theoretical methods, including network
calculus [2]-[6], trajectory approach [7]-[11] and response
time analysis [12] are applied to the worst-case transmission
delay analysis. Scheduling schemes for ESs and switches are
proposed to improve the end-to-end delay [13]-[16]. Further-
more, simulation and modeling approaches are implemented to
evaluate end-to-end delays and to provide experimental upper
bounds [17]-[20]. With the upper bounded delay, the minimum
interval between successive frames in destination ES becomes
deterministic.

Nevertheless, there still exist some sources of non-
determinism in AFDX networks. First, being an asynchronous
protocol, a global time cannot be defined or used throughout
the network. Note that the asynchronism is a feature of this
network, which has been chosen in order to provide robustness
in communications and to facilitate the design of applications
using the network. A second source of non-determinism is
related to fault detection in the destination ESs. Indeed, the
AFDX standard does not force a VL to transmit frames if
there is no data to transmit, even though the VL is available.
This means that destination ESs cannot detect one or several
consecutive frame losses (due to frame corruptions or device
malfunctions on both redundant networks) until a valid frame
arrives. For safety-critical applications, this raises a serious
issue in terms of determinism and reliability. The motivation
of this paper is then to enhance the determinism of AFDX
networks by proposing a solution to frame arrival uncertainty.

The proposed solution is based on the idea of inserting
filler frames in a VL when its source is silent. This allows
destination ESs of the VL to detect a fault if a frame is
missing from the periodical pattern obtained with filler frames.
Obviously, this mechanism does not affect the maximum band-
width reserved for a VL and the worst-case performance of
a regulated VL. However, inserting filler frames will increase
network load and the average bandwidth used by a VL. In
order to mitigate the impact on the overall network perfor-
mance, we leverage a feature described in the AFDX standard,
namely Sub-Virtual Link (Sub-VL) aggregation. We show that
Sub-VLs aggregation in source ESs allows optimizing the
bandwidth utilization of VLs. A Sub-VL aggregation strategy,
formulated as a multi-objective optimization problem aimed at
minimizing the overhead due to filler frame insertion and the
delay introduced by Sub-VL aggregation, is then presented. It
is worth noting that the proposed formulation can be applied
to the generic Sub-VL aggregation problem in AFDX network
design and to the extent of our knowledge, little work is
dedicated to the optimization of Sub-VL aggregation. The
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viability and the applicability of the proposed strategy are
demonstrated through numerical simulations. Several algo-
rithms used to reach or approach an optimal solution are
developed, including a brute force algorithm (an exhaustive
search), a greedy algorithm, and a greedy algorithm with pre-
processing. Note that in this paper, the impact on bandwidth
due to filler frame insertion and its optimization with Sub-
VL aggregation are only considered at the source ES level.
The impact on the global network will be studied in future
work. It is proposed in [21] to aggregate messages into super-
messages in source operating system (OS) partitions defined in
the ARINC 653 standard to minimize bandwidth consumption.
However, the proposed aggregation is not related to optimizing
frame insertion. Moreover, the problem we consider is tackled
in a network layer where message aggregation cannot be
performed.
The contributions of this paper are:

o a mechanism based on frame insertion that enables real-
time fault detection in destination ESs, thus enhancing
the determinism of the network;

o a Sub-VL aggregation strategy that mitigates the network
load increase due to frame insertion while simultaneously
minimizing the delay introduced by Sub-VL aggregation.

The remaining of the paper is organized as follows. Sec-
tion II describes issues related to Sub-VL aggregation in
AFDX networks and the non-determinism in VL transmission.
Section III presents a mechanism for determinism enhance-
ment in AFDX networks. Then, in Section IV the problem
of Sub-VL aggregation is formulated and effective algorithms
for resolving the corresponding multi-objective optimization
problem are developed. In Section V, experimentations are
carried out to validate the feasibility of the proposed mecha-
nism and to evaluate the obtained performance. Finally, some
concluding remarks and directions for future research are
provided in Section VI.

II. SUB-VL AGGREGATION AND NON-DETERMINISM IN
VL TRANSMISSION

We present in this section the mechanism for Sub-VL
aggregation in AFDX networks and formulate the delay due to
this operation. The non-determinism issue in VL transmission
will be discussed, which leads to a suggestion for determinism
enhancement.

A. Sub-VL Aggregation

One of the main objectives of Sub-VL aggregation is to
improve the bandwidth utilization efficiency. According to the
ARINC 664-part 7 standard, a VL can be composed of one
or up to four Sub-VLs. Each Sub-VL has a dedicated First-In,
First-Out (FIFO) queue. The Sub-VL FIFO queues are read
out on a round-robin (RR) basis, as shown in Fig. 1, by the
VL FIFO queue [1]. After aggregation, the frames are sent
according to the BAG of the VL.

Essentially, a Sub-VL can be dedicated to a source flow
from OS partitions, which can be periodic or sporadic. In
either case, to allocate bandwidth for each VL, represented

by the BAG, the system integrator must set the following two
parameters:

o [™2%: the maximum frame size (MFS) of the source flow;
e 1 the minimum time interval between two consecutive
frames.
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Fig. 1: Sub-VL aggregation mechanism.

To illustrate how Sub-VL aggregation may optimize band-
width utilization, we consider the following example in which
different types of source data are encapsulated in VLs for
transmission. The processing capacity of the source ES is
determined by the bandwidth reserved for VLs, which is
parameterized by the BAG and the MFS. Suppose for instance
that each Sub-VL has a period T=15ms and a MFS [™#*=1518
Bytes. The simplest configuration is to take every Sub-VL as a
VL. Then the VL has the same MFS as the Sub-VL. According
to the standard, the BAG should be a power of 2 multiplied
by Ims and selected from the set {lms, 2ms, 4ms, 8ms,
16ms, 32ms, 64ms, 128ms}. In addition, since no frame should
be lost due to buffer overflow, the BAG should be smaller
than or equal to 7". Thus in our example, to accommodate a
source flow of period T'=15ms, the BAG of the VL should
be 8ms. In Ethernet transmission, an overhead of 20Bytes
(Interframe Gap+Preamble+Start Frame Delimiter) should be
added into the size of VLs. Then the reserved bandwidth for
each VL is equal to (I™** + 20) x 8/BAG =1.538Mbps.
Suppose that the physical link operates at 100Mbps. Without
considering the jitter at the output, the source ES can transmit
at most |100/1.538]=65 VLs. This means that it can manage
up to 65 Sub-VLs with a period 7T=15ms. However, the
real bandwidth utilization is (I™®* + 20) x 8/T=0.82Mbps.
Hence, nearly 50 percent bandwidth for every VL is wasted
in this example. During transmission, the VLs are frequently
in the idle state. Consequently, if more source data are added
without aggregation, another source ES is required for this
configuration. Instead, if we aggregate three Sub-VLs into
one VL, the MFS of the VL does not change. If Sub-
VLs with suitable data rate are available, the BAG for an
aggregated VL can become 4ms (this can be shown using the
model presented below). For each VL, the reserved bandwidth
becomes (I™2* 4 20) x 8/BAG=3.076Mbps. In this configu-
ration, one source ES can manage at most |100/3.076|=32
VLs aggregating in total 96 Sub-VLs. Therefore, without any
additional hardware, the processing capability of the source ES



can be improved by around 48%, leading to a better bandwidth
utilization.

B. Computation of the BAG of Aggregated Flows and the
Delay due to Sub-VL Aggregation

Consider the aggregation of n Sub-VLs, 1 < n < 4, into
one VL. Each Sub-VL; is characterized by its minimum time
interval T; and MFS [***. The frame rate of Sub-VL; is
bounded by p; = 1/T;. Then the maximum arrival frame rate
(AFR) of Sub-VLs ina VL is p=>"", p;.

Let L. be the MFS of VL:

Lmax = 11;152(”{[1 } (1)

Denote by r = 1/BAG the maximum frame rate in a VL.
Obviously, to guarantee that no frame will be blocked due to
Sub-VL aggregation, there should be r» > p. Moreover, the
BAGs must be chosen from the set {2*}7_, (ms). Therefore,
for an appropriate bandwidth allocation, the BAG should be
the one with maximum value that meets all the constraints,
that is:

" -1
BAG = ok < ; , 2
w2 (S ?
which can be expressed equivalently as:

BAG = 2" (e (Ti )] 7) 3)

Then the required frame transmission rate (RFTR) for the VL
is 1/BAG.

As several Sub-VL queues share the same VL, a frame in
a specific Sub-VL; queue may be delayed due to the RR
scheduling. Let Dsy;, be the worst-case queuing delay of
Sub-VL,; introduced by Sub-VL aggregation. Dgy;, can be
analyzed by using the formulation presented in [22]. Suppose
that the Sub-VL is dedicated to one source flow and denoted
by |[VL| the cardinal number of Sub-VLs belonging to the VL.
Let g be the number of packets that are ready for transmission
in the Sub-VL; queue. Sub-VL; shares VL, with the other
Sub-VLs. Then Dgy;, can be calculated as:

Dgyr, = Jaax [wi(q) — (¢ — 1)T3], “4)
where
wi(q) = (¢—1)BAGr+ ) Q(q_Tl)TJ + 1> BAG;. (5)
— ’
1§J?§7’£|VLk|

Obviously, Sub-VL aggregation may introduce extra delay,
although it helps improving bandwidth utilization efficiency
of VLs. This should be taken into account in network design.
The trade-off between traffic load and delay due to Sub-VL
aggregation is considered in Section IV.

C. Non-Determinism in VL Transmission

In AFDX networks, the idle state in frame transmission
can be introduced by the mismatch between the BAG and the
period for periodic source flows or by the arrival uncertainty
for sporadic source flows. In either cases, frame arrival at
destination ESs is undetermined, which might be confused
with a fault due to frame loss. To illustrate the issue, in the
example shown in Fig. 2, the frame P3 is assumed to be lost in
transmission. The destination ES will not detect the fault until
the reception of frame P4, because the destination ES does not
know when the next frame will arrive. Under this protocol, the
destination ES cannot distinguish between transmission silence
and data loss. This is indeed a source of non-determinism.

BAG BAG

Virtual
Link

Fig. 2: Destination End System cannot detect the loss of frame
P3 until it receives P4.

Inspired by synchronous transmission schemes, this problem
can be solved by inserting frames in source ES to ensure
that the VL has one frame and always one frame to transmit
in every BAG. With this mechanism, the determinism of
frame arrival can be improved. Note that the improvement in
terms of determinism is at the expense of a possible average
delay increase, as we can observe in synchronous transmission
schemes, such as TDMA. Note also that as frame insertion
is performed at VL level, there is no impact on the worst-
case performance. Nevertheless, this operation will increase
the actual network load. Therefore, it is of practical interest
to minimize the number of inserted frames via appropriate
Sub-VL aggregation schemes.

III. DETERMINISM ENHANCEMENT WITH FRAME
INSERTION

In this section, we address the mechanism suggested for
frame insertion in VLs to tackle the non-determinism issue re-
lated to frame arrival uncertainty. Sub-VL aggregation is then
incorporated in this mechanism to mitigate load increase due to
frame insertion. We also calculate the required bandwidth after
frame insertion and formulate a measure for load increases.
These formulations will be used in the resolution of the multi-
objective optimization problem studied in Section IV.

A. Frame Insertion in VL

To make transmission deterministic, filler frames are in-
serted to guarantee that the source ES sends a frame in every
BAG. As shown in Fig. 3, an empty flag and a multiplexer
are introduced to implement such a mechanism. If it is the
time for transmission and there is no frame in VL FIFO, the
empty flag is triggered. Then the multiplexer takes a filler
frame from filler frame controller and forwards it into the
VL sequence. Otherwise, the multiplexer outputs the data



frame from the VL FIFO queue. After every transmission,
the multiplexer is halted until the end of the current BAG.
Since frame insertion may be needed only if the VL. FIFO
queue is empty, the VLs are in general not strictly periodic,
which is in accordance with the expected behavior of VLs
in AFDX networks. Note that, depending on the level of
criticality required by specific applications, frame insertion
may be performed with a predefined interval bigger than 1
BAG. This would allow reducing the network load while still
ensuring determinism. Nevertheless, the formulation presented
below can be adapted to this case.

VL
FIFO

Empty
Flag

o0 K

Virtual Link

Fig. 3: Proposed mechanism for enhancing the determinism
of AFDX networks.

In this mechanism, the size of the filler frame Ly, can be
64bytes, the minimum value specified in the AFDX protocol.
This would ensure that the filler frame will have no impact
on the MFS of the VL. Furthermore, it is obvious that frame
insertion will not change the BAG of the VL. As BAG and
MES are the parameters of a regulated VL utilized in worst-
case performance analysis, frame insertion in a VL stream
has no impact on the worst-case end-to-end delay of the VL,
D,yorst, measured from the VL regulator to the destination ES.
Note that the best case end-to-end delay of the VL, Dj,y, is
the sum of technology latencies and transmission time, which
is determined by the route and MFS of each VL. Since the
filler frame has no impact on the route and MFS, Dy, is
unchanged with frame insertion. With filler frame insertion
in source ES, it is ensured that there is one frame departing
from source ES within every BAG of each VL. Therefore,
it is guaranteed that when the destination ES finishes one
reception, it must receive another frame within the time
interval, [(BAG — Dyt + Dpest) ™y BAG + Dyyorst — Dipest] as
shown in Fig. 4. By notation, (z)* := max(z,0).

Nevertheless, filler-frame-based determinism enhancement
is achieved at the expense of network load increase. In the
follows, we try to mitigate this problem by Sub-VL aggrega-
tion.

B. Frame Insertion Based on Sub-VL Aggregation

To optimize network load, it is possible to aggregate several
source data flows into a single VL, thus limiting the number
of filler frames. As illustrated in Fig. 5, the Sub-VL FIFO
queues are read into VL FIFO with a RR sequence and then
a possible frame insertion follows. If a frame either from the
Sub-VLs or from the filler frame controller is sent to the VL,
the multiplexer is halted until the BAG ends.

BAG

Source

to trtBAG t;+2BAG t;+3BAG

BAG+Dworsl'D'besl

— N
Dbest Dworst Dbest Dwor st

. . Dbes
Destination
. ;
t

to to+tBAG t+2BAG ty+3BAG
[(——

(BAG-Dyors+Dest)”

Fig. 4: Reception time interval in destination ES with frame
insertion.
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Fig. 5: Frame insertion based on Sub-VL aggregation.

Let us recall that a VL is characterized by two main
parameters: the MFS and the BAG computed from (1) and
(3), respectively.

C. Bandwidth Requirement with Frame Insertion

Suppose that Sub-VL; has the frame rate p; and the MFS
[#* If a VL is formed by only one Sub-VL, then the frame
rate of VL is r = 1/BAG, and with frame insertion the AFR
in total is p = p;. Therefore, the rate difference, r — p, denotes
the number of inserted frames per time unit. Then the required
bandwidth is given by:

BW = l;nax X Pi + Lﬁller (BAG_l - pz) ) (6)

and the reserved bandwidth is I}"**/BAG.
If a VL aggregates n Sub-VLs, the AFR in total is p =
>, pi. Therefore the required bandwidth is:

BW = Z (L™ % pi) + Liuer <BAG_1 - sz> , (D
i=1 i=1
and the reserved bandwidth is Lyax/BAG.

The second part on the right-hand side of (6) and (7) is
the bandwidth increase after frame insertion, which is related
to the rate difference, r—p. Hence, one objective for optimal
Sub-VL aggregation is to minimize the bandwidth increase.



IV. OPTIMAL SUB-VL AGGREGATION

In order to prevent buffer overflows in the ESs, the RFTR of
a VL has to be higher or equal to the AFR of the Sub-VLs it
carries. In the case where the arrival period of the source falls
into {2"}o<r<7, the AFR and the RFTR for VL will be identi-
cal. Otherwise, frame insertion is required. Either way, there is
no idle BAG for VL and the rate difference is equivalent to the
load increase in unit time. Hence, an appropriate scheme for
Sub-VL aggregation is the one that allows minimizing the sum
of rate difference for all VLs, so that the overhead due to frame
insertion is the minimum. Meanwhile the delay introduced by
Sub-VL aggregation should also be optimized. Therefore, the
Sub-VL aggregation should be modeled as a multi-objective
optimization problem.

Essentially, there are three main constraints in Sub-VL
aggregation:

e Sub-VLs for aggregation should have the same source

and destination ESs.
e A VL contains at most 4 Sub-VLs.
e The sum of AFR after Sub-VL aggregation cannot exceed
Tmax (1K frame/s).

A. Formulation of Optimal Sub-VL Aggregation

Let S = {Sub-VL;, Sub-VL,, ...,Sub-VLy } be a set of N

Sub-VLs. Denote by p; the frame rate of Sub-VL,. For all
Sub-VLs, AFR in total is pg = Zf;l Di-
Let VL; = {Sub-VL;,,...,Sub-VL; }, VSub-VL;, € S,
k=1,...,n. We can then formulate the Sub-VL aggregation
problem as the partitioning of S into m non-empty VLs with
[[N/4] <m < NJ.

Let P = |J,c7 P; be the set of all admissible partitions,
where 7 is the index set. In combinatorics, the number of
possible partitions in which a set of N elements can be split
is bounded by the so-called Bell number [23], denoted By.
However, the partitioning of Sub-VLs has other constraints
such as subset size. Hence, the cardinal of P may be signifi-
cantly smaller than By . Then the ith partition can be denoted
by

Pi:={VL{,VL},...,VL! ... VL] }+S, (8)

where VL; is an aggregation of Sub-VLs and the symbol “ + ”
stands for “is a partition of.” Denote by BAGj the BAG of
VL;-. For VL;-, the RFTR is 7';. =1 /BAG;-. According to (3),

7’ is given by:
-1
po (e (Eaae) ) e
7 BAG;

where py; is the frame rate of Sub-VLj belonging to VLj». The
RFTR R; for the partition P; is

Ri = ZT;

VLieP;

—1
= Z27min <\‘10g2 <Zl§k§|VL§|pk> J’7>'

VL;’- eP;

(10)

The rate difference, y;, representing the wasted bandwidth, can
be expressed as:

yi = R — po

_ Z 2— min (\‘log2 (Eliké

VLieP;

V), o

Obviously, R; varies according to the partition, and so does
y;. To reduce the load increase, we need to minimize the
rate difference y; in (11). Note that for a given set of Sub-
VLs, po is a constant. Hence, minimizing the rate difference
is equivalent to obtain the minimum R;.

The delays introduced by Sub-VL aggregation can be mea-
sured in different ways that will influence the optimization
procedure. For example, if the maximum worst-case delay
among all the VLs is chosen as the cost function, then the
result will tend to be the lowest allowed delay for all the
Sub-VLs. A less pessimist choice is the use of the average
worst-case delay of all the Sub-VLs:

: :% Z Z Dgyy,,

VLLEP; 1<k<|VLE

VL
J

Dp (12)

which is the second cost function considered in the resolution
of optimal Sub-VL aggregation problems in the present work.

Let G1(P;) = R; and G2(P;) = Dp,. Optimal Sub-
VL aggregation amounts then to solving the following multi-
objective optimization problem:

min G(P;) = [G1(Py), G2(P) ]+ (13)

s.t.: 1<i<Bn; (14)

[N/4]<j<N; (15)

1<k<4; (16)

S or < i a7
1<k<|VLY

where ¢ is the partition index, N is the total number of Sub-
VLs, and k represents the index of a Sub-VL in a VL. In
AFDX networks, the sum of AFRs of the aggregated Sub-
VLs cannot exceed 7.y (1K frame/s), the maximum rate of
a single VL.

Since Sub-VL aggregation can introduce extra delay, an
optimal solution to this problem can only be achieved in the
sense of Pareto by considering the possible trade-off between
these two objectives (see, e.g., [24]).

B. Lexicographic Method for Optimal Sub-VL Aggregation

In order to find a Pareto optimal solutions, system designers
should impose design preferences [24]. In the considered prob-
lem, the primary objective is to reduce the load increase based
on which we will try to minimize the delay introduced by Sub-
VL aggregation. The lexicographical optimization method is
suitable for this setup. More precisely, minimizing the rate
difference is solved first. Then, a J-constraint is imposed
to control the trade-off between load increase and the delay



due to Sub-VL aggregation. The corresponding lexicographic
formulation can be given as follows:

713?513 Gi1(Py); (18)
st (14) — (17);
Gl(Pi) < (1 + (5) Gl(Pik), for | = 2; (19)

l=1,2

where P; represents the optimum of the first objective func-
tion.  is a nonnegative value that can be varied to tighten
the constraint. Note the multi-objective functions are solved
in sequence to find the Pareto optimal points [24].

To illustrate the main property of the above multi-objective
optimization problem, we consider an example of 8 Sub-
VLs having different periods as shown in Table I. By using
exhaustive enumeration, all possible solutions regarding the
first objective can be obtained as shown in Fig. 6. Meanwhile,
we can construct the so-called Pareto front for this multi-
objective optimization problem (see Fig. 7). Note that in Fig. 7,
many points are overlapped in R;-Dp, plane.

TABLE I: Parameters of Sub-VLs

Sub-VL 1 2 3 4 5 6 7 8
Period (ms) | 10 | 25 | 30 | 40 | 60 | 80 | 100

0 500 1000 1500 2000 2500 3000 3500

4000
Partition Index
Fig. 6: RFTR with parameters in Table 1.
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Fig. 7: All possible solutions and Pareto front.

For § = 0, the point with an RFTR of 250 frame/s and an
average worst-case delay of 22ms will be the Pareto optimal
solution, which has the minimum RFTR among all possible

solutions, and the delay introduced by Sub-VL aggregation for
the partition is the smallest under the §-constraint.

If we relax the d-constraint, for example let § = 20%, then
more partitions with RFTR< 300 frame/s can be included in
the set of candidate solutions. In this case, the solution point
with (296.9, 6) is found to be the Pareto optimal solution. In
this case, the introduced delay is reduced at the expense of
network load increase. More details about this example are
discussed later in Section V-B.

C. Algorithms for Sub-VL Aggregation

The multi-objective optimization problem can be solved in
two iterations. The first iteration is to obtain P{ with the min-
imum RFTR R*. The second iteration is to find the partition
with minimum delay introduced by Sub-VL aggregation under
(14)-(17) and (19). According to (10), R; is a discrete and
nonlinear function with respect to the partition. Therefore, the
objective function G1(P;) is not convex and might not admit a
unique global minimum, as shown in Fig. 6. Similarly, G2 (P;)
is also nonlinear and non-convex. Therefore, the solution
for the multi-objective optimization problem might not be
unique. Indeed the considered problem is a special multiple
knapsack problem, which is NP-Complete. Furthermore, it is
very different from standard multiple knapsack problems when
considering the trade-off between load increase and the delay
introduced by Sub-VL aggregation. In this paper, three algo-
rithms are applied to solve the multi-objective optimization
problem.

1) Brute Force Algorithm: One possible and accurate
method to obtain the optimal solution is the brute force
algorithm. The optimal solution can be found by an exhaustive
enumeration of all solutions. In the first iteration, an optimal
solution Py that leads to the minimum rate difference is
obtained. Then by adding the J-constraint in the second
iteration, we can get a global optimal result for the multi-
objective optimization problem. However the computational
complexity grows exponentially with the number of Sub-VLs.
Note that more efficient algorithms, such as branch-and-bound
algorithm [25] and the greedy algorithm [26] [27] [28], can
be explored to address the optimization problem with large
size, when applying the proposed formulation to real-life
applications. In present work, we consider to use the greedy
algorithm, which is well known and computationally efficient.

2) Greedy Algorithm: The strategy behind the greedy algo-
rithm is to make local optimal choices at every step of each
iteration with the hope of finding a globally optimal result.
The heuristics used in the developed algorithm is that for each
step, the optimization strategy is to select one aggregation of
Sub-VLs, through which R; or Dp, can be reduced the most.
Let V be the candidate set of VLs composed of 2 to 4 Sub-
VLs. Suppose that Vo € V, the corresponding RFTR does
not exceed the rate limit 7,,,. Since the Sub-VLs cannot be
reused, all VLs, containing one or more selected Sub-VLs, are
removed from the candidate set at the end of each step. The
greedy algorithm stops and gives the local optimal solution
when the candidate set is empty.

As an example, we consider a set of 3 Sub-VLs charac-
terized by their periods: {6ms, 20ms, 40ms}. The candidate



set V is {{6ms, 20ms}, {6ms, 40ms}, {20ms, 40ms}, {6ms,
20ms, 40ms} }. For the subset {6ms, 20ms}, the RFTRs before
and after aggregation are 312.5 frame/s and 250 frame/s,
respectively. Therefore, the reduction after aggregation is 62.5
frame/s. Furthermore, let us denote by D, = 37, _, <ol (Dsyr,)
the total introduced worst-case delay of the Sub-VLs in one
VL. In this case, D, is 8ms. Accordingly, the rate difference
and the introduced delay for the other aggregations are calcu-
lated and listed in Table II.

TABLE II: Sub-VL Aggregation Candidates

Subsets RFTR without RFTR A D,
in V (ms) Aggregation(frame/s) | (frame/s) | (frame/s) | (ms)
{6, 20} 312.5 250 62.5 8
{6, 40} 281.25 250 31.25 8
{20, 40} 93.75 125 —31.25 16
{6, 20, 40} 343.75 250 93.75 24

In the first iteration, the aggregation of {6ms, 20ms, 40ms}
is selected in the first step and all the VLs comprising these
Sub-VLs are removed from the candidate set. Then the greedy
algorithm stops as the candidate set becomes empty. In the
second iteration, the candidate set is sorted first in ascending
order for the delay introduced by Sub-VL aggregation, and
then by descending order for the reduction. Suppose that all
subsets in V' are allowed with the J-constraint. Therefore,
{6ms, 20ms} with a total delay of 8ms and a reduction of
62.5 frame/s is selected. Consequently, all the candidates are
removed from the candidate set because they share one or
more selected Sub-VLs. Then the greedy algorithm stops as
the candidate set becomes empty. In this case, the local optimal
solution is {{6ms, 20ms}, {40ms}}. The rigorous formulation
of the developed greedy algorithm is described below.

We define a function A : V — R which gives, for each
VL, the gain obtained with the aggregation of its Sub-VLs.
Denoting by 7,(v) the sum of the frame rate required by the
Sub-VLs within a VL before aggregation and by r,(v) the
RFTR after aggregation, we have for all v € V:

A(v) =rp(v) —ra(v)
_ Z 27min(tlog2 pi_lJ, 7)
1<i<|v]

9 min (L10g2(21§iﬁ\v\ p"')ilJ’ 7).

(20)

Note that the gain A(v) can be either positive, negative or
null depending on the Sub-VLs in v. We define a subset of
V, FCV, such that Yvi,v9 € F, v1 N vy = . Then the
local minimum of the first objective function, Pj, can be
achieved by maximizing the gain, ) _, A(v). Meanwhile,
we can compute the total worst-case delay of the Sub-VLs,
D,.

Then the local optimal solution for the multi-objective
optimization problem can be obtained by minimizing the
delay introduced under the added d-constraint in the second
iteration. The developed greedy algorithm is summarized in
Algorithm 1.

Algorithm 1 Greedy Algorithm
Input: S, §;
Output: (Rpin, Dmin) and corresponding partition;
Initial: 7, =0, S1 =9, Fb =0, S, =5,
1: Construct V, the set of all possible VLs;
2: For each v € V, compute the gain A(v) and the extra
delay D,;
3: Discard the VLs with the negative or null gain;
4: Sort the VLs by decreasing A(v) and insert them in a list
Ly;
5: Sort the VLs first by ascending D,, and then by decreasing
A(v) and insert them in a list Lo;
6: while L; # @ do
: Add L4[1] (the first VL with biggest gain in current
L) to the solution Fy, S} = S1 N Li[1];
8: Remove all VLs from L; which contain any Sub-VL
of L1[1], including L[1] itself;
9: end while
10: Obtain P; = Fy U S and then calculate R*;

11: while Ly # @ do
12 i egkelll
pi

<1 +5)% then

1<i<[Lo[1]| 1<ig|s|
13: Add L[1] to the solution Fy, S5 = S5 N Lo[1];
14: Remove all VLs from L which contain any Sub-
VL of Ls[1], including Lo[1] itself;
15: else
16: Remove Ly[1] from Lo;
17: end if

18: end while
19: Obtain Pp,i, = F5 U .S} and then calculate (Ruin, Dmin);
20: Output (Rmin, Dmin) and Prin.

Although the greedy algorithm cannot guarantee to find the
global optimum, it is much less time consuming compared
to the brute force algorithm. An experiment implemented
with Matlab® for a set of 100 Sub-VLs with randomly
generated period for all the Sub-VLs shows that the execution
can be terminated within minutes. More detailed results of
experiments will be presented in Section V.

3) Greedy Algorithm with Pre-processing: The complexity
of the greedy algorithm is related to the search space size.
It happens that when grouping some Sub-VLs together, the
equivalent period is a power of 2. In this case, the search
space can be reduced if we perform these aggregations first
and remove them from set of Sub-VLs.

For example, the periods of Sub-VL;, Sub-VL, and
Sub-VLj3 are, respectively, Sms, Sms and 10ms. To aggregate
these three Sub-VLs into one VL, the equivalent period is 2ms.
According to (3), the BAG for this VL is 2ms. In this case,
no filler frame insertion is needed.

Based on the above analysis, a greedy algorithm with pre-
processing is developed. This algorithm has two steps. The first
step is to find special cases mentioned above that perfectly fill
VLs among the Sub-VL set. The second step is the use of the
greedy algorithm in Section IV-C2 to find the local optimal
result with the reduced Sub-VL set.

In summary, the brute force algorithm can reach the global



optimal solution, but it is suitable only for small number of
considered Sub-VLs. The greedy algorithm and its variation
with pre-processing are suitable for large size problems, al-
though they may lead to local optimums. The performance of
these algorithms are illustrated in the next section.

V. PERFORMANCE EVALUATION

In this section, we perform numerical simulations of the
proposed mechanism to verify its feasibility. Then the per-
formance of different optimization algorithms for Sub-VL
aggregation is evaluated using different configurations.

A. Validation of Frame Insertion Mechanism

In Section III-B, a mechanism with frame insertion based
on Sub-VL aggregation is put forward. The feasibility of such
a mechanism is verified in this section by numerical simu-
lations using Matlab® and TrueTime [29]. In the considered
example, there are three Sub-VLs whose parameters are listed
in Table III. Based on (3), the BAG for the aggregated VL is
4ms.

TABLE III: Parameters of Sub-VLs

Sub-VL | Period (ms) | Max lJitter (ms) | Frame Size (byte)
Sub-VL1 10 3 80
Sub-VL2 60 18 180
Sub-VL3 25 7.5 130

First, Matlab® is used to simulate the aggregation and
regulation in source ES. In this simulation, we use unit frame
size. The simulation results are shown in Fig. 8.
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Fig. 8: Matlab® simulation result of frame insertion based on
Sub-VL aggregation.

The jitter of each Sub-VL is considered in the simulation.
Due to the jitter, the accurate positions of filler frames cannot
be determined in advance. As shown in Fig. 5, the empty
flag acts as a trigger. When there is nothing from Sub-VLs
to transmit during the period of 1 BAG, the empty flag is
triggered. Then the filler frame is forwarded into VL. The
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(b) AFDX simulation system configuration

Fig. 9: AFDX simulation system based on TrueTime.

EL)

simulation result is shown in Fig. 8. The red line with “x
mark indicates the inserted frames. The other three different
colors and shapes represent the Sub-VLs. The frames of Sub-
VLs and inserted frames are regulated according to the BAG.
They are transmitted every 4ms. According to the simulation
results, the proposed mechanism is feasible.

Furthermore, a TrueTime simulation is set up to implement
the proposed mechanism. TrueTime is a more accurate timing
simulator based on Matlab®/Simulink, which can model data
transmission using different network protocols and task execu-
tion in real-time kernels [29]. A simple AFDX network shown
in Fig. 9 is set up. Sub-VL aggregation and frame insertion
are added into the model of ES1. The simulated system can
perform a real-time data transmission.

After Sub-VL aggregation, frame insertion, and VL regu-
lation, all frames are forwarded into a VL sequence. Frame
insertion function is implemented in the VL regulator model.
The simulation results of Sub-VL aggregation are shown in
Fig. 10. The data flow without insertion is also presented
for comparison. As stated in Section III-A, we can guarantee
the determinism of frame arrival with frame insertion. The
real-time simulation results confirms the feasibility of such a
mechanism.

Using this structure, the end-to-end delay analysis can be
performed. In addition, real-time fault detection can also be
executed. We can set a probability of data loss in switches.
With the expected deterministic reception on destination ESs,
it is easy to detect some classes of faults such as lost frames in
real-time. Furthermore, this AFDX network simulation system
is extensible to more complex network configurations, which
allows carrying out additional fault injection and fault analysis.
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Fig. 10: Simulation results produced with TrueTime.

B. Evaluation of Sub-VL Aggregation Strategies

In the follows, comparison of different aggregation schemes
is performed to evaluate the developed optimal Sub-VL aggre-
gation strategies.

The considered system is a network with 8 Sub-VLs studied
in Section IV.B whose parameters are given in TABLE 1.
According to (7), Ly, is smaller or equal to ["**. Hence,
the load increase percentage measured in frame is equal or
greater than the load increase measured in bit. In this study,
the traffic increase is measured as an increased frame rate.
In this example, the AFR is a total py of 245.5 frame/s. If
every Sub-VL is transmitted by one VL, the RFTR is 359.4
frame/s. As there is no aggregation, the introduced delay is
zero. Whereas, the load increase is about 46.4% compared to
the arrival frames after frame insertion.

Note that some Sub-VL aggregation schemes may lead
to poor performance. For example, in the above considered
problem, the partition, VL;={Sub-VLI1, Sub-VL2, Sub-VL6,
Sub-VL8} and VLo={Sub-VL3, Sub-VL4, Sub-VL5, Sub-
VL7}, will result in as much as 52.75% frame rate increase
and 18ms introduced average delay.

To solve the multi-objective optimization problem, the brute
force Sub-VL aggregation strategy is applied, in which all
admissible partitions are traversed to obtain the global optimal
solution under the J-constraint. In the considered example,
the Pareto optimal solution with the constraint of §=20% is
given in Table IV. The overall load increase is about 20.9%,
which is better than a 46.4% load increase observed when no
aggregation is performed and filler packets are inserted. As
presented in Section IV-B, the introduced average delay, 6ms,
is minimal for the partitions under the d-constraint.

When the greedy algorithm is used in this example, the
search is terminated by a local optimal solution. When 6=20%,
the local optimal partition is {{Sub-VLI1, Sub-VL4}, {Sub-
VL2, Sub-VL5}, {Sub-VL3, Sub-VL6}, {Sub-VL7}, {Sub-
VL8}}. The corresponding performance is given in TABLE V.
In this case, the load increase is only 14.56%, which is
much better than the scheme without Sub-VL aggregation.
Furthermore, the introduced average delay is 10ms, It can
be observed from Fig. 7 that this solution is Pareto optimal.

TABLE 1IV: Performance Obtained with the Brute Force
Algorithm

Sub-VL AFR RFTR Excess Frame Dy
Aggregations | (frame/s) | (frame/s) | Rate in Percent | (ms)
{1, 4} 125 125 0 16
{2, 5} 56.7 62.5 10.29% 32
{3} 33.3 62.5 87.5%
{6} 12.5 15.6 25%
{7} 10 15.6 56.25%
{8} 8 15.6 95% 0
Total 245.5 296.9 20.94% 48

However, the greedy algorithm cannot guarantee to find the
Pareto optimal solution. It obtains a local optimal solution for
the optimization problem considering the trade-off between
the two objectives.

TABLE V: Performance of the Greedy Algorithm

Sub-VL AFR RFTR Excess Frame Dy
Aggregations | (frame/s) | (frame/s) | Rate in Percent | (ms)
{1, 4} 125 125 0 16
{2, 5} 56.7 62.5 10.29% 32
{3, 6} 45.8 62.5 36.46% 32
{7} 10 15.6 56.25% 0

{8} 8 15.6 95% 0
Total 245.5 281.3 14.56% 80

It can be observed that in this example, the period of a VL
aggregating Sub-VL1 and Sub-VL4 is the power of 2. The
situation is the same when we aggregate Sub-VL2, Sub-VLG6
and Sub-VL7. We can then apply the greedy algorithm with
pre-processing. In the first step, we get a reduced set listed
in TABLE VI. In the second step, the greedy algorithm is
executed over the reduced set. When 6=20%, a local opti-
mal solution of {{Sub-VLI, Sub-VL4}, {Sub-VL2, Sub-VL6,
Sub-VL7}, {Sub-VL3, Sub-VL5}, {Sub-VL8}} is obtained.
The load increase and the introduced average delay for this
partition are 265.6 frame/s and 18ms, respectively. The greedy
algorithm with pre-processing provides system designers with
an additional option in network tuning.

TABLE VI: Set Obtained by First Step of Pre-processing
Greedy Algorithm

Sub-VL 3 5 8
Period(ms) 30 | 60 | 125
Max Jitter(ms) | 9 | 18 | 37.5

In order to validate the performance with different configu-
rations, many instances with randomly generated periods in
the [1ms, 200ms] interval were analyzed. The J-constraint
is set to 0 and 10%, respectively. The results are shown in
Fig. 11, Fig. 12 and Fig. 13. For each parameter set considered,
three algorithms are applied to obtain global/local optimal
solutions for 1000 instances. The avg./worst/best performances
for different algorithms are obtained. Compared with the



results without aggregation, the solutions using aggregation
strategies are much better with respect to load mitigation, even
in the worst case. The overhead load in the network due to
frame insertion is reduced. It is worth noting that the brute
force algorithm cannot finish in a reasonable time with 50
Sub-VLs. For this case, only the greedy algorithm and the
greedy algorithm with pre-processing are applied to find the
local optimal solutions. Although the solutions may not be
Pareto optimal in a strict sense, they are much better than the
scheme without Sub-VL aggregation.
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Fig. 11: Evaluation of the load increase for 10 and 50 Sub-VLs
(N=10 and N=50), 6 = 0.
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VI. CONCLUDING REMARKS

In this paper, a mechanism for frame insertion is proposed
to enhance the determinism of AFDX networks with respect to

frame arrival uncertainty. In order to reduce the load increase
due to frame insertion, a strategy for Sub-VL aggregation
is developed, which is formulated as a multi-objective op-
timization problem considering the trade-off between load
increase and the delay introduced by Sub-VL aggregation.
Three algorithms are proposed and investigated to solve the
Sub-VL aggregation optimization problem. Simulations are
carried out to illustrate the feasibility of the proposed filler
packet insertion method and to validate the performance of
developed algorithms. The results show that the load increase
can be dramatically reduced and the delay introduced by Sub-
VL aggregation can be mitigated with a relaxed d-constraint.
Finally, the framework of multi-objective optimization can be
extended to incorporate more design considerations.

It is worth noting that the focus of the present work is
put on the configuration in source ESs. However the Sub-
VL aggregation with frame insertion may have an impact on
the entire network. This may raise challenges regarding the
practical application of the proposed mechanism. However,
it is interesting to note that the work presented in [30]
shows that for a case-study composed of a flight management
system, the temporal behavior of avionics functions is not
significantly affected even when the worst-case network delay
has been increased by 400%. Nevertheless, the impact of
Sub-VL aggregation with frame insertion has to be carefully
evaluated against the overall performance requirements for
specific applications in the design of AFDX networks.
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