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ABSTRACT 

An accurate treatment of non-uniformities is required in many applications involving radiative 

heat transfer in gaseous media. Usual techniques to handle path non-uniformities rely on 

simplifying assumptions, such as scaling or correlation of gas spectra. Those approximations 

are usually accurate but may also fail to provide accurate results, especially when large 

temperature gradients are considered. The objective of the present work is to show that this 

problem can be treated rigorously. The proposed method can be applied to any arbitrary 

narrow band model. It is based on some results from Polynomial Chaos’ framework and 

copulas theory. Although the mathematical derivation may appear sophisticated, applying the 

method is straightforward. It is shown that adding only one coefficient to any uniform narrow 

band model (for a simple case involving a non-uniform column discretized into two uniform 

sub-paths) allows to achieve almost LBL accuracy for radiative heat transfer calculations. The 

technique is described and applied to some “severe” test cases from the literature      

KEYWORDS: gas radiation, polynomial chaos, copulas, Cutteridge-Devyatov polynomial 

chaos, l-distribution, water vapor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. INTRODUCTION 

Many approximate models are available in the literature to treat radiative heat transfer in non-

uniform gaseous media. The so-called Line-By-Line technique accounts for each line of the 

absorbing species at high spectral resolution. It is widely recognized as the most accurate 

approach. Nevertheless, it is computationally too expensive to be applied in many practical 

situations involving multi-dimensional geometries, such as encountered frequently in many 

industrial and academic applications. Accordingly, and despite the large increase in terms of 

computational resources observed in the recent years, its use still remains restricted to the 

definition of reference calculations against which more computationally efficient approaches 

can be assessed. 

Over narrow bands, there are two main categories of approximate models. Statistical Narrow 

Band (SNB) approaches [1,2] are based on a simplified representation of the absorption 

spectrum: spectral lines are assumed to have their centers randomly located inside the interval 

and their individual contributions to the total absorption are assumed to be uncorrelated. 

Several SNB models are available in the literature. They are based on different mathematical 

forms for the distributions of the linestrengths. The formulation proposed by Malkmus [3] 

was shown in Ref. [4] to be the most reliable for applications in combustion. The other class 

of models, usually referred to as k-distribution approaches, was originally proposed by 

Ambartzumian [5]. It mainly consists of a reordering of the wavenumber axis with respect to 

the values taken by the absorption coefficient. Over this reordered axis, the absorption 

coefficient varies smoothly. Accordingly, this process enables to transform any integral over 

wavenumbers - over which the absorption coefficient varies very quickly - into an integral 

over a reordered wavenumber scale for which computationally efficient integration schemes 

based on low order numerical quadratures can be used.  

Although the two previous categories of models provide very accurate estimates of the 

radiative properties of gases over uniform paths, they require additional assumptions for 

applications in non-uniform media. The most common are the Curtis-Godson (CG) 

approximation [6] in the frame of SNB models and the Correlated-k (C-k) assumption [7] in 

the case of k-distributions. More details about those two approximate treatments of non-

uniformities can be found, for instance, in Refs. [2,6-8]. These methods usually provide 

reliable estimates of the radiative properties of gases over non-uniform paths. However, they 

may fail to yield accurate results as soon as large temperature gradients are encountered along 

the path. This is physically due to the appearance in the absorption spectrum of so-called hot 

lines at high temperature that breaks the ideal behavior of the spectrum assumed in the CG/C-

k approximations. The treatment of non-uniformities is usually the main source of errors of 

SNB-CG/C-k models.  

The main objective of the present work is to show how it is possible to handle path non-

uniformities without any recourse to simplifying assumptions (such as scaling or correlation 

of absorption spectra). The mathematical derivation is funded on results from generalized 

Polynomial Chaos’ (gPC, [9]) framework. A similar result was provided in the frame of k-

distribution models in Ref. [10] but based on a different approach. Here, the treatment can be 

applied to any arbitrary narrow band model.  

As the aim of this work is primarily to introduce new concepts to treat spectral correlations, 

only “simple” cases for which the non-uniform paths can be modeled as the juxtaposition of 

two uniform gaseous columns will be considered. However, 1/ those cases are known as 

severe, which means that most usual approaches (SNB-CG, C-k) are known to be 



inappropriate. Some tests for which usual approximate treatments of non-uniformities are 

known to work are also investigated to illustrate the generality of the present approach; 2/ the 

extension of the technique to more than two uniform paths is discussed at the end of the 

paper. Some connections with copula’s theory, which is an equivalent way to treat the spectral 

correlation issue, are also emphasized.  

The paper is structured as follows. In the second section, we derive an explicit formula to 

estimate the absorptivity of a non-uniform path (here made of two uniform sub-paths) when 

only the absorptivities of each of the sub-paths are known. This is to our knowledge the first 

time that this kind of exact calculation is reported in the literature. This formula involves a 

series expansion in terms of orthogonal polynomials. The coefficients in the series, 

reformulated in terms of Cutteridge-Devyatov polynomials, can be calculated directly from 

LBL data. A method to estimate those quantities is proposed in Section 3. The same section 

provides some comparisons of the present technique with reference LBL calculations for 

various orders of the series expansion. It is shown to be both accurate and simple to apply 

when the non-uniform path can be represented as the juxtaposition of two uniform sub-paths. 

Several possible techniques to extend the method to more than two uniform sub-paths are 

briefly presented at the end of the paper.       

2. PRINCIPLE OF THE METHOD 

2.1. Polynomial chaos 

Let : nf   be a deterministic function of n variables. If its inputs are random variables 

with prescribed density probability functions, the output of function f  is also a Random 

Variable (RV). Such a RV is said to be second order if its expectancy and variance (or 

equivalently its first and second moments) are finite. The space of second order random 

variables is a Hilbert space over which a scalar product can be defined [9].  

The idea behind gPC is to represent any such RV as a product of one dimensional sequences 

of polynomials orthogonal in the weighted L
2
 sense. This means that over some fixed interval 

I in the real line and for some given weight function  w x  (that corresponds here to the 

density probability function associated with each of the input RVs), any couple of one 

dimensional polynomials 
iP  and jP  inside the same sequence satisfies (here 

   
2

1i

I

P x w x dx     is assumed): 

       i j ij

I

P x P x w x dx    (1) 

where ij  is the Kronecker Delta symbol which is 1 if i j   and 0 if i j . More details about 

orthogonal polynomials can be found in Refs. [11,12]. 

Generalized Polynomial Chaos [9] (gPC) is an extension of the concept of Polynomial Chaos 

introduced by Wiener in Ref. [13] in which only Hermite polynomials were considered. In 

gPC, a wide range of possible polynomial basis can be used (such as the shifted Legendre 

polynomials which are orthogonal in the interval  0,1   with unit weights in the case of 

uniformly distributed inputs – those polynomials will be considered later in this work).  



It was shown by Cameron and Martin [14] that if the output RV f  is second order then its 

representation in terms of orthogonal polynomials converges to f  in the (mean square) L
2
 

sense. gPC is widely used in engineering problems as a tool for uncertainty quantification 

[15], to build metamodels [16], etc.  In this work, this approach is used to derive an exact 

treatment of non-uniformities. This is the aim of the next section.  

2.2. Mathematical formulation  

Let us consider a narrow spectral interval   that:  H1/ is narrow enough to assume that the 

Planck function remains constant, H2/ do not to contain any transparency region of the gas at 

any temperature. In order to simplify the derivation, a mixture of a single absorbing molecule 

(CO2, CO or H2O) with a non-absorbing gas (nitrogen for instance) is considered. Our 

problem can be stated as follows.  

We consider a non-uniform path divided into two uniform sub-paths. The thermophysical 

state in the first sub-path (index 1) is represented by the state vector 1   that encompasses all 

the quantities required to characterize the gas over path 1 (its temperature, total pressure and 

molar fractions in absorbing species). The corresponding spectral absorption coefficient will 

be from now on written  ,1 1    . The second sub-path (index 2) is, in a similar way, 

associated with the absorption coefficient   ,2 2    , where 2  is the state vector that 

characterizes this second sub-path. 

We define, for each uniform element, the narrow band averaged absorptivity of a path of 

length ,  1,2iL i   as: 

    ,

1
1 expi i i iL L d





  






        (2)  

as well as their derivatives with respect to the lengths of the gas paths: 

    , ,

1
expi i i i i iL L L d

 



   






   
   (3) 

Those absorptivities have the following properties, as soon as assumption H2 is correct: P1/ 

they take values between 0 (when 0iL  ) and 1 (when 
iL   ), P2/ they are continuous and 

strictly increasing (see Eq. (3)). Mathematically, they are thus distribution functions [17]. 

They will be referred to as l-distributions in the following. 

The narrow band averaged absorptivity of the non-uniform path 
1 2L L  is defined as [8] (see 

Eq. (19.71) p. 605): 

    12 1 2 ,1 1 ,2 2

1
, 1 expL L L L d

 



   






        (4) 

It may be equivalently rewritten as: 



        12 1 2 1 1 2 2 12 1 2, ,L L L L L L            (5)  

where: 

      12 1 2 ,1 1 ,2 2

1
, 1 exp 1 expL L L L d

 



  






              (6) 

Following Eq. (5),  12 1 2,L L  gathers all the information about the spectral correlations. Our 

objective is to estimate this function. 

For this purpose, let us introduce two uncorrelated random variables 
1   and  

2   uniformly 

distributed inside the interval  0,1 . Following properties P1-2, for any value of 

 0,1 ,  1,2i i     we can define a unique length   ,  1,2i il i   as a solution (  i il      is 

allowed) of the following implicit equation: 

     ,

1
1 expi i i i i i il l d





     






            (7) 

The previous relationship produces two new random variables,   ,  1,2i il i  . Each variable 

  ,  1,2i il i   is distributed according to its own l-distribution function i

  . This follows 

directly from their definition Eq. (7) and by application of the so-called inverse 

transformation theorem [17]. This theorem is widely used in Monte Carlo methods. 

Random variables   ,  1,2i il i   can be put inside Eq. (6) to construct a bivariate random 

function of variables 
1   and 

2  as: 

            1 2 12 1 1 2 2 ,1 1 1 ,2 2 2

1
, , 1 exp 1 expC l l l l d

 



        






                  

  (8) 

Now, we can notice that for any    
2

1 2, 0,1 ,     we have:  1 20 , 1C     . This shows 

that: 

  
   

2 2

1 2 1 2 1 2

0,1 0,1

,C d d d d           (9) 

and: 

  
   

2 2

2

1 2 1 2 1 2

0,1 0,1

,C d d d d             (10) 

Accordingly, the “process” that associates to any couple of random variables 
1   and  

2   

uniformly distributed inside  0,1  the random output  1 2,C    is of finite variance. In 



mathematical words,  1 2,C    is said to be second order. Then, following Cameron and 

Martin’s theorem (see Ref. [14]),  1 2,C    can be expanded as an infinite series of 

orthogonal polynomials. This series converges towards the exact RV  1 2,C    in the L
2
 

sense. As the support of each variable 
1   and  

2  is  0,1 , Ref. [9] (see Table 4.1 from this 

paper) suggests the shifted Legendre polynomials  *

nP   (using the notations proposed in 

Ref. [18], in which further results about those polynomials can be found) to represent 

 1 2,C   . Accordingly, we can write: 

      * *

1 2 1 2

0 0

, nm n m

n m

C c P P   
 

 

    (11) 

Coefficients 
nmc  can be calculated by application of the orthogonality property of the 

polynomials (note that variables 
1   and  

2    are uncorrelated, by assumption) as: 

  
 

   
2

* *

1 2 1 2 1 2

0,1

,nm n mc C P P d d        (12) 

This infinite series expansion can be used to represent function  1 2,C    for any value of 

variables  0,1 ,  1,2i i   . 

However, in practice, it is not possible to estimate the infinite set of coefficients 
nmc   and the 

double sum that appears in Eq. (11) has to be truncated at some finite integer order N. This 

means that we can “only” obtain in actual fact an approximation of C as: 

      * *

1 2 1 2

0 0

,
N N

nm n m

n m

C c P P   
 

   (13) 

The accuracy of such a truncated series expansion will be studied later in this paper. 

The main difficulty to apply Eqs. (11-13) is thus to calculate coefficients 
nmc  as defined by 

Eq. (12). This problem is addressed in the next section.  

 

2.3. Evaluation of the coefficients in the series expansion 

From the previous developments, it would be at first sight natural to use the orthogonality 

property of shifted Legendre Polynomials - viz. to apply Eq. (12) directly - to estimate the 

coefficients in the series. However, we have chosen here to represent this series in terms of 

Cutteridge-Devyatov Polynomials (CDPs, see [19] and references therein for more details 

about those polynomials). As will be seen later, using this basis of polynomials allows several 

simplifications that are useful for practical applications. 



As shown in Ref. [19], any polynomial at an integer order N  defined over the interval  0,1  

can be written in terms of Cutteridge-Devyatov Polynomials (CDPs)  . We can thus 

reformulate Eqs. (11,12) using CDPs as: 

            
1 1

1 2 1 2

0 0

, 0,0
N N

N N

nm n m

n m

C C    
 

 

       (14) 

where [19]: 

 
 

 
2

2

1 2

1 2 1 2

1 20,1

,
n m

nm

C
d d

 
    

 




   (15) 

It can be readily shown (see Appendix for details) that those coefficients can be rewritten as: 

 
       

 
2

1
2

1 1 1 2 2 2 12 1 1 2 2

1 2 1 2

1 2 1 20,1

,
n m

nm

l l l l
d d

L L L L

       
    


                   
     

  (16) 

Coefficients 
nm  can thus be calculated directly from LBL data as the application of Eq. (16) 

only requires evaluating narrow band averaged absorptivities of uniform and non-uniform 

paths. This can be readily done as soon as LBL data are available.  

Furthermore, the first term at the RHS in the second equation is null since, from Eqs. (6,8), 

   12 1 20,0 0, 0 0C L L     . 

Representation (14) will be referred to as the Cutteridge-Devyatov Polynomial Chaos (CDPC) 

expansion of C at order N in the following. 

A simple and accurate method to handle the calculation of coefficients 
nm  from LBL data by 

a direct application of Eq. (16) is provided in Section 3. 

2.4. Mathematical analysis of the role played by function C in the treatment of spectral 

correlations 

In order to explain why it is possible to treat spectral correlations using the series expansion 

(11), let us focus on function      
2

: , 0,1 0,1C u v    in which u and v are real numbers. 

Following Eq. (11), this function is defined as: 

          * *

12 1 2

0 0

, ,nm n m

n m

C u v c P u P v l u l v
 



 

        (17) 

in which the coefficients 
nmc  remain the same as in Eq. (12).  

We can apply this function to the couple of deterministic inputs  1 1u L   and 

 2 2v L  . In this case, from the definition of functions ,  1,2il i   (see Eq. (7)), it follows 



that    1 1 1 1 1l u l L L      and    2 2 2 2 2l v l L L     . We can now replace those 

quantities inside Eq. (17) and write: 

      * *

12 1 2 1 1 2 2

0 0

, nm n m

n m

L L c P L P L   
 

  

 

           (18) 

Eq. (18), together with Eq. (5), thus provides an exact way to handle the calculation of the 

absorptivity over the non-uniform paths 
1 2L L  (what we usually want to estimate in many 

applications) from the values of absorptivities over each of the uniform sub-paths ,  1,2iL i   

(quantities that can be evaluated using any approximate model for uniform media): 

  

     

   

12 1 2 1 1 2 2

* *

1 1 2 2

0 0

,

nm n m

n m

L L L L

c P L P L

  

 

  

 

  

 
 

 

 

        
 (19) 

The simplest way to understand why spectral correlation can be handled by the previous 

series expansion relies on copula’s theory. It is out of the scope of the present work to provide 

a comprehensive depiction of this topic. Interested readers should refer, for instance, to 

Refs. [20,21] for additional details. 

A copula is a mathematical tool that enables to analyse and/or model the dependency between 

random variables. It is not surprising to see this concept appear in the frame of gas radiation 

as the name itself “spectral correlation” suggests it.  

A bivariate copula      
2

: , 0,1 0,1C u v    is mathematically defined [21] as a function that 

links a bivariate distribution to its one-dimensional marginal distribution functions. It has the 

following properties ([21], p. 10): 

P3/  for every      , 0,1 ,  ,0 0, 0u v C u C v     (20) 

P4/  for every  , 0,1u v     ,  C ,1 ,  C 1,u u v v   (21) 

P5/ for 
1 20 1u u     and 

1 20 1v v   ,        2 2 2 1 1 2 1 1, , , , 0C u v C u v C u v C u v     

  (22) 

It was shown by Sklar [22] that for any bivariate distribution  ,H x y  with marginals  F x  

and    ,  , ,G y x y     there exists a copula C   such that: 

      , ,H x y C F x G y     (23) 

Furthermore, if the marginals are continuous, the copula is unique. Reciprocally, if  F x and 

 G y  are two univariate distribution functions and C  is a copula then  ,H x y is a bivariate 

distribution.  



It can be readily checked, by a direct application of the definition of function  12 1 2,L L  (see 

Eq. (6)), that function C as defined by Eq. (17) is a copula. Indeed (using the same notations 

as in the previous section):  

P3/    12 1 2, 0 , 0 0C u v L L      (24) 

    12 1 20, 0, 0C u v L L      (25) 

P4/      12 1 2 1 1, 1 ,C u v L L L u          (26) 

      12 1 2 2 21, ,C u v L L L v          (27) 

P5/ see Appendix   

Accordingly, the series expansion Eq. (17) is the unique representation of C (it is unique 

because the marginals are in our case the l-distributions, viz. the narrow band averaged 

absorptivities over the uniform sub-paths, which are obviously continuous with respect to the 

gas path lengths). This means that the polynomial approximation set by Eq. (14), which was 

obtained through an input-output stochastic modeling using a PC expansion, is also a non-

parametric estimate of this copula. This also explains why the non-uniform approximation 

provided by Eq. (18) - and approximated by Eq. (14) - enables to handle spectral correlations: 

the aim of copulas is precisely to model such a dependency.  

3. APPLICATION 

3.1. LBL data and model parameters 

All the test cases considered in the present work are for H2O-N2 mixtures only. Indeed, as the 

method provides a way to estimate absorptivities of non-uniform paths averaged over narrow 

bands, the technique can be extended to mixtures by assuming, as usual [1-2,8], spectra of 

distinct absorbing molecular species to be uncorrelated. Accordingly, mixtures of absorbing 

species will not be considered here. 

The LBL data used as references consist of high resolution (10
-2

 cm
-1

) spectra based on the 

HITEMP2010 spectroscopic database [23]. Additional details about these reference spectra 

(partition functions, evaluation of line profiles, etc) can be found in Ref. [10]. They are not 

reported again here.  

The steps proposed to evaluate the coefficients 
nm  required for the use of Eq. (14) are the 

following ones: 

1/ evaluate the weights  ,  1,..,i i N   and abscissas  ,  1,..,i i N   associated with the 

Gauss Legendre quadrature translated to the interval  0,1  - order N = 20 was chosen in this 

work. The subroutine to evaluate those coefficients was taken from Ref. [24]. 

2/ for each thermophysical state ,  1,2i i  , calculate the narrow band absorptivities by 

applying their definition Eq. (2) to the LBL dataset. This process is done for 10
4
 values of 

parameter 
iL  (see Eq. (2)) logarithmically scaled between 10

-5
 cm and 10

8
 cm.  



3/ for each set of abscissas ,  1,..,j j N  , evaluate the corresponding lengths 

  ,  1,2, 1,..,i jl i j N    by solving the implicit equation set by Eq. (7). These solutions are 

estimated directly by interpolating (logarithmically with respect to L ) between the two 

closest values of narrow band absorptivities found at the second step of the process. 

4/ then, evaluate the derivatives  1 1 1 1iL l L      ,  2 2 2 2jL l L     
 

 (see Eq. (3)) 

and 
   2

12 1 1 2 2

1 2

,i jL l L l

L L

       
 

 
 (more details about the calculation of this derivative are 

given in Appendix) for 1,..,i N  and 1,..,j N . 

5/ estimate the coefficients 
nm  by application of the following formula (which is the discrete 

form of Eq. (16)): 

 
       

1
2

2 2 12 1 21 1

1 1 1 2 1 2

,N N
j i jin m

nm i j i j

i j

l l ll

L L L L

      
   


 

 

                
     



  (28) 

The full process (starting from the second step up to the application of those coefficients for 

the calculation of the band averaged absorptivity of a non-uniform path) is summarized in 

Figure 1. It can be noticed that coefficients nm do not depend on the gas path lengths. They 

can thus be evaluated once and then stored in tables for later use.  

As soon as coefficients 
nm  are known (up to a prescribed order N, 0 ,n m N   ), they can 

be used inside Eq. (14). Univariate CDPs are then polynomials at order N. Results of 

comparisons are given in the next section. 

3.2. Application 

To illustrate the validity of the present method, several line-of-sight (0 dimensional) examples 

will be considered. In all cases (except case C5 described below), a slab of a gas at high 

temperature radiates through a cold gas at a low temperature. Both columns are at 

atmospheric pressure. Even though the situation is simple from a geometrical perspective, 

those cases are known to be difficult to handle using usual models. Indeed, they were all 

introduced by their respective authors to assess some sophisticated techniques such as: 1/ the 

multigroup approach by Modest and co-workers [25] (see test case C1 below), 2/ the SNB-FG 

(Statistical Narrow Band model with the Fictitious Gas approximation) model by Soufiani et 

al. [26] (case C2); or to illustrate some limits of “simple” non-uniform approximations [4] 

(Case C3). Some other examples are also studied that show that the present approach is 

general. For this purpose, we have considered two other cases: C4 for which the temperature 

gradient is small (200 K) and C5 for which the two columns are at the same temperature but 

the species concentrations are different in the two layers. In these last two kinds of situations, 

the correlated assumption is known to provide accurate results.  

 

 

 



3.2.1. Description of the test cases 

Case C1 was proposed in Ref. [25]. Both layers are at the same total and partial pressures of 

H2O (molar fraction in water vapor is 0.2). The two slabs have the same length 
1 2L L  =50 

cm. The temperatures of the cold and hot layers are 300 K and 2000 K respectively. Results, 

provided in terms of emissivity as defined by Modest in Ref. [27], are depicted in Figure 2 for 

the 6.3 µm band of water vapor. 

Case C2 was described in Ref. [26]. It is representative of a plume signature calculation. The 

two slabs have distinct lengths (100 cm for the hot column, 500 m for the cold one), 

temperature (300 K and 2100 K) and H2O molar fractions (0.01 in the cold layer, 0.08 in the 

hot one). Results, provided in terms of radiative intensities, are shown in Figure 3 for the 

same 6.3 µm band of water vapor as for case C1. 

The next case, C3, was proposed in Ref. [4] to compare various methods (Curtis-Godson, 

Lindquist-Simmons) to extend SNB models from uniform to non-uniform media. It was found 

in this reference that none of the existing technique was able to treat this situation accurately. 

However, this allowed the authors to conclude that among those possibilities, the CG 

approximation was the best, though inaccurate, one. 

Here, the cold and hot layers have a length of 10 cm and 100 cm respectively. The hot gas is 

at 1500 K and the cold one at 500 K. The H2O molar fraction is 0.05 over the cold path and 

0.5 in the hot region. Results are depicted, in terms of radiative intensities, in Figure 4. The 

spectral interval now extends from 1200 cm
-1

 up to 1900 cm
-1

 to comply with the figure 

provided in Ref. [4]. Units for LBL intensities are also the same as used in this reference. 

Case C4 is the same as C1 but the hot layer is at 500 K. Results are shown in Figure 5. 

Case C5 is the same as C1 but both layers are at 2000 K. The molar fraction in the first layer 

is 0.1 and 0.2 in the second one. Results are plotted in Figure 6. 

Each Figure (2-6) consists of the same set of curves. In fact, on each of them, we have 

reported results (in terms of emissivity or radiative intensity) for several approximate models. 

At the top, LBL calculations, used as references, are plotted together with the Uncorrelated 

approximation and C-k models. The Uncorrelated approximation corresponds to the following 

estimate: 

      12,uncorrelated 1 2 ,1 1 ,2 2

1 1
, 1 exp 1 expL L L d L d

 

 

   
 



 

              

  (29) 

As shown in Appendix, it corresponds to the CDPC approximation at order 1. 

The C-k model was built with the same LBL data chosen as references. The quadrature 

described in Section 3.1. (Gauss Legendre at order 20) was used to discretize the g-space. 

This k-distribution model is almost exact (when compared to LBL calculations) in uniform 

situations. 

At the bottom of the Figures, we have depicted the relative errors for several models when 

compared to LBL results for non-uniform calculations. The first one is the k-distribution 

model based on the assumption of correlated spectra (C-k) – it is the same C-k model as 



shown at the top of the figures; the next three curves correspond to the CDPC model proposed 

in this work with three polynomial orders (for each univariate set): 2 (CDPC at order 2), 3 

(CDPC at order 3) and 9 (CDPC at order 9). As explained in Appendix (see Eq. (A.14)), the 

CDPC model at order 2 requires to evaluate only 1 coefficient (
11  ). The number of 

coefficients 
nm   required - per narrow band - for the calculations is 4 at order 3 and 64 at 

order 9. As LBL and k-distributions were found to yield exactly the same results in uniform 

situations (relative errors of the order of 0.1 %), and as our approach only requires the values 

of the absorptivities over uniform paths, LBL absorptivities were used in the CDPC 

calculations. 

3.2.2. Analysis of the results and discussion 

From the analysis of those Figures, the following comments can be drawn: 

- as expected, the uncorrelated approximation is the one that usually performs the worst. The 

correlated approximation is accurate in cases C4 and C5 but fails to provide reliable estimates 

in Cases C1-3. 

- the accuracy of the bivariate polynomial approximation increases with the order of those 

polynomials. At an order N = 9 in each variable, which is the maximum value considered in 

the present work, the method achieves almost LBL accuracy. Furthermore, it can be noticed 

that although low order approximations at N = 2 and N = 3 do not allow very accurate 

estimates of the radiative quantities at a narrow band scale, their accuracy - when the data are 

averaged over wide bands - are in most cases higher (C1-3) or similar (C4-5) to those 

obtained by the usual C-k approach (see Table 1 – it corresponds to relative errors, in %, 

calculated as 100 x (1 – Model / LBL). The same spectra and wavenumber ranges as plotted 

in Figures 2-6 were used. Data were averaged over these spectral intervals – emissivities were 

converted to intensities before to perform the calculations of those relative errors). Indeed, C-

k model provides relative errors that can reach 26.7 % when compared to LBL calculations 

when the CDPC approach at order 2 does not exceed 6.2 %. Moreover, relative errors for the 

CDPC model at order 3 are in any case lower than 1.2 %. When order 9 is considered, the 

approach achieves almost LBL accuracy (relative error is lower than 0.1 % for all the test 

cases considered here).    

In order to investigate this result further, we have considered three additional test cases 

derived from Cases C1 and C2. However, instead of keeping the length of the cold path 

constant, this quantity is allowed to increase from 0 cm up to 150 cm (for Case C1) and from 

500 cm up to 10
6
 cm (for Case C2). Furthermore, results of the various models (radiative 

intensities) are calculated over each narrow band and then averaged over the full spectrum. 

Only the CDPC model at order 2 (which consists of a single coefficient, as noticed in 

Appendix) is considered. Results are plotted in Figure 7 (same as C1), Figure 8 (the 

temperature of the hot gas is 1000 K), and Figure 9 (case C2 – this figure can be compared 

directly with Figure 6 from Ref. [26]). 

It can be noticed that results combining the CDPC model at order 2 with absorptivities of 

uniform paths calculated by a k-distribution approach are also given. As expected, there is no 

significant difference between this model and the one based on absorptivities calculated LBL 

(as used in Figures 2-6). 



From Figures 7-9, it is clear that using the CDPC model at order 2 provides more accurate 

results than the C-k model for calculations over the full spectrum. This confirms the results 

given in Table 1. 

Furthermore, in these cases - that can be considered as extreme in terms of spectral correlation 

-, our approach enables to achieve an accuracy that is comparable to both the so-called 

Multigroup and CKFG approaches. This means that using any accurate model for narrow 

band absorptivities over uniform paths and adding just one coefficient (for a couple of 

thermophysical states) in our method one can obtain results as precise as more sophisticated 

techniques for heat transfer applications. The present method thus outperforms many existing 

models without requiring any simplifying assumption (such as scaling or correlation of gas 

spectra). The main source of error arises from the order of the series expansion. Order 2 

provides accurate results for the evaluation of radiative quantities averaged over the full 

spectrum.  

However, all the calculations considered in this work were for only two uniform sub-paths. In 

many applications, a higher number of such sub-paths is required. In these situations, all the 

theoretical developments provided in this work remain correct. The main difficulty to extend 

the present approach to more general radiative transfer calculations is practical. However, as 

explained below, many possible techniques can be used to solve this problem.     

3.3. Extension of the approach to dimensions higher than 2 

Many papers have been devoted to the generalization of gPC expansions to high dimensions. 

Indeed, the main difficulty for the extension of the present method to more than two RVs is 

that the number of sums (see for instance Eq. (14)) increases exponentially with the number 

of independent RVs (ie in our case of uniform sub-paths) in the parametrization. This implies 

both a significant growth in terms of number of coefficients to estimate but also in terms of 

the computational cost for the numerical evaluation of the multivariate polynomials. This 

issue is referred to as the curse of dimensionality [15]. However, several techniques have been 

proposed in the literature to handle this problem.  

In Ref. [28], for instance, gPC is extended up to a dimension (that would correspond, in our 

case, to a number of distinct thermophysical states) equal to 100 using a sparse PC expansion. 

The method proposed in this reference is likely to enable the extension of this work to more 

general radiative heat transfer problems.  

Another possible approach consists in approximating the high dimensional function C using 

the same technique as used in the Random Sampling - High Dimensional Model 

Representation method (RS-HDMR) [29]. This approach, mostly based on an expansion of 

the function into correlated components of increasing orders, allows approximating high 

dimensional functions (dozens of random input variables can be handled without any neither 

mathematical nor technical difficulties). The principle of this technique is almost the same as 

gPC, but written in a slightly different way [16,29].  

The two previous techniques are funded on the same principle that consists in modeling 

stochastically some input-output relationship. This was also the approach chosen in this work. 

Another possibility would consist in handling the problem directly in terms of distribution 

functions viz. through copula models - a compendium of the existing ones can be found in 

Refs. [20,21]. Then, the difficulty consists of finding which copula model to use. However, as 



noticed in Appendix, copula models based on the so-called FGM (Farlie-Gumbel-

Morgenstern, sometimes referred to as the Eyraud-Gumbel-Morgenstern, EGM, or Eyraud- 

Farlie-Gumbel-Morgenstern, EFGM) family [20] appears to be a relevant choice to initiate 

such a study. A generalization of the FGM family to multivariate distributions can be found in 

Ref. [30].  

Evaluating all those methods in the frame of gas radiation in non-uniform media is scheduled 

as future work.  

However, it should be noticed that the present technique does not have – a priori - for 

objective to replace general purpose approaches, such as the C-k model, for heat transfer 

applications. But it is a relevant candidate for applications that require a high accuracy at 

narrow band scales such as encountered in quantitative spectroscopic analysis (in combustion 

or atmospheric sciences). 

4. CONCLUSION 

A method was proposed for the approximate modeling of the radiative properties of non-

uniform gaseous media. The mathematical derivation was described. It relies on the fact that 

narrow band averaged absorptivities are l-distribution functions. The polynomial chaos 

expansion of the absorptivity of a non-uniform path was performed. The corresponding series 

expansion was shown to correspond to a copula. The copula enables to account for the 

spectral correlation between spectra associated with gases in distinct thermophysical states. 

As the infinite series expansion can only be approximated, low order approximations (at 

orders 2, 3 and 9) were considered. A simple method to estimate the coefficients in the series 

was provided. In contrast with usual models, the approach does not require any simplifying 

assumption (of scaling or correlation of gas spectra). Its main source of inaccuracy arises from 

the order chosen to approximate the series expansion. The non-uniform model was shown to 

be very accurate: at order 9, it achieves almost LBL accuracy. At order 2, the method was 

shown to outperform the usual C-k model for full spectrum radiative heat transfer 

calculations. Extension of the technique to higher dimensions was discussed and is planned as 

future work.  
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FIGURE CAPTIONS 

 

Figure 1. Flowchart for building coefficients in the series expansion and apply them to 

estimate the absorptivity of a non-uniform path. 



 

Figure 2. Narrow band emissivity for the 6.3 µm band - [1000 cm
-1

; 2500 cm
-1

] - of H2O 

calculated by the LBL, uncorrelated, C-k and CDPC (at orders 2, 3 and 9) models. 20 % H2O 

and 80 % N2 at 1 atmosphere. The temperature (lengths) of the cold and hot paths are 300 K 

(50 cm) and 2000 K (50 cm) respectively. 



 

Figure 3. Narrow band radiative intensity for the 6.3 µm band - [1000 cm
-1

; 2500 cm
-1

] - of 

H2O calculated by the LBL, uncorrelated, C-k and CDPC (at orders 2, 3 and 9) models. 1 % 

H2O and 99 % N2 at 1 atmosphere in the cold column. 8 % H2O and 92 % N2 at 1 atmosphere 

in the hot column. The temperature of the cold and hot paths are 300 K (500 m) and 2100 K 

(100 cm) respectively. 



 

Figure 4. Narrow band radiative intensity for the 6.3 µm band of H2O calculated by the LBL, 

uncorrelated, C-k and CDPC (at orders 2, 3 and 9) models. 5 % H2O and 95 % N2 in the cold 

layer; 50 % H2O and 50 % N2 in the hot layer; both layers are at 1 atmosphere. The 

temperature of the cold and hot paths are 500 K (100 cm) and 1500 K (10 cm) respectively. 



 

Figure 5. Narrow band emissivity for the 6.3 µm band of H2O calculated by the LBL, 

uncorrelated, C-k and CDPC (at orders 2, 3 and 9) models. 20 % H2O and 80 % N2 at 1 

atmosphere. The temperature (lengths) of the cold and hot paths are 300 K (50 cm) and 500 K 

(50 cm) respectively. 



 

Figure 6. Narrow band emissivity for the 6.3 µm band of H2O calculated by the LBL, 

uncorrelated, C-k and CDPC (at orders 2, 3 and 9) models. 10 % H2O and 90 % N2 in one 

layer; 20 % H2O – 80 % N2 in the other layer; both layers are at 1 atmosphere. The 

temperature (length) is the same in both columns: 2000 K (50 cm). 



 

Figure 7. Relative errors on full spectrum intensities for various models as a function of the 

length of the cold path (see text for details). 

 



 

Figure 8. Relative errors on full spectrum intensities for various models as a function of the 

length of the cold path (see text for details).  

 



 

Figure 9. Relative errors on full spectrum intensities for various models as a function of the 

length of the cold path (see text for details). 

 



 

Figure 10. LBL, C-k and CDPC (at order 2) models for 4 uniform columns (see text in 

Appendix for details). 

 



 

Figure 11. Accuracy of the CDPC model at order 2 when used with (linearly) interpolated 

spectra. 

 

 

 

  



TABLE  

 

Case 1 - Unc /  

LBL 

1 - C-k / 

LBL 

1 - CDPC at 

order 2 / LBL 

1 - CDPC at 

order 3 / LBL 

1 - CDPC at 

order 9 / LBL 

C1 -6.1 11.0 -0.3 -0.1 <0.1 
*
 

C2 -7.6 26.7 0.4 -0.7 <0.1 
*
 

C3 -19.9 6.3 -2.6 -0.3 <0.1 
*
 

C4 -45.0 4.1 -6.2 -1.2 <0.1 
*
 

C5 -6.8 0.2 -0.5 -0.3 <0.1 
*
 

 

*
: « <0.1 » means <0.1 in absolute value. 

 

Table 1.  Relative errors (in %) for wide band calculations (see text for details) for Cases C1-

5.   

 

 

  



APPENDIX. SOME USEFUL RESULTS 

The objective of this appendix is to provide evidences of some mathematical relationships 

used in the paper. 

Appendix 1. Calculation of some derivatives 

By taking the derivative of Eq. (7), we obtain: 
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The joint derivative of function  1 2,C   can be calculated in a similar way as: 
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It can be rewritten, using the previous relationships: 
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Eq. (16) follows directly from the previous development. 

Furthermore, as 
   2
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,
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 (see above) as soon as assumption H2 is 

true, it follows (from Eq. (3)) that 
 2

1 2
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,
0
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 for any set    

2

1 2, 0,1   . This justifies 

that  1 2,C    has property P5. 

Appendix 2. Some results on moments 

If we put the previous relationships into Eq. (16) and use Eq. (7) we obtain: 
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  (A.4) 

The evaluation of the previous integral can be done analytically at orders (0,0), (0,m ≥ 1) and 

(n ≥ 1,0) by permuting the integral signs.  

Indeed, at order n = 0 and m = 0: 
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Similarly, at orders n  ≥ 1 and m = 0: 
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A symmetrical result can be obtained for 
0m . 

This shows that at order N, 2 N – 1 coefficients over 2N  are known in the polynomial 

expansion. Accordingly,  
2

1N   coefficients need to be evaluated to apply Eq. (14) at order 

N.   

This means that for the CDPC model at order 2 (that requires 4 coefficients 

,  0,1,  0,1nm n m   ) only one coefficient is unknown and needs to be evaluated. This is one 

of the advantages of using CDPs in the present polynomial representation. 

Appendix 3. Some results on CDPs 

Cutteridge-Devyatov polynomials (CDPs) can be evaluated from the following set of 

equations (see Ref. [31]) for more details on how those polynomials are built): 

 
     

1
1

0

N
N N n

k kn

n

u u






     (A.7) 

where: 

    
   

       

! ! 1
1

! 1 ! ! 1 ! 1 ! 1 ! 1

k nN

kn

N k N n k

k k n n N k N n k n


   
 

       
  (A.8) 

They are thus polynomials at order N. 

At order N = 1, the previous relationship provides: 

 
   1

0 u u   (A.9) 

and, at order  N = 2: 
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0 4 3u u u    (A.10) 
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1 6 6u u u     (A.11) 

This provides, when used together with Eq. (14) the following approximations of function 

 1 2,C    : 

- at order N = 1 (CDPC model at order 1): 

          1 1

1 1 2 00 0 1 0 2 1 2,C            (A.12) 

The CDPC model at order 1 thus provides the uncorrelated approximation Eq. (29). The 

copula associated with this expansion is known as the independence copula [20]. 

- at order N = 2 (CDPC model at order 2): 
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It can be simplified into (using the previous definitions of CDPs): 
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In the previous approximation, at order 2, only one unknown coefficient needs to be evaluated 

to allow the computation of C2: 11 . This follows directly from the results given in the 

previous section. When 
11 1 4  ,  2 1 2,C    and  1 1 2,C    are the same. This corresponds 

to the uncorrelated case. 

It should be noticed that Eq. (A.14) does not ensure  2 1 2,C    to be a copula in a general 

frame. Indeed, properties P3 and P4 are obviously true. But the truthfulness of P5 depends on 

the value of 
11   

However, if we put Eq. (A.11) into (A.14) we obtain: 
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This polynomial expansion corresponds to the so-called FGM (Farlie-Gumbel-Morgenstern) - 

or EFGM (Eyraud-Farlie-Gumbel-Morgenstern) - [20] family of copulas if 

11

1
1 36 1

4

 

    
 

 . This inequality was found to be true in cases C1 and C2, but not in 

cases C3-5. This means that in those situations, C2 is not a FGM copula. However, as noticed 

in Table 1, this does not seem to have a strong impact on the quality of the results. Indeed, 

although C3-5 are the cases for which the CDPC model at order 2 performs the worst, its 

results over wide bands are as accurate as the usual C-k model.  

Finally, we can notice that for any integer order N, the polynomial approximation Eq. (14) can 

be written in the following form (similar to (A.15)): 

    1 2 1 2 1 2, 1 ,N NC D          (A.16) 

Indeed, as noticed in Ref. [19], any polynomial    : 0,1 ,P u a b   at order N , where  ,a b  

is some bounded interval on the real line, can be written in terms of CDPs as: 
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where: 
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The previous relationship can be used to write: 
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Accordingly, we may write Eq. (14) as: 
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The first two terms at the RHS can be simplified, using Eq. (A.19), to yield: 
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that is of the same form as Eq. (A.16) if we write: 
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It can be noticed that in the previous equations, the sums start at n = 1 and m = 1. This is a 

direct consequence of Eq. (A.6). Furthermore, following the definition of the CDPs (Eq. 

(A.7)), the quantities 
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1

N
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  and 
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2

N

m 




 are polynomials at order N - 1. The 

mathematical form (A.16) is interesting if the problem is formulated in terms of copulas [20]. 

It arises directly from the properties of the CDPs. 

 

 



Appendix 4. Some thought on the extension of the method to dimensions higher 

than 2. 

The aim of this short section is to discuss the extension of the CDPC method to more than two 

uniform paths. Accordingly, other possible methods, such as those presented in Section 3.3., 

will not be discussed. 

For this purpose we will consider two problems: 1/ does the method using CDPC at order 2 

remain accurate if the number of uniform sub-paths is increased? 2/ how can we apply the 

technique to thermophysical states that are not inside the prescribed states, viz. those used to 

generate the moments - Eq. (28) -. 

In order to study the first problem, we will consider a path subdivided into 4 uniform 

columns. The first one is at 2700 K, the second one at 1900 K, the third at 1100 K and the last 

one at 300 K. All columns contain a mixture of 20 % H2O and 80 % N2. The extension of the 

technique described in the paper to this new case requires (for the CDPC approach at order 2) 

2
4
=16 coefficients, among which 5 are known (as a direct generalization of the results 

obtained for 2 columns). The narrow band averaged absorptivity of the non-uniform path is 

plotted in Figure 10 (all paths have the same length L1 = L2 = L3 = L4 = 10 cm). Results for the 

C-k model are also given. 

From this figure we can conclude that in this case with 4 uniform columns, the CDPC model 

at order 2 is more accurate than the C-k model. The number of coefficients required for 4 

columns remains acceptable (11). For N columns, it is roughly 2
N
 (among which many are 

known).  

The extension of the technique to any thermophysical state was studied by generating 

coefficients for the following couple of states (20 % of H2O and 80 % of N2 at 1400 K and 

1600 K). Then it was assumed that absorption spectra vary linearly with respect to 

temperature inside the interval  1400 ,1600 K  K . We have plotted in Figure 11 results for a 

calculation at 1500 K (this temperature is inside the previous interval). At the top, the 

absorptivity of a uniform path at 1500 K and length 10 cmL  calculated LBL is shown: 

     
1

1 exp 1500LBL L T K L d





  






        (A.23) 

At the bottom, two curves - relative errors when compared to the exact solution given by Eq. 

(A.23) - are depicted: the first one corresponds to a LBL calculation based on the assumption 

of linearity of absorption coefficients with respect to temperature over the interval 

 1400 ,1600 K  K : 
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  (A.24) 

The second one uses the following relationship, which arises directly from Eq. (A.24): 
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 (A.25) 

It can be seen that most of the error - when applying Eq. (A.25) - arises from the linear 

assumption, since the two curves at the bottom are almost the same. This means that using an 

appropriate interpolation scheme (more sophisticated than the simple linear one proposed 

here) is likely to extend the present method to any possible thermophysical state with a higher 

accuracy – which is however acceptable - than obtained here.   

The results provided in these last two figures suggest the following facts: 1/ the approach at 

order 2 can be extended to more than two uniform sub-paths. In the case considered here, it 

provides an accuracy higher than the usual C-k model; 2/ it is possible to extend the technique 

to thermophysical states not included in the set used to estimate the coefficients. This requires 

an appropriate interpolation scheme between spectra from this set.  

Future developments of the method will focus on: 1/ defining the number of thermophysical 

states required to map the full range of possible applications (which has an impact on the 

number of   parameters); 2/ studying the possibility to propose an accurate interpolation 

scheme between the corresponding spectra. 

 


