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An asymptotic model for a thin, soft and
imperfectly bonded elastic joint

Christian Lichta,b*†, Gérard Michaillec and Pongpol Junthareed

An asymptotic model for a thin, soft, linearly elastic joint imperfectly bonded to two linearly elastic bodies is derived by 
studying the variational convergence of the total mechanical energy when the thickness and the stiffness of the joint 
go to zero. The joint is replaced by a mechanical constraint between the adherents which correspond to the connection 
in series of the classical limit constraint induced by the soft joint and constraints between the joint and the adherents. 
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1. Introduction

Many studies have been devoted to asymptotic modeling of soft thin joints by considering the stiffness and thickness of the joints as 
small parameters. In the static case, the mathematically rigorous variational approach consists of determining the asymptotic 
behavior of minimizers of the total mechanical energy of the structure made of the adherents and elastic joint when the thickness and 
stiffness go to zero. This can be performed in the classical framework of displacement fields (see [1, 2] and the references therein, [3, 
4]) or in an extended framework of measure fields [5], which may supply additional information at a lower scale. Anyway, the starting 
point is to assume that the joint and adherents are perfectly stuck together so that the asymptotic model consists of replacing the 
physical joint by an abstract mechanical constraint between the two adherents. This constraint keeps the memory of the joint, which 
disappears at the limit: its surface energy density W strongly depends on the relative behavior of the parameters but can be written in 
a unified way with a mathematical structure similar to that of the bulk energy density of the genuine joint.

Here, under the small strains assumption, we assume that the joint and adherents are not perfectly stuck together so that the 
reversible mechanical constraint between them is not pure adhesion but is given by some smooth or nonsmooth convex surface 
energy densities h1 and h2. We will show that the asymptotic model consists of replacing the joint by a constraint, which is now the 
inf-convolution (or epigraphical sum) of the densities hi and the limit density W. This corresponds to the connection in series of the 
limit constraint induced by the joint and the constraints between the joint and adherents.

For the sake of clarity, in Section 2, we introduce a simplified situation where the joint connects an elastic body to a rigid support: 
the joint is clamped on the rigid body while there is a mechanical constraint between it and the elastic body. This situation was 
considered in [6] in the particular case of a linearly elastic adhesive and adherent and of bilateral contact with Tresca-like sliding 
between them. Their asymptotic analysis uses rescaling of the coordinates through the joint and a mixed formulation (with two fields: 
displacements and stress) in terms of variational inequality, so that the various limit mechanical constraints are only specified via 
graphs (relationships between the stress vector and the displacement). On the contrary, as it is obvious from the mechanical 
standpoint to guess the structure of the energy density of the limit constraint (inf-convolution is the mathematical translation of 
connection in series), we prefer to deal directly with the total energy functional and study its variational convergence; this is easily 
performed by adapting the arguments of [1] to this framework, which is indeed simpler because it is convex. Then, in Section 3, we 
propose our limit model which takes into account the asymptotic behavior of the displacement inside the adherent and inside the 
adhesive. The proofs of our statements are given in Section 4. Section 5 is devoted to a variant that is important in Tribology (the 
“third body” concept), where the thin adhesive layer
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contains a far thinner and softer layer in the vicinity of the elastic adherent. In Section 6, we focus on what should be the asymptotic
model in the case of two linearly elastic adherents not perfectly stuck to a thin soft linearly isotropic joint by avoiding lengthy (but not
difficult) discussions that occur when the magnitudes of the Lamé coefficients of the joint differ from that of the thickness.

Note that a partial analysis using our method and assorted with numerical experiments may be found in [7] and that our analysis is
also valid when the stiffness of the adhesive is not necessarily low but not too high ( e.g., less than the inverse of the thickness).

2. Introducing an elementary situation

As usual, we make no differences between R3 and the physical Euclidean space whose orthonormal basis is denoted fe1, e2, e3g and,
for all � D .�1, �2, �3/ 2 R3, O� stands for .�1, �2/.

Let � be a domain of R3 included in fx3 > 0g with a Lipschitz boundary @�. Its intersection with fx3 D 0g is a domain S of R2, with
a positive two-dimensional Hausdorff measure H2.S/, let B" :D S � .�", 0/ and�" :D � [ S [ B", where " is a small positive number
and the boundary of�" is assumed to be Lipschitz continuous.

Actually, � is the reference configuration of an elastic body (the adherent), whose bulk energy density, denoted by W , is a strictly
convex function of the linearized strain tensor e, which satisfies

9˛,ˇ > 0, s. t. ˛ j�j2 � W.�/ � ˇ
�
1C j�j2

�
, 8� 2 S3�3 (1)

with S3�3 being the space of the 3� 3 symmetric matrices. This is not a gratuitous mathematical generalization of linear isotropic elas-
ticity: bulk energy densities satisfying (1) account for materials with different behavior in tension or compression. They can be obtained
([8], [9, p. 109–117]) by homogenization of micro-cracked linearly elastic media and are good representatives of the macroscopic behav-
ior of concrete, extensively used as adherents in Civil Engineering. The body is clamped on �0 � @�nNS and subjected to body forces f
and surface forces ' on �1 :D @�n.NS [ �0/, with �0 assumed to be of positive two-dimensional Hausdorff measures. The set B" is the
reference configuration of a thin adhesive layer made of an elastic material whose bulk energy density reads as

W�S ,�D.�/ :D �S W1.tr.�//C �D W2.dev.�//

tr.�/ :D �11 C �22 C �33, dev.�/ :D � � 1
3 tr.�/ I

)
(2)

for all � 2 S3�3, where I is the identity matrix, �S and �D are positive numbers, W1 and W2 are strictly convex and satisfy

8i 2 f1, 2g, 9˛i > 0, 9ˇi > 0, s. t. ˛i

ˇ̌
� i
ˇ̌2
� Wi.�

i/ � ˇi

�
1C

ˇ̌
� i
ˇ̌2�

, 8.�1, �2/ 2 R�S3�3. (3)

Moreover, we assume that there exist two C1,1 functions W1,2
i , i D 1, 2, strictly convex positively homogeneous of degree 2 on R and

S3�3, respectively, such that for each i D 1, 2, there exist positive real numbers ci , ˛1i and ri in Œ1, 2/withˇ̌
Wi.�i/ �W1,2

i .�i/
ˇ̌
� ci

�
1C j�ij

ri
�

, 8.�1, �2/ 2 R � S3�3,

.DW1,2
i .�1

i / � DW1,2
i .�2

i // �
�
�1

i � �
2
i

�
� ˛1i

ˇ̌
�1

i � �
2
i

ˇ̌2
, 8.� l

1, � l
2/ 2 R � S3�3, l D 1, 2,

)
(4)

where DW1,2
i denotes the Frechet derivative of W1,2

i . Note that considering W�S ,�D instead of the classical
�

2
.tr.e//2 C � jej2 is a

slight generalization of the isotropic linearly elastic case. As the mathematical treatment is similar, this generalization seems to us useful
because it may concern materials with different behaviors both in tension and compression and also for hydrostatic and deviatoric
straining. This is precisely the case of adhesive bonded joints where the adhesive is filled with fibers or nanoparticles [10] and of the
third body in tribology [11]. Actually, there should be minor changes by replacing the growth condition of order 2 by a growth condition
of order p in .1,1/.

The adhesive is clamped along S�" :D �"e3 C S and not subjected to forces. Here, we will consider the case when the
mechanical constraint between the adhesive and adherents is not necessarily pure adhesion but is described by a surface energy
density h satisfying

(H1) h is a nonnegative convex lower semi-continuous function in R3 such that h.0/ D 0.

Note that this assumption is satisfied by either a continuous function like 1
p j � j

p, 1 � p < 1 or a nonsmooth function like the
indicator function IC of a closed convex subset C of R3 containing 0. An important practical example of such constraints is when
h.v/ D �ˆp.Ov/CIE.v3/, where � is a nonnegative number, E is a closed interval ofR containing 0, andˆp D ap j � j

p, ap > 0 if p 2 Œ1,1/,
ˆ1 D IC , C a closed convex subset ofR2 containing 0. The constraint implies bilateral contact when E D f0g, unilateral contact without
penetration and with limited play when E D Œ0, ı�, ı > 0, and unilateral contact without penetration when E D Œ0, 1/. Moreover,
the case � D 0 indicates that the tangential component of the stress vector always vanishes. When � ¤ 0, the sole realistic situation is
E D f0g, then the constraint corresponds to bilateral contact with a confined and resistance-free sliding when p D 1 or sliding with
Tresca-type resistance when p D 1 or Norton–Hoff type resistance when 1 < p < 1. The particular case p D 1 and E D f0g were
treated in [6].

In the following, for all domain G, H1
� .G;R3/ will denote the subspace of the Sobolev space H1.G;R3/ whose elements vanish on a

smooth enough part � of the boundary @G of G.



Hence, if we assume that .f ,'/ 2 L2.�;R3/ � L2.�1;R3/, it is well known that the equilibrium configuration is given by the unique
solution Nus of the following problem involving the triplet of data s :D .",�S,�D/:

.Ps/ : Min fFs.v/ � L.v/ ; v 2 Vsg

with

Vs :D
n

v 2 L2.�";R3/ ; vC :D vb� 2 H1
�0
.�;R3/, v� :D vbB" 2 H1

S�".B";R3/
o

;

L.v/ :D

Z
�

f .x/ � v.x/ dx C

Z
�1

'.x/ � v.x/ ds, the work of the exterior loading;

Œv� :D�0.v
C/ � �0.v

�/ the jump of displacement across S .or the relative displacement along S/;

Fs.v/ :D

8<:
Z
�

W.e.vC// dx C

Z
B"

W�S ,�D.e.v
�// dx C

Z
S

h.Œv�.Ox// dOx, when h.Œv�/ 2 L1.S/,

C1otherwise.

We use the same symbol �0.w/ to denote the trace on S of any element w of both H1.B";R3/ and H1.�;R3/. To shorten the notations,
in the sequel, we will drop the superscriptC and� for any element v of Vs when no confusion is possible.

Actually, determining numerical approximations of Nus may be tricky because of the high number of degrees of freedom implied by
meshing of the very thin adhesive layer and the ill-conditioned system because of the low stiffness of the glue. Thus, it is of interest
to propose a simpler but accurate enough model for the structure. For that purpose, we will consider s as a triplet of small parame-
ters taking values in a countable set of .0,C1/3 and derive our modeling through a rigorous mathematical study of the asymptotic
behavior of Nus when s goes to its natural limit by taking due account of the low adhesive thickness and stiffness values. Actually, the
following analysis works also when "�S and "�D go to zero, that is, also when the stiffness is not too high. Henceforth, we will make
the following assumption: (

9 Ns 2 f0g � Œ0,1�2, 9 . N�S , N�D/ 2 Œ0,1�2, 9 "0 2 .0,1/ such that

Ns D lim s, . N�S , N�D/ D .lim�S=",�D="/, 0 D lim ." �S , " �D/ , 0 < " < "0.
(5)

As usual, c or C will denote constants independent of s, which may vary from line to line.

3. An asymptotic model

The theory initiated in [2] and completed in [1] states that the thin layer is, when s tends to Ns, asymptotically equivalent to a mechanical
constraint along S whose surface energy density reads as

W N�S , N�D.v/ D W1,2
N�S , N�D

.v ˝S e3/ :D N�SW1,2
1 .tr .v ˝S e3//C N�DW1,2

2 .dev.v ˝S e3// for all v 2 R3, (6)

where

a˝S b D
1

2
.a˝ bC b˝ a/ for all a, b 2 R3.

Of course when N�S and N�D are not finite, N�SW1,2
1 and N�DW1,2

2 are replaced by If0g. The convention1 � 0 D 0 then makes the
uniform writing (6) possible. Note that8̂̂<̂

:̂
tr.v ˝S e3/ D v3,

dev.v ˝S e3/11 D dev.v ˝S e3/22 D �
1

2
dev.v ˝S e3/33 D �

v3

3
,

dev.v ˝S e3/12 D 0, dev.v ˝S e3/˛3 D
v˛
2

, ˛ D 1, 2,

so that

W N�S , N�D.v/ �
˛2

2
N�D jvj

2 for all v 2 R3. (7)

Thus, we expect to be faced with the connection in series of the initial mechanical constraint with surface energy density h and the
limit one described by W N�S , N�D . Because the graph of the connection in series of two constraints is obtained by considering the inverse
of the addition of the inverse of the graph of each constraint, our asymptotic model should involve the inf-convolution or epigraphical
sum g : h # W N�S , N�D of h and W N�S , N�D ([12]) defined by

g.t/ :D h # W�S ,�D.t/ :D inf
˚

h.t0/CW N�S , N�D.t
00/ ; t D t0 C t00, t0, t00 2 R3

�
. (8)

To deal easily with some singular cases, we introduce the additional assumption on h:

(H2) When . N�S , N�D/ 2 f1g � .0,1/ or . N�S , N�D/ 2 .0,1� � f0g, then h.t/ D h^.Ot/C h3.t3/ for all t in R3 with h^, h3 two nonnegative
convex lower semicontinuous functions in R2 and R, respectively, and such that h^.0/ D h3.0/ D 0,



which enables us to establish the following properties of g:

Proposition 3.1
The inf-convolution g D h # W�S ,�D is a nonnegative convex function defined in R3 such that g.0/ D 0 and

(i) when N�D D1: g D h,
(ii) when N�D 2 .0, 1/ and

(a) N�S 2 Œ0, 1/: g is continuous on R3, g � Min
�

h, C j � j2
�

; moreover, for all t in R3, there exists a unique z.t/ in R3 such
that g.t/ D h.t � z.t//CW�S ,�D.z.t//, with z being a Lipschitz continuous function vanishing at 0

(b) N�S D 1 : g.t/ is finite if and only if h3.t3/ is finite and then g satisfies g.t/ � h3.t3/C C
ˇ̌
Ot
ˇ̌2

; moreover, for all Ot in R2,
there exists a unique Oz.Ot/ in R2 such that g.t/ D h3.t3/C h^.Ot � Oz.Ot//C N�DW1,2

2

�
dev

�
.Oz.Ot/, 0/˝S e3

��
, with Oz being a

Lipschitz continuous function vanishing at 0, the previous constant C and the Lipschitz continuity constant of Oz being
independent of t3.

(iii) when N�D D 0 and

(a) N�S D 0: g D 0
(b) N�S 2 .0, 1/: g.t/ D .h3 # N�SW1,2

1 /.t3/ for all t 2 R3, so that g is continuous on R3, g.t/ � Min
�

h3.t3/, C N�S jt3j
2�

and there exists a unique z3.t3/ such that g.t/ D h3.t3 � z3.t3// C N�SW1,2
1 .z3.t3//, with z3 being a Lipschitz function

vanishing at 0
(c) N�S D1: g.t/ D h3.t3/ for all t 2 R3.

The proof of this capital proposition (see our proof of Proposition 3.3) is given in Section 4. Hence, we are in a position to define a
functional in H1

�0
.�;R3/ by

F.v/ :D

8̂̂<̂
:̂
Z
�

W.e.v//dx C

Z
S

g.�0.v//dOx, when g.�0.v// 2 L1.S/,

C1 otherwise.

(9)

Indeed, to deal with the singular case N�S D N�D D 0, hereafter, we make the additional assumption

.H3/ lim sup
s!Ns

"3

�S
D lim sup

s!Ns

"3

�D
D 0; if N�S or N�D D 0, 9˛h > 0, s. t. h.t/ � ˛h.jtj � 1/, 8t 2 R3,

which is essential, in these singular cases, to establish following Proposition 3.2 that mainly describes the asymptotic behavior of .vs/
�

for a sequence such that Fs.vs/ � C. So our asymptotic model will be supplied by the following convergence result:

Theorem 3.1
When s goes to Ns, .Nus/

C strongly converges in H1
�0
.�;R3/ toward the unique solution Nu of

( NP) : Min
n

F.v/ � L.v/ ; v 2 H1
�0
.�;R3/

o
and F.Nu/ D lim

s!Ns
Fs.Nus/.

Actually, this result of variational convergence is a classical consequence of the following three propositions whose proofs can also
be found in Section 4:

Proposition 3.2
For all sequences .vs/ in Vs such that Fs.vs/ � C, there exists a nonrelabeled subsequence such that

(i) .vs/
C weakly converges in H1

�0
.�;R3/ toward some v;

(ii) (a)

Z
B"

jvsj
2 dx � C"2

�
1

�S
C

1

�D

�
,

Z
S
j�0..vs/

�/j2 dOx � C"

�
1

�S
C

1

�D

�
;

(b) when N�S , N�D 2 .0,C1�, �0..vs/
�/ weakly converges in L2.S;R3/ toward some 	, moreover, 	3 D 0 if N�S D 1, 	 D 0

if N�D D 1, and when N�S D N�D D 1, �0..vs/
�/ converges strongly in L2.S;R3/ toward 0; when N�S D 0 or N�D D

0, �0..vs/
�/weak * converges in the space of bounded measures Mb.S;R3/ toward some 	;

(c)

Z 0

�"

tr.e..vs///.., x3/dx3 converges in L2.S/ toward 	3 D tr.	 ˝S e3/ weakly when N�S > 0 and strongly when N�S D 1,Z 0

�"

dev.e..vs///.., x3/dx3 converges in L2.S;S3�3/ toward dev.	˝S e3/weakly when N�D > 0 and strongly when N�D D1,

moreover, 	 belongs to L2.S;R3/when . N�S , N�D/ 2 f0g � .0,1� and 	3 belongs to L2.S/when . N�S , N�D/ 2 .0,1� � f0g.



Proposition 3.3
For all u in H1

�0
.�;R3/, there exists a sequence .us/ in Vs such that .us/

C strongly converges in H1
�0
.�;R3/ toward u and F.u/ �

lim sup
s!Ns

Fs.us/.

Proposition 3.4
For all u in H1

�0
.�;R3/ and all sequences .vs/ in Vs such that .vs/

C weakly converges in H1
�0
.�;R3/ toward u, we have

(i) J.u/ :D

Z
�

W.e.u// dx � lim inf
s!Ns

Z
�

W.e.vs// dx;

(ii)

Z
S

g.�0.u// dOx � lim inf
s!Ns

�Z
S

h.Œvs�/ dOx C

Z
B"

W�S ,�D.e.vs// dx

�
;

(iii) F.u/ � lim inf
s!Ns

Fs.vs/.

Thus, Theorem 3.1 describes the asymptotic behavior of the displacement field inside the adherent. Our limit model, problem( NP),
concerns the equilibrium of the elastic adherent subjected to body forces f and surface forces ' on�1, clamped along�0 and subjected
to a mechanical constraint along S of energy density g, which is the inf-convolution of the genuine energy h with the limit surface
energy W N�S , N�D stemming from the bulk energy of the thin adhesive layer.

When the adhesive is isotropic and linearly elastic, that is, W1 D
1

2
j � j2, W2 D j � j

2, �S D
3�C 2�

3
, �D D �, with � and � being

the classical Lamé coefficients and h.t/ D h^.Ot/C h3.t3/with h3 D Ift3D0g, h^ D
ap

p
j � jp, p 2 Œ1,1/, h^ D IfjOtj�1g if p D1, it is easy

to establish that

(i) lim
�

"
D1: g.t/ D

ap

p

ˇ̌
Ot
ˇ̌p
C Ift3D0g.t3/;

(ii) lim
�

"
D N� 2 .0,1/:

(a) lim
�

"
D N� 2 .0,1/:

p D 1, g.t/ D
1

2
max

�
N�
ˇ̌
Ot
ˇ̌2

, a1

ˇ̌
Ot
ˇ̌�
C
N�

2
t2

3;

1 < p <1, g D h # W N�S , N�D ;

p D1, g.t/ D
N�

2

�
max

�ˇ̌
Ot
ˇ̌
� 1, 0

��2
C
N�

2
t2

3.

(b) lim
�

"
D1:

p D 1, g.t/ D
1

2
min

�
N�
ˇ̌
Ot
ˇ̌2

, a1

ˇ̌
Ot
ˇ̌�
C Ift3D0g.t3/;

1 < p <1, g D h # W N�S , N�D ;

p D1, g.t/ D N�2
�
max

�ˇ̌
Ot
ˇ̌
� 1, 0

��2
C Ift3D0g.t3/;

(iii) lim
�

"
D N� D 0:

(a) lim
�

"
D N� 2 .0,1/, g.t/ D

N�

2
t2

3;

(b) lim
�

"
D1, g.t/ D Ift3D0g.t3/.

From the mechanical standpoint, it is also interesting to determine the graph of the previous constraints, that is, the relation-
ship between the stress vector 
n and the displacement u. We denote the stress tensor and the unit normal outward � along
S by 
 and n, where of course n D �e3, so that the displacement and stress vector have tangential and normal components
given by


T D 
n � .
N/ n, 
N D 
n � n ; uT D u � uN n, uN D u � n.

Hence, the various constraints may also read as

(i) lim
�

"
D1:

uN D 0 and

� p D 1, j
T j � a1, j
T j < a1 H) uT D 0, j
T j D a1 H) 9� � 0; uT D �� 
T ;
� 1 < p <1, 
T D �ap juT j

p�2 uT ;
� p D1, juT j � 1.

the constraint corresponds to a bilateral contact with sliding through Norton–Hoff-like resistance (1 < p < 1) or
Tresca-like (p D 1) resistance or a confined sliding (p D1); the joint has no effect.



(ii) lim
�

"
D N� 2 .0,1/:

� p D 1, j
T j � a1, j
T j < a1 H) 
T D �2 N� uT , j
T j D a1 H) 9� > 0; uT D �� 
T ;

� 1 < p <1, uT D

�
1

N�
C a1�p0

p j
T j
p0�2

�

T , 1

p C
1

p0 D 1;

� p D1, 
T D N�max .juT j � 1, 0/ uT
juT j

;
and

(a) lim
�

"
D N� 2 .0,C1/:


N D �
�
N�C 2 N�

�
uN, the constraint corresponds to an elastic pull-back, nonlinear for the tangential component and

linear for the normal one;

(b) lim
�

"
D 1:

uN D 0, the constraint corresponds to a bilateral contact with sliding through nonlinear resistance.

(iii) lim
�

"
D 0:

(a) lim
�

"
D N� 2 Œ0,C1/:


T D 0, 
N D N� uN , the body is tangentially free and subjected to a normal linear elastic pull-back;

(b) lim
�

"
D1:


T D 0, uN D 0, that is, a free bilateral contact occurs.

Recall that the laws of case (ii) are used for numerical or theoretical regularization goals [13, 14].
These results were obtained in [6] for p D 1, but the structure of the density of the limit constraint as an epigraphical sum was not

observed. This last point seems important for the mechanical interpretation of the mathematical analysis and its conclusions.
Another realistic example is when h^ D 0, h3 D IŒ0,T�, T very large which will supply a so-called normal compliance law, which

permits a slight penetration in the half-space fx3 � 0g but with a stiff normal pull-back; it corresponds to the penalization methods in
numerical contact mechanics [14].

Remark 3.1
The coercivity assumption (H2) on h when N�S D N�D D 0 was made to obtain boundedness in L2.S,R3/ of �0.v�s / for any sequence
such that Fs.vs/ � c. But this condition prohibits the very frequent condition of unilateral contact where h3 D Ift3�0g. It has often
been observed that the framework of small strains is not suitable to model soft adhesive joints (especially here where N�S D N�D D 0
suggests very large strains) because it does not take into account interpenetration condition. A first classical remedy is to remain in the
framework of small strains, but to include in the formulation of (Ps) a global interpenetration condition like

.�0.v
�//3.bx/ � �" for a.e.bx 2 S. (10)

With this additional assumption, the case h.t/ D h^.Ot/C Ift3�0g.t3/may be treated because a sequence with bounded Fs.vs/will satisfy

.�0..vs/
C//3 � .�0..vs/

�//3 � �".

so that the boundedness of
R
�

ˇ̌
e..vs/

C/
ˇ̌2

dx implies the boundedness of �0..vs/
C/3 in L2.S/ and consequently that of �0..vs/

�/3.
Then the limit constraint with energy density g will be the inf-convolution of h and W N�S , N�D augmented by Ift3�0g.

It is interesting to improve the modeling by studying the asymptotic behavior of the adhesive layer, which was only suggested in [6].
First, we have

Proposition 3.5
If N�S , N�D 2 .0,1/, then, when s goes to Ns, �0..Nus/

�/weakly converges in L2.S;R3/ toward N	 such that

g.�0.Nu/.Ox// D h
�
�0.Nu/.Ox/ � N	.Ox/

�
CW N�S , N�D.

N	.Ox// for a.e. Ox 2 S. (11)

Moreover, if h is strictly convex and satisfies

9˛h > 0, 9ph > 1 s. t. h.t/ � ˛h.jtj
ph � 1/, 8t 2 R3,

then �0..Nus/
�/ strongly converges in Lq.S;R3/,8q 2 Œ1, 2/ if ph < 2, 8q 2 Œ1, ph� if 2 � ph < 4, 8q 2 Œ1, 4/ if 4 � ph.

Furthermore, it is shown in the proof of Proposition 3.3 that there exists Z in H1
�

B"0 ;R3
�

such that N	 D �0.Z/ and let R" N	 2
H1

S�"
.B";R3/ be defined by

R" N	.x/ D Z.x/
�

1C
x3

"

�
for all x 2 B". (12)



Theorem 3.2
If N�S , N�D 2 .0,1/, then

lim
s!Ns

Z
B"

W�S ,�D.e..Nus/
� � R" N	// dx D lim

s!Ns
"�2

Z
B"

ˇ̌
.Nus/
� � R" N	

ˇ̌2
dx D 0 (13)

Proposition 3.5 identifies the limit of �0..Nus/
�/ as the field which achieves the minimum defining the epigraphical sum g, while

Theorem 3.2 tells us that .Nus/
� is asymptotically equivalent to a field affine in x3 with a profile on S precisely given by this limit N	.

Hence, from a practical viewpoint, to easily obtain a good approximation of Nus, we suggest first to solve ( NP) (which is standard from

a numerical viewpoint) where N�S and N�D are replaced by the true real values
�S

"
and

�D

"
, and to replace .Nus/

C by its solution NNus. Next,

.Nus/
� may be replaced by R" N	s, with N	s achieving the minimum in the definition of

�
h# NW�S

" ,
�D
"

�
.�0.NNus//.

4. Proofs of the various results

4.1. Proof of Proposition 3.1

The first claim and (i) are obvious [12]. The growth condition in (ii)(a) is obtained by choosing .t0, t00/ D .0, t/, .t0, t00/ D .t, 0/ in
definition (8) of g and taking due account of (3). The existence and uniqueness of z.t/ for all t in R3 stems from the fact that h.t � �/C
W N�S , N�D is a strictly convex coercive function on R3, thus

h
�

tj � z.tj/
�
� h .ti � z.ti//C DW N�S , N�D .z.ti// .

�
tj � z.tj/ � .ti � z.ti//

�
, i ¤ j 2 f1, 2g,

so that (4) yields that there exist positive real numbers N̨ and Ň such that

N̨
ˇ̌
z.ti/ � z.tj/

ˇ̌2
� Ň

ˇ̌
z.ti/ � z.tj/

ˇ̌ ˇ̌
ti � tj

ˇ̌
.

The point (ii)(b) is obtained through the same reasoning but with taking due account of N�S W1,2
1 .v3/ D If0g.v3/ and of (H2).

Eventually, (iii)(a) is obvious because W0,0 D 0, and the splitting assumption h.t/ D h^.Ot/Ch3.t3/ is just made to easily use the previous
reasoning in case (b) and to note that g.t/ D inf

˚
h^.Ot � Ov/C h3.t3/; Ov 2 R2

�
in case (c).

4.2. Proof of Proposition 3.2

Point (i) is an obvious consequence of the coercivity of W and of the Korn inequality. Moreover, if M3 denotes the set of all 3�3 matrices,
a Korn inequality like

jrvjL2.B" ;M3/
� CK je.v/jL2.B" ;S3�3/ for all v 2 H1

S�".B";R3/ (14)

with CK independent of " holds for all " < "0, because it suffices to use the Korn inequality in H1
S�"0

.B"0/ for the extension of v by 0 into
B"0nB". Hence, the standard inequality Z

B"

jvsj
2 dx � "2

Z
B"

j@3.vs/j
2 dx (15)

implies Z
B"

jvsj
2 dx � C2

K "
2

�
1

3˛1�S

Z
B"

�S W1.tr.e..vs//// dx C
1

˛2�D
intB"�D W2.dev.e..vs//// dx

�
, (16)

while the last part of (ii)(a) stems from the other standard oneZ
S
j�0..vs/

�/j2 dOx � "

Z
B"

j@3.vs/j
2 dx (17)

which gives Z
S
j�0..vs/

�/j2 dOx � CK

�
"

3�S

1

˛1

Z
B"

�S W1.tr.e..vs//// dx C
"

�D

1

˛2

Z
B"

�D W2.dev.e..vs//// dx

�
. (18)

Hence, there exists a nonrelabeled subsequence which converges in L2.S;R3/weakly when N�S , N�D 2 .0,1/ and strongly to 0 when
N�S D N�D D1. When N�S D N�D D 0, the stated convergence result is true by taking due account of the additional coercivity property
(H3) of h and the previously established point (i).

To complete the proof, it suffices to use the Cauchy–Schwarz inequality and to go to the limit in the identitiesZ
S

p.Ox/ =ie3 � �0..vs/
�/.Ox/ dOx D

Z
B"

p.Ox/ =i � e.vs/.x/ dx C

Z
B"

div.p =i/ � .vs/.x/ dOx, i D 1 � 4,

with

=1 D I,=2 D e1 ˝S e3,=3 D e2 ˝S e3,=4 D e1 ˝ e1 C e2 ˝ e2 � 2e3 ˝ e3,



p infinitely differentiable with compact support in S
and the inequalities �Z

B"

p =1 � e.vs/ dx

�2

� C.p/
"

�S

1

˛1

Z
B"

�S W1.tr.e.vs/// dx�Z
B"

p =j � e.vs/ dx

�2

� C.p/
"

�D

1

˛2

Z
B"

�D W2.dev.e.vs/// dx, j D 2, 4.�Z
B"

div.p =j/ � vs dx

�2

� C.p/ C2
K "

2

�
"

3�S

1

˛1

Z
B"

�S W1.tr.e.vs/// dx

C
"

�D

1

˛2

Z
B"

�D W2.dev.e.vs/// dx

�
, j D 1, 4.

4.3. Proof of Proposition 3.3

It suffices to consider the case when F.u/ < 1. Let us consider the case N�D D 1, we may choose .us/
C D u, .us/

� D 0. Next, when
. N�D, N�S/ 2 .0,1/ � Œ0,1/ we proceed as follows. Any u in H1

�0
.�;R3/ can be continuously extended in R3

C
:D

˚
x 2 R3 ; x3 > 0

�
by a field Qu belonging to H1.R3

C
;R3/. According to point (ii)(a) of Proposition 3.1 and a result of nonlinear interpolation ([15] p. 137),

	 :D z.Qu/ is an element of H1=2.S;R3/ so that there exists a continuous lifting Z of 	 into H1
S�"0

.B"0 ;R3/. Let R" 	 defined by

R" 	.x/ D Z.x/
�

1C
x3

"

�
, 8x 2 B". (19)

Clearly, R" 	 belongs to H1
S�".B"/ and

e .R" 	/ .x/ D
�

1C
x3

"

�
e.Z/.x/C Z.x/˝S

e3

"
, 8x 2 B", (20)

Z
B"

jR" 	.x/j
2 dx � C

�
"

Z
S

ˇ̌
	.Ox/

ˇ̌2
dOx C "2

Z
B"

jrZ.x/j2 dx

�
(21)

because of Z
B"

ˇ̌
Z.x/ � 	.Ox/

ˇ̌2
dx � "2

Z
B"

jrZ.x/j2 dx (22)

Let us 2 Vs such that .us/
C D u, .us/

� D R" 	. The convexity and the growth conditions (3) satisfied by W1 and W2 imply [16] that
there exist �1 and �2 such thatˇ̌

Wi.�
1
i / �Wi.�

2
i /
ˇ̌
� �i

ˇ̌
�1

i � �
2
i

ˇ̌ �
1C

ˇ̌
�1

i

ˇ̌
C
ˇ̌
�2

i

ˇ̌�
8.� l

1, � l
2/ 2 R � S3�3, l D 1, 2 (23)

and consequently, ˇ̌
W1,2

i .�1
i / �W1,2

i .�2
i /
ˇ̌
� �i

ˇ̌
� i

1 � �
i
2

ˇ̌ �ˇ̌
� i

1

ˇ̌
C
ˇ̌
� i

2

ˇ̌�
8.� l

1, � l
2/ 2 R � S3�3, l D 1, 2 (24)

Hence, the Cauchy–Schwarz inequality givesˇ̌̌̌Z
B"

�
W�S ,�D.e.us// �W�S ,�D.	.Ox/˝S

e3

"
/
�

dx

ˇ̌̌̌
� C max.�S ,�D/

	Z
B"

ˇ̌̌ �
1C

x3

"

�
e.Z/C

�
Z.x/ � 	.Ox/

�
˝S

e3

"

ˇ̌̌2
dx


 1
2

�

(
"C

Z
B"

�
1C

x3

"

�2
je.Z/j2 dx C

Z
B"

jZj2 .x/

"2
dx C

Z
S

ˇ̌
	.Ox/

ˇ̌2
"

dOx

) 1
2

� C max.�S ,�D/

�Z
B"

jrZj2 dx

� 1
2

"C

R
S

ˇ̌
	.Ox/

ˇ̌2
dOx

"
C

Z
B"

jrZ.x/j2 dx

! 1
2

,

so that

lim
s!Ns

Z
B"

W�S ,�D.e.us//dx D lim
s!Ns

Z
S

W�S ,�D.	.Ox/˝S
e3

"
/dx

D

Z
S

W N�S , N�D.	.Ox//dOx .



Thus, Z
S

g .�0.u// dOx D

Z
S

�
h .�0.u/ � 	/CW N�S , N�D.	/

�
dOx

D lim
s!Ns

�Z
S

h.Œus�/dOx C

Z
B"

W�S ,�D.e.us//dx

�
Z
�

W.e.u//dx D lim
s!Ns

Z
�

W.e.us//dx .

When . N�D, N�S/ 2 .0,1/�f1g, the proof is similar but, now, because of point (ii)(b) of Proposition 3.1, .us/
�.x/ D

�
OZ.Ox/, 0

� �
1C

x3

"

�
for all x in B", where OZ is a suitable lifting of Oz.1�0.eu//.

Eventually, when N�D D 0, we proceed as previously but, according to point (iii) of Proposition 3.1, with O	 D1�0.Qu/, and 	3 D �0.Qu/3

when N�S D 0, 	3 D z3 .�0.Qu/3/when N�S 2 .0,1/, and 	3 D 0 when N�S D1.

4.4. Proof of Proposition 3.4

The first assertion is a classical consequence of the convexity of W . As (iii) is an obvious consequence of (i) and (ii), it remains to prove (ii).
If N�D D N�S D 0, each term is simply minorized by 0 because Proposition 3.1 states that g D 0. In the other cases, we may assume

that the infimum limits are finite.
First, if we define W1,2

�S ,�D in the same way as W1,2
N�S , N�D

(9) by replacing N�S and N�D by �S and �D, then, when N�S , N�D 2 .0,1/, the
Hölder inequality with assumption (4), the Jensen inequality and Proposition 3.2 successively imply

lim inf
s!Ns

Z
B"

W�S ,�D .e.vs// dx D lim inf
s!Ns

Z
B"

W1,2
�S ,�D

.e.vs// dx

� lim inf
s!Ns

Z
S

W1,2
N�S , N�D

�Z 0

�"

e.vs/ dx3

�
dOx

�

Z
S

W N�S , N�D.	/ dOx.

(25)

To obtain the previous result when one element of f N�S, N�Dg, say N�S , belongs to f0,1g, we simply have to minorize W�S ,�D.e.vs// by
�DW2.dev.e.vs/// and use the previous reasoning for�DW2.dev.e.vs/// instead of W�S ,�D.e.vs//, and similarly if N�D belongs to f0,1g.
If both N�S and N�D belong to f0,1g, by Propositions 3.1 and 3.2 , it suffices to minorize by 0.

Next, when N�D, N�S 2 .0,1�, Proposition 3.2 and a standard argument of sequential weak L2.S;R3/ lower semi-continuity yieldZ
S

h .�0.u/ � 	/ dOx � lim inf
s!s

Z
S

h .Œvs�/ dOx. (26)

If N�S D 0, by expressing h in terms of its Legendre–Fenchel transform h�, so thatZ
S

h .Œvs�/ dOx �

Z
S
.�0..vs/

C/ � �0..vs/
�/ � '.Ox/ dOx �

Z
S

h�.'.Ox// dOx, 8' 2 C10 .S;R3/,

then (26) is a mere consequence of Proposition 3.2. If N�D D 0, by taking into account (H1) and minorizing h by h3, the previous
reasoning gives Z

S
h3 ..�0.u/ � 	/3/ dOx � lim inf

s!s

Z
S

h .Œvs�/ dOx. (27)

Thus, (25), (26), and (27) and Proposition 3.1 imply (ii).

4.5. Proof of Theorem 3.1

Classically [12], pooling the previous propositions implies all the claims of Theorem 3.1 except the strong convergence in H1
�0
.�,R3/

which (see for instance [17] where such a more or less well-known argument is used) stems from the Korn inequality and the
additional fact that J.Nu/ D lim

s!Ns
J.Nus/, the mapping q 7�!

R
�

W.q/dx being strictly convex and coercive on L2.�,S3�3/. In fact,

Proposition 3.4 gives

lim sup
s!Ns

J.Nus/ D lim sup
s!Ns

�
Fs.Nus/ �

	Z
B"

W�S ,�D.e.Nus//dx C

Z
S

h.ŒNus�/dOx


�
� lim

s!Ns
Fs.Nus/ � lim inf

s!Ns

	Z
B"

W�S ,�D.e.Nus//dx C

Z
S

h.ŒNus�/dOx



� F.Nu/ �

Z
S

g.�0.Nu//dOx

D J.Nu/ � lim inf
s!Ns

J.Nus/.



4.6. Proof of Proposition 3.5

It has been established in the proof of Proposition 3.4 thatZ
S

�
h. �0 .Nu/ � N	 /CW N�S , N�D.

N	/
�

dOx � lim inf
s!Ns

�Z
S

h.ŒNus�/dOx C

Z
B"

W�S ,�D.e.Nus// dx

�
,

As

lim
s!Ns

�Z
S

h.ŒNus�/ dOx C

Z
B"

W�S ,�D.e.Nus// dx

�
D lim

s!Ns
. Fs.Nus/ � J.Nus/ /

D F.Nu/ � J.Nu/

D

Z
S

g.�0.Nu//dOx,

the first result stems from the very definition of g and Proposition 3.1.
Finally, in the proof of Proposition 3.4, it has also been shown thatZ

S
W�S ,�D.

N	/dOx � lim inf
s!Ns

Z
B"

W�S ,�D.e.Nus//dx,

hence,

lim sup
s!Ns

Z
S

h.ŒNus�/dOx D lim
s!Ns

�Z
S

h.ŒNus�/dOx C

Z
B"

W�S ,�D.e.Nus//dx

�
� lim inf

s!Ns

Z
B"

W�S ,�D.e.Nus//dx

�

Z
S

h.�0.Nu/ � N	/dOx

� lim inf
s!Ns

Z
S

h.ŒNus�/dOx,

which establishes the last claim because �0..Nus/
C/ converges strongly in Lq.S,R3/,8q 2 Œ1, 4/, toward �0.Nu/ by the Sobolev

embeddings.

4.7. Proof of Theorem 3.2

Let us consider the scaling S"v of any field v, defined in B", such that

bS"v.Oy, y3/ D
1

"
Ov.Oy, "y3/, .S"v/3 .Oy, y3/ D v3.Oy, "y3/ for all y 2 B1

and for all w in H1.B"0 ;R3/, let e.", w/ defined by

e.", w/˛ˇ D "
2 e˛ˇ .w/ , e.", w/˛3 D " e˛3 .w/ , ˛,ˇ 2 f1, 2g and e.", w/33 D e33 .w/ .

Arguing as in the second part of the proof of Proposition 3.5 yields

lim
s!Ns

Z
B"

W�S ,�D.e.Nus//dx D

Z
S

W N�,S , N�D.
N	/dOx,

so that (4) implies Z
B1

W1,2
N�S , N�D

. N	 ˝S e3/dy D lim
s!Ns

Z
B1

W1,2
N�S , N�D

.e .", S" Nus//dy. (28)

Using Proposition 3.2 and 3.4, with vs :D � .Nus/
� C .1 � �/ R" N	, 0 < � < 1, and the previous scaling giveZ

B1

W1,2
N�S , N�D

. N	 ˝S e3/dy � lim inf
s!Ns

Z
B1

W1,2
N�S , N�D

. e." , S"
�
� Nus C .1 � �/ R" N	

�
/dy

D lim inf
s!Ns

Z
B1

W1,2
N�S , N�D

. �e
�
" , S" Nus/C .1 � �/ N	 ˝S e3

�
/dy

(29)

because of (24) and (20)–(22). Hence (28), (29), and the strict convexity of W1,2
N�S , N�D

yield that e .", S" Nus/ converges almost everywhere in

B1 toward N	 ˝S e3 (see Lemma 4.7, the proof of Theorem 4.9, and pages 272–273 in [17] for the details). Now, by using the coercivity of
W1,2

1 and W1,2
2 (deduced from (3) and (4); Lemma 4.8 page 273 and again the proof of Theorem 4.9 of [17]), we have

lim
s!Ns

Z
B1

ˇ̌
e .", S".Nus// � N	 ˝S e3

ˇ̌2
dx D 0.

A change of scale and (20)–(22) give



lim
s!Ns

Z
B"

W�S ,�D.e.Nus/ � R" N	/dx D 0,

while the last assertion stems from (16).

5. A variant

A trend in Tribology is to consider that a very thin “third body” is involved during the contact of two deformable bodies [11]. This third
body is made from very small parts of matter pulled out from the bodies in the course of the first contacts. Of course, such a third
body has a far lower mechanical strength than those of the genuine ones, so the modeling of [1] involving a very soft layer may also be
suitable to describe this situation, and complements have been given in [18–20] where dissipative behaviors were treated.

Actually, this trend is improved by considering that in the third body, there are small layers in the vicinity of the bodies in contact
with even more downgraded properties. To account for this, we consider the following simplified situation where we assume that a
third body lays between an elastic body and a rigid support.

We shall use the notations and assumptions introduced in the previous sections except if explicitly noted. Now, B" is the reference
configuration of the third body perfectly bonded along S�" on a rigid support and perfectly stuck to the elastic body occupying� as
reference configuration. We assume that the third body is made of two perfectly bonded elastic parts. The reference configuration of
the previously mentioned very small layer inside the third body is Bı , 0 < ı << ", while its bulk energy density is .2ı/p�1k, where k is
a strictly convex function satisfying

9p > 1, 9˛3, ˇ3 > 0 ; ˛3 j�j
p � k.�/ � ˇ3

�
1C j�jp

�
for all � 2 S3�3

9k1,p strictly convex and p-positively homogeneous such that

9r 2 Œ1, p/; jk.�/ � k1,p.�/j � c
�
1C j�jr

�
for all � 2 S3�3,

9>=>; (30)

according to [1]; the factor .2ı/p�1 is chosen so that a limit surface energy k1,p.� ˝S e3/ is supplied.
The reference configuration of the remaining part of the third body is B"nBı , and its bulk energy is the density W�S ,�D introduced

in Section 2. Hence, finding the equilibrium position of the structure made of the elastic adherent and the third body, still submitted to
the forces .f , '/ and clamped along � [ S�", involves a new parameter ı. Let 
 D .s, ı/ D .", �S ,�D, ı/. We now assume

9 N
 2 f0g � Œ0,1�2 � f0g, . N�S , N�D/ 2 Œ0,1�2, 9"0 > 0 such that

N
 D lim 
 , . N�S , N�D/ D lim
�
�S
"

, �D
"

�
, 0 D lim ."�S , "�D/ , 0 D lim ı

"
, 0 < " < "0.

)
(31)

Given the reflexive Banach space W� ,p defined by

p � 2, W� ,p D
n

u 2 H1
�0[S��

.�";R3/ ; e.u/ 2 Lp.Bı ;S3�3/
o

p < 2, W� ,p D
n

u 2 W1,p
�0[S��

.�";R3/ ; e.u/ 2 L2.�"nBı ;S3�3/
o

;

juj� ,p D je.u/jL2.�"nBı ;S3�3/ C je.u/jLp.Bı ;S3�3/

9>>=>>; (32)

and the strictly convex, continuous and coercive function F0� on W� ,p such that

F0� .v/ D

Z
�

W.e.v// dx C .2ı/p�1

Z
Bı

k.e.v// dx C

Z
B"nBı

W�S ,�D
.e.v//dx for all v 2 W� ,p,

then the problem of finding an equilibrium configuration�
P 0�
�

: Min
˚

F0� .v/ � L.v/ ; v 2 W� ,p

�
has a unique solution Nu0� . We aim to study the asymptotic behavior of Nu0� when 
 tends to N
 in order to provide an asymptotic model
simpler than

�
P 0�
�
, where numerical difficulties clearly may occur due to a kind of two-scale meshing.

Because, asymptotically, the energy inside the layer Bı is equivalent to a surface energy
R

S k1,p.Œv�˝S e3/dOx when ı goes to zero and
ı is far lower than ", we guess that we are in a situation close to that studied in Sections 3 and 4, where h will be replaced by h0

h0.t/ :D k1,p.t˝S e3/ for all t 2 R3. (33)

That is why, in order to simplify the mathematical analysis, we have considered here that there is only one very thin layer
inside the third body. A more realistic situation should involve a second layer occupying B"nB"�ı0 , 0 < ı0 << ", and an
analysis similar to the following, but somewhat more technical, may be performed in the spirit of the next section. Hence, we
make on h0 the previous assumptions (H2)–(H3) made on h so that g0 :D W N�S , N�D # h0 will have the same properties (Propo-
sition 3.1) as g; moreover, to simplify the presentation, we also assume . N�S , N�D/ 2 .0,C1/2, and the asymptotic model is
provided by



Theorem 5.1
When 
 goes to N
 , Nu0� strongly converges in H1

�0
.�;R3/ toward the unique solution Nu0 of

.P 0/ : Min
n

F0.v/ � L.v/ ; v 2 H1
�0
.�,R3/

o
where

F0.v/ D

	 R
�

W.e.v// dx C
R

S g0.�0.v// dOx when g0.�0.v// 2 L1.S/;
C1 otherwise.

As in Section 2, this result of variational convergence is a consequence of the following three propositions:

Proposition 5.1
For all sequences .v� /C in W� ,p such that F0� .v� / � C, there exists a subsequence not relabelled such that

(i) .v� /C weakly converges in H1
�0
.�;R3/ toward some v,

(ii) (a)

Z
B"nBı

j.v� /
�j2 dx � C"2

�
1

�S
C

1

�D

�
(b) �ı0 ..v� /

�/, the trace of .v� /
� on S�ı identified with an element of L2.S;R3/ weakly converges in L2.S;R3/ toward some

	0.

(c)

Z
Bı

jv� j
pm dx � C ımin.1, pm�1/ where pm D min.p, 2/.

Proposition 5.2
For all u in H1

�0
.�;R3/, there exists a sequence .u� / in W� ,p such that .u� /C strongly converges in H1

�0
.�;R3/ toward u and F0.u/ �

lim sup
�!N�

F0� .u� /.

Proposition 5.3
For all u in H1

�0
.�;R3/ and all sequences .v� / in W� ,p such that .v� /C weakly converges in H1

�0
.�;R3/ toward u, we have

(i) J.u/ :D

Z
�

W.e.u// dx � lim inf
�!N�

J..v� /
C/,

(ii)

Z
S

g0.�0.u// dOx � lim inf
�!N�

�Z
B"

.2ı/p�1 k.e.v� // dx C

Z
B"nBı

W�S ,�D.e.v� //dx

�
,

(iii) F0.u/ � lim inf
�!N�

F0� .v� /.

First, the proofs of Propositions 5.1 and 5.3 follow the lines of those of Propositions 3.2 and 3.4 with .B", S�", S/ replaced firstly by
.B"nBı , S�", S�ı/ and secondly by .Bı , S�ı , S/while taking due account of the classical inequalityZ

Bı

jv� j
pm dx � 2pm�1

�
ı

Z
S
j�0.v� /j

pm dOx C ıpm

Z
Bı

jrv� j
pm dx

�
(34)

and of Z
Bı

jrv� j
pm dx � C

Z
Bı[�

je.v� /j
pm dx

derived from the Korn inequality applied to min.1, 1C x3
`
/v� , ` small enough.

Next, to prove Proposition 5.2, it suffices, with respect to the proof of Proposition 3.3, to introduce liftings U and Z0 of �0.u/ and 	0

into H1.B"0 ;R3/, 	0 achieving the minimum in the definition of g0.�0.u// and to define R0
",ı.u, 	0/ by

R0",ı.u, 	0/ :D

8̂<̂
:
�
1C x3

ı

�
U.x/ � x3

ı
Z0.x/, if 0 > x3 > �ı,�

1C x3Cı
"�ı

�
Z0.x/, &; if �ı > x3 > �".

Then if .u� /� D R0
",ı.u, 	0/, the arguments used in the proof of Proposition 3.4 work to obtain

lim
�!N�

Z
B"nBı

W�S ,�D.e.us/
�/ dx D

Z
S

W N�S , N�D.	
0/ dOx.

Moreover, because e..u� /
�/ D

�
U � Z0

�
˝S

e3

ı
C
�

1C
x3

ı

�
e.U/ �

x3

ı
e
�

Z0
�
, the same arguments, but using the convexity and, now,

the growth condition of order p for k (see for instance [1]), give

lim
�!N�

�Z
B"nBı

.2ı/p�1 k.e..u� /
�// dx

�
D

Z
S

k1,p
�
.�0.u/ � 	

0/˝S e3

�
dOx D

Z
S

h0
�
�0.u/ � 	

0
�

dOx.



The proof is completed by taking .u� /C D u.
As in Section 3, it is possible to determine the asymptotic behavior of Nu0� in the third body

Theorem 5.2
When 
 goes to N


(i) �ı0 .Nu
0
� /weakly converges in L2.S;R3/ toward N	0 such that

g0.�0.Nu
0//.Ox/ D h0.�0.Nu

0//.Ox/ � N	0.Ox/C NW N�S , N�D.
N	0.Ox// for a.e. Ox 2 S.

(ii)

lim
�!N�

�Z
Bı

ıp�1 k.e.Nu0� � R0",ı.Nu
0, N	0/// dx C

Z
B"nBı

W�S ,�D.e.Nu
0
� � R0",ı.Nu

0, N	0/// dx

�
D lim
�!N�

�
ı�p

Z
Bı

ˇ̌
Nu0� � R0",ı.Nu

0, N	0/
ˇ̌p

dx C "�2

Z
B"nBı

ˇ̌
Nu0� � R0",ı.Nu

0, N	0/
ˇ̌2

dx

�
whose proof is similar to those of Proposition 3.5 and Theorem 3.2. Thus, to easily obtain a good approximation of Nu0� , we first suggest

to solve .P 0/ where N�S and N�D are replaced by the true real values
�S

"
and

�D

"
and to replace .Nu0� /

C by its solution NNu0� . Next, .Nu0� /
�

may be replaced by R0
",ı.
NNu0� , N	� /, N	� achieving the minimum in the definition of

�
h0 # W �S

" ,
�D
"

� �
�0.NNu0� /

�
.

6. Two adherents imperfectly bonded to a thin joint

6.1. Setting out the problem

The problem of the imperfect bonding of two linearly elastic adherents to a thin soft linearly elastic isotropic joint can be stated as
follows. Let� be a domain of R3 with a Lipschitz boundary, with its intersection with fx3 D 0g being a domain S of R2 with a positive
two-dimensional Hausdorff measure. Let "0 be a positive number and �˙ :D � \ f˙x3 > 0g; for all " < "0, let �˙" :D �˙ ˙ "e3,
�" :D �C" [ �

�
" , B" :D S � .�", "/, S˙" :D S ˙ "e3, then �˙" is the reference configuration of each linearly elastic adherent, while

B" is that of the adhesive joint. The bulk energy densities of the adherents and of the adhesive are W and W�S ,�D , respectively, as in
Section 2, and they satisfy (1)–(4). The mechanical contact constraints along S˙" are assumed to be described by two surface energy
densities h˙ satisfying the assumptions of Section 2. If �˙0 and �˙1 are two complementary parts of @�˙ n S, with H2.�

C
0 / > 0, we

assume that the structure S made of the two adherents and of adhesive layer is clamped along �˙0" :D �˙0 ˙ "e3, subjected to body
forces in�" only of density f" and to surface forces on �˙1" :D �˙1 ˙ "e3 of density '" where

f".x/ D f .Ox, x3 C " sgn x3/, f 2 L2.�;R3/

'" D g.Ox, x3 C " sgn x3/, ' 2 L2.�˙1 ;R3/.

Thus, finding equilibrium configurations for S leads to the problem

.Ps/ minfFs.v/ � Ls.v/ : v 2 Vsg

with 8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

Vs :D fv 2 L2.�" [ B";R3/ : v˙ :D vb�˙" 2 H1

�˙0"
.�˙" ;R3/, vI :D vbB" 2 H1.B";R3/g,

Ls.v/ D

Z
�"

f".v dx C

Z
�
C
1"[�

�
1"

'".v dH2,

Fs.v/ :D

(P
˙

R
�˙"

W.e.v˙// dx C
R

B"
W�S ,�D.e.v

I// dx C
P
˙

R
S˙"

h˙.Œv�˙" / dOx when h˙.Œv�˙" / belongs to L1.S˙" /

C1 otherwise

(35)

where e denotes the symmetrical part of the gradient in the sense of distributions of the open sets�˙" and B", respectively, and

Œv�˙" :D ˙
�
�˙" .v

˙/ � �˙" .v
I/
�

(36)

is the jump of displacement across S˙" (the relative displacement along S˙" /) where the same symbol �˙" stands for the trace operator
on S˙" on both H1.�˙" ;R3/ and H1.B";R3/.

With the additional assumption

.H4/

8̂̂̂̂
<̂
ˆ̂̂:

i/ 9pC � 1, 9˛C > 0 s.t. hC.t/ � ˛Cjtjp
C
8t 2 R3

ii/H2.�
�
0 / > 0

or

ii/0 9p� � 1, 9˛� > 0 s.t. h�.t/ � ˛�jtjp
�
8t 2 R3 and

Z
��

f .�dx C

Z
��1

'.� dH2 D 0 8� 2 R,

with R denoting the space of rigid displacements, we have



Proposition 6.1
Problem Ps has a unique solution Nus.

The proof is given in Section 6.3. In the following section, we intend to describe the asymptotic behavior of Nus when s goes to Ns.

6.2. Asymptotic behavior of Nus

Here, the density associated with the limit mechanical constraint will be defined by

g.t/ :D inf
n

hC.tC/CW N�S , N�D.t
I/C h�.t�/ : tC, tI, t� 2 R3, tC C tI C t� D t

o
. (37)

Note that in this section, N�s :D lim�S=2", N�D :D lim�D=2". Actually, we will simply indicate what could be the asymptotic modeling in
the case of two linearly elastic adherents not perfectly bonded to a thin soft linearly elastic isotropic joint by avoiding lengthly (but not
too difficult) discussions that occur when the magnitude of the Lamé coefficients differs from that of the thickness. Moreover, to simplify
the discussion of the properties of g and the proof of Proposition 6.4, we make an additional realistic and convenient assumption on
the structure of the densities h˙, and we strengthen assumption .H4/ so that from now on the following is assumed:

.H5/

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

.i/ N�D :D lim
�D

2"
2 .0,C1/, N�S :D lim

�S

2"
2 .0,C1/,

.ii/ h˙.t/ D h˙^
�
Ot
�
C h˙3 .t3/ 8t 2 R3, where h˙^ satisfies

9˛˙,ˇ˙ > 0, 9p˙ � 1, ˛˙jOtjp
˙
� h˙^ .Ot/ � ˇ

˙jtjp
˙
8Ot 2 R2

and h˙3 is the indicator function of a closed bounded interval I˙ of R containing 0,
.iii/ pC > 1 and

R
��

f .� dx C
R
��1
'.� dH2 D 0 8� 2 R when H2

�
��0

�
D 0.

Hence, g is a well-defined function which obviously satisfies

Proposition 6.2
Function g is a nonnegative strictly convex function in R3 such that

(i) g.0/ D 0, g.t/ � min.Cjtj2, h˙.t// 8t 2 R3,
(ii) 8t 2 R39Š.zC.t/, zI.t/, z�.t// 2 .R3/3 s.t. zC.t/C zI.t/C z�.t/ D t and

g.t/ D hC.zC.t//CW N�S , N�D.z
I.t//C h�.z�.t//.

To be in a position to state the convergence result, we introduce a kind of translation operator T", linear continuous from
H1

�
C
0"

.�C" ;R3/ � H1
��0"
.��" ;R3/ into H1

�0
.� n S;R3/ defined for all u D .uC, u�/ by

.T"u/.x/ D u˙.x ˙ "e3/ 8x 2 �˙, (38)

then we have

Theorem 6.1
When s goes to Ns, T" Nus strongly converges in H1

�0
.� n S;R3/ toward the unique solution Nu of

. NP/ minfF.v/ � L.v/ : v 2 H1
�0
.� n S;R3/

and F.Nu/ D lim Fs.us/with

F.v/ D
R
�

W.e.v// dx C
R

S g.Œv�/ dOx,
Œv� D �0.vC/ � �0.v�/,
L.v/ D

R
�

f .v dx C
R
�
'.v dH2,

with the same symbol �0 standing for the trace operator from H1.�˙;R3/ into L2.S,R3/.

As in Section 3, this convergence result stems from the following three propositions:

Proposition 6.3
Let p˙m :D min.p˙, 2/, then for all sequence .vs/ in Vs such that Fs.vs/ � Ls.vs/ � C, there exists v in H1

�0
.� n S;R3/, 	˙ 2 Lp˙m .S;R3/

and a nonrelabeled subsequence such that

(i) T"vs weakly converges in H1
�0
.� n S;R3/ toward v,

(ii) �C" .v
I
s/, identified with an element of L2.S;R3/, converges weakly in Lp˙m .S;R3/ toward 	C,

��" .v
I
s/, identified with an element of L2.S;R3/, weak * converges in Mb.S;R3/when p� D 1, weakly converges in Lp�m .S,R3/when

p�" > 1, toward 	�,

(iii)

Z "
�"

e.vI
s/.., x3/ dx3 converges weakly in L2.S,R3/ toward .	C � 	�/˝s e3.



Proposition 6.4
For all u 2 H1

�0
.� n S;R3/, there exists a sequence .us/ in Vs such that T"us weakly converges in H1

�0
.� n S;R3/ toward u and F.u/ �

lim sup Fs.us/.

Proposition 6.5
For all u 2 H1

�0
.� n S;R3/ and all sequences .vs/ in Vs such that T"vs weakly converges in H1

�0
.� n S;R3/ toward u, we have

(i) J.u/ :D
R
�

W.e.u// dx � lim inf
R
�"

W.e.vs// dx;

(ii)
R

S g.Œu�/ dOx � lim inf
�R

S˙"
h˙.Œvs�

˙
" / dOx C

R
B"

W�S ,�D.e.v
I
s// dx

�
;

(iii) F.u � lim inf Fs.vs/.

Theorem 6.1 describes the asymptotic behavior of the displacement field inside the adherents. Problem . NP/ concerns the equilibrium
of the elastic adherents occupying �˙ subjected to body forces f and surface forces ' on �1, clamped along �0 and linked by a
mechanical constraint along S of energy density g, which corresponds to the connection in series of the constraints of densities h˙ and
that stemming from the limit behavior of the adhesive joint.

To be in a position to propose a simplified but accurate enough model for the structure S , we also study the asymptotic behavior
of the adhesive. The following result can be established similarly to Proposition 3.5 and Theorem 3.2.

Theorem 6.2
When s goes to Ns, then

(i) �˙" .
NuI

s/weakly converges in L2.S;R3/ toward 	˙ such that g.ŒNu�/ D h˙.˙.�0.Nu˙/� 	˙/CW N�S , N�D.	
C � 	�/, moreover, if h˙ is

strictly convex, �˙" .
NuI

s/ converges strongly in Lq.S;R3/ for all q 2 Œ1, 2/;
(ii) lim

R
B"

W�S ,�D.e.u
I
s � R".	C � 	�// dx D lim "�2

R
B"

R
B"
juI

s � R".	C � 	�/j2 dx where
R".	C � 	�/.x/ D

1
2

�
zC.	C/.Ox, jx3j/C z�.	�/.Ox,�jx3j/

�
C x3
"

�
zC.	C/.Ox, jx3j/ � z�.	�/.Ox,�jx3j/

�
, 8x 2 B",

with z˙.	˙/ being a continuous lifting of 	˙ into H1

S˙"0

.B˙"0
;R3/, B˙"0

D B"0 \ f˙x3 > 0g.

Theorem 6.2 identifies the limit of �˙" .
NuI

s/ as the fields which achieve the infimum, defining the epigraphical sum g and state that NuI
s

is asymptotically equivalent to a field affine in x3 with a profile on S˙" given by 	˙.
Hence, in practice, to easily obtain a good approximation of the behavior of Nu, we first suggest to consider the solution NNu of . NP/

where N�S and N�D are replaced by the true real values �S=2" and �D=2" and next to replace Nus by NNus defined by

NNu˙s .Ox, x3/ D NNu.Ox, x3 	 "/ 8x 2 �˙" ,
NNuI

s D R".	Cs � 	
�
s / in B",

	s achieving the infimum in the definition of g.ŒNNu�/ but where N�S and N�D are replaced by �S=2" and �D=2".

6.3. Proof of the previous results

6.3.1. Proof of Proposition 6.1. Clearly, Fs � Ls is a strictly convex and lower semi-continuous function on Vs, where

jvj2s :D

Z
�˙"

je.v/j2 dx C

Z
B"

je.v/j2 dx C

Z
S˙"

jŒv�˙" j
2 dOx

turns it into a Hilbert space (when H2.�
�
0 / > 0 the integral on S�" may be omitted). But as a quadratic growth for h˙ is too restrictive

from the mechanical standpoint, the result is obtained by directly proving that any sequence .vn/ in Vs such that Fs.vn/ � Ls.vn/ � C
does satisfy

There exists a nonrelabeled subsequence which converges weakly in Vs toward some v. (39)

Obviously, vCn and vI
n are bounded in H1.�C" ;R3/ and H1.B";R3/=R, while assumption (H4)(ii) or (H4)(ii)’ implies that v�n is bounded in

H1.��" ;R3/ or in H1.��" ;R3/=R. Consequently, there exist a nonrelabeled subsequence .vn/ in Vs and a sequence .�I
n, ��n / in R2 with

��n D 0 in case (H4)(ii), such that
� vCn converges weakly in H1.�C" ;R3/ toward vC, �C" .v

C
n / converges strongly in L2.SC" ;R3/ toward �C" .v

C/,
� .vI

n, v�n / C .�
I
n, ��n / converges weakly in H1.B";R3/ � H1.��" ;R3/ toward .wI, w�/, and .�˙" .v

I
n C �

I
n, /, ��" .v

�
n C �

�
n // converges

strongly in L2.S˙" ;R3/ � L2.S�" ;R3/ toward .�˙" .w
I/, ��" .w

�//.
Assumption (H4)(ii)’ yields that for a nonrelabeled subsequence of the previous one, �˙" .v

I
n/weak ? converges in Mb.S

C
" ;R3/; hence,

�I
n D vI

n C �
I
n � vI

n weak ? converges in Mb.S
C
" ,R3/ and also strongly in L2.B";R3/, because R is finite dimensional. Therefore, there

exists vI in H1.B",R3/ such that vI
n converges weakly in H1.B";R3/ toward vI, and �C" .v

I
n/ converges strongly in L2.SC" ;R3/ toward

�C" .v
I/. Thus, nothing more has to be performed to establish (39) in the case (H4)(ii)’ .

Assumption (H4)(ii)’ implies that a nonrelabeled subsequence of the previous ones weak ? converges in Mb.S�" ;R3/ at least, and we
obtain the expected result by reproducing the same previous reasoning involving rigid displacements and taking due account of the
last part of (H4)(ii)’ .



6.3.2. Proof of Proposition 6.3. First point (i) is obvious when H2.�
�
0 / > 0 by using the Korn inequality in �C and ��. Anyway,

because of the second part of (H5)(iii), there exists a sequence ��s in R.�� D 0 when H2.�
�
0 / > 0) such that, up to a subsequence,

T".vCs , v�s C �
�
s / weakly converges to some Nv in H�0.� n S;R3/ and consequently such that �0.T".vCs , v�s C �

�
s // strongly converges

in L2.S;R3/ toward �0.Nv˙/. The additional assumption pC > 1 in (H5)(iii) implies that, for a nonrelabeled subsequence, �C" .v
I
s/weakly

converges in LpCm .S;R3/ toward some 	C and consequently (we recall that N�S , N�D 2 .0,C1/):Z
B"

j.vI
s/3j

pCm dx � "

Z
S"

j.vI
s/3j

pCm dOx C "pCm

Z
B"

je.vI
s/j

pCm dx � C", (40)

Z
S
j

Z "
�"

e.vI
s/dx3j

2 dOx � 2"

Z
B"

je.vI
s/j

2 dx � C. (41)

Hence, in (41) there exists a nonrelabeled subsequence such that
R "
�"

e.vI
s/.., x3/ dx3 converges weakly in L2.S;S3�3/ toward some eI,

which can be identified as to be of the form eI D .	C � 	�/˝S e3 as follows. First, going to the limit on the identityZ
S

�Z "
�"

e.vs/ dx3

�
.�.Ox/
i dOx D �

Z
B"

vi
s. div .�
i/ dx C

Z
S

�
�C" .v

I
s/ � �

�
" .v

I
s/
�

.�
 ie3 dOx,


 i :D ei ˝S e3, i D 1, 2, 3, 8� 2 C1c .S/, where �˙" .v
I
s/ are identified with an element of L2.S;R3/, and by using (40), one deduces that

�C" .v
I
s/� �

�
" .v

I
s/ has a limit 	C � 	� in the sense of distributions which belong to L2.S;R3/, and such that eI

i3 D .	
C � 	�/i , i D 1, 2, 3.

Next, as Z "
�"

e˛ˇ.v
I
s/ dx3 D e˛ˇ

�Z "
�"

vI
s dx3

�
,

we simply have to establish that
R "
�"

vI
s dx3 converges to zero in the sense of distributions. The trick consists of combining the identity

@3.v
I
s/˛ D 2e˛ˇ.v

I
s/ � @˛.v

I
s/3

and an integration by part in the identityZ
S
�.Ox/

�Z "
�"

.vI
s/˛ dx3

�
dOx D 2"

Z
S
��C" ..v

I
s/˛/ dOx C

Z
S
�.Ox/

Z "
�"

�Z x3

"

@3.v
I
s/˛ dt

�
dx3dOx.

which then becomesZ
S
�.Ox/

�Z "
�"

.vI
s/˛ dx3

�
dOx D 2"

Z
S
��C" ..v

I
s/˛/ dOx C

Z
S
�.Ox/

Z "
�"

�Z x3

"

2e˛ˇ.v
I
s/ dt

�
dx3dOx C

Z
S
@˛�.Ox/

Z "
�"

�Z x3

"

.vI
s/3 dt

�
dx3dOx.

The first term in the right hand arm clearly tends to zero, and according to the Hölder inequality and (41) and (40), respectively, each of
the last two terms tend to be zero.

Finally, when H2.�
�
0 / D 0, we deduce that �0..T".vCs , v�s //

�/ converges in the sense of distributions so that T".0, ��s /
� converges

in the sense of distributions and consequently strongly converges in L2.S,R3/. Therefore, �0..T".vCs , v�s //
�/ converges strongly in

L2.S,R3/, which implies that T".vCs , v�s /
� converges weakly in H1.��;R3/ and ��" .v

I
s// weak ? in Mb.S;R3/ and, of course, possibly

weakly in LpCm .S,R2/ if p� > 1.

6.3.3. Proof of Proposition 6.4. If Fs.us/ < C1, there exists 	˙ in Lp˙m .S,R3/ such thatZ
S

g.Œu�/ dOx D

Z
S

hC.�0.u
C/ � 	C/ dOx C

Z
S

W N�S , N�D.	
C � 	�/ dOx C

Z
S

h�.	� � �0.u
�// dOx.

For any � � 0 let �˙	 in C10 .S;R3/ be such that j�˙	 � 	
˙j

Lp˙m .S,R3/
� � and 		 defined by O	˙	 D O�

˙
	 , while .	˙	 /3 is the projection of

.�˙	 /3 on I˙. We have 	˙	 2 W1,1.S;R3/ � H1=2.S;R3/ and j	˙	 � 	
˙j

Lp˙m .S,R3/
� C�, so that, the field us of Vs defined by

us.x/ D

(
u.x 	 "e3/ in �˙"
R".	
C
	 � 	

�
	 /.x/in B"

does, because of (H5), satisfy

�
R
�"

W.e.us// dx D
R
�nS W.e.u// dx,

� lim sup
R

B"
W�S ,�D.e.us// dx �

R
S W N�S , N�D.	

C � 	�/ dOx C O.�/,

� lim sup
R

S˙"
h˙.Œus�

˙
" / dOx �

R
S h˙.˙.u˙ � 	˙// dOx C O.�/,

by arguing as in [19].



6.3.4. Proof of Proposition 6.5 and Theorem 6.1. First, we may proceed as in Proposition 3.5 by taking due account of Propositions 6.2
and 6.3, and then arguments similar to those involved in the proof of Theorem 3.1 work.
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