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Abstract. 

The aim of the present work is to provide a universal theoretical formulation of global methods 

for radiative heat transfer in non-uniform gaseous media. Starting from the definition of an 

arbitrary probability measure on the wavenumber axis, it is shown that no gas reference state is 

required to develop rigorously a full spectrum model, both in uniform and non-uniform media.  

This general formulation, which constitutes a novel mathematical modeling of gas radiation, is 

then applied for: 1/ the theoretical justification of new developments introduced recently in the 

so-called Rank Correlated SLW method in non-uniform media, 2/ emphasizing the differences 

and similarities between the SLW and FSK methods, from the point of view of the way these 

two techniques treat path non-uniformities.  

The theoretical results provided in the present work can also be used to enlighten the concept 

of “spectral correlation”, widely encountered in gas radiation modeling. 
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NOMENCLATURE 

f function of the absorption coefficient 

F k-distribution as defined by Eq. (3) or (4) 

Gr rank transmutation mapping function, Eq. (5) 

h “correlating” function, Eq. (25) 

H Heaviside step function 

I radiative intensity, Eq. (15) 

 bI T  spectral blackbody radiative intensity at temperature T and wavenumber  

 bI T  
4T


  total blackbody radiative intensity, in W,m-2,sr-1 

k absorption coefficient, in cm-1 

L  gas path length, in cm 

P probability  

s abscissa along a radiation path, in cm 

T temperature, in K 

Greek symbols 

 Dirac Delta function

k small increment of values of k, in cm-1

 wavenumber, in cm-1

   spectral absorption coefficient, in cm-1



 gas thermodynamic state vector  = { temperature, species concentrations, total 

pressure}

 positive function used to define a measure on the wavenumber axis 

S  Spearman’s rank correlation coefficient, Eqs. (26)

w weights of the quadratures in Eq. (10)

 random variable uniformly distributed over the interval  0,1   

Subscripts, superscripts 

loc local state along a non-uniform path 

P Planck mean 

 relative to the measure  

ref reference  

i,n quadrature index and order respectively 

m,1,2 index representing a particular thermophysical state of the gas 

 

Notation 
 dGr X x

dX


 represents the value of the derivative of function Gr with respect to X 

evaluated at X = x. It is equivalent to 
   

X x

dGr X x dGr X

dX dX


  
  
 

.



1. INTRODUCTION 

All existing global methods for the radiative properties of gases, such as ADF [1], SLW [2] or 

FSK [3], require the specification of some reference thermophysical state of the gas ref , 

usually called a state vector and that encompasses all the quantities required to define a given 

state of the gas, e.g.,. its temperature, species concentrations and total pressure. The reference 

state is used to « correlate » spectra at different locations along a non-uniform, i.e.,. non-

homogeneous non-isothermal, radiation path. The reference state 
ref  needs to be specified in 

all existing global methods to define reference full spectrum distribution functions (ALBDF in 

SLW terminology), on which all these techniques [1-3] are founded. 

Many approaches [1-3] were proposed during the past decades to choose values for the 

reference state. However, none of them is fully founded on a systematic rigorous theoretical 

derivation. Consequently, it is widely recognized that no universal recommendation, other than 

that based on results obtained on some restricted set of test cases, can be made for general 

radiative heat transfer calculations in non-uniform gaseous media. We will show here that in 

fact no reference thermophysical state is actually required to develop a full spectrum gas 

radiation model. Recourse to sophisticated and mostly theoretically unjustified, but however 

pragmatic, techniques to define these parameters can thus be avoided.  

Indeed, the main objective of the present work is to present a rigorous derivation of a general 

global method of gas radiation based on an arbitrary probability measure on the wavenumber 

axis. It does not require specification of the reference thermophysical state. The mathematical 

evidence is founded on the same tools as introduced in the l-distribution approach [4], i.e., rank 

transmutation maps and copulas that are two concepts taken from probability theory.  

This paper is mostly theoretical.  A number of applications of the theoretical development 

presented here has been presented in Ref. [5], where the Rank Correlated SLW model is 



introduced. Consequently, only limited illustration through examples is included here.  The 

present derivation can serve as a theoretical justification of the « correlated » methods in non-

uniform media based on the assumption of rank correlated or comonotonic spectra which do 

not require specification of the reference state. Connections of the present derivations with the 

Rank Correlated SLW model [5] are emphasized at the end of the document. Ref. [5] provides 

extensive applications of the theoretical results developed in the present work and illustrates its 

relevancy for the building of new and efficient methods of gas radiation. 

Finally, this work also has as its objective the careful introduction of the concept of spectral 

correlation. This problem, together with its engineering treatment, is undoubtedly one of the 

trickiest concepts in gas radiation modeling. Section 3 is specifically dedicated to this topic. 

2. ABSORPTION LINE DISTRIBUTION FUNCTION 

In this section, we consider radiative transfer in a uniform gaseous medium at state   

characterized by the spectral absorption coefficient      . 

In k-distribution methods, gas absorption spectra are treated as random variables with given 

distribution functions. It can be noticed that this statistical view was almost inexistent in the 

early works on k-distribution methods, including Ambartzumian’s work [6]. It only became 

common when the notion of “correlation” between spectra was proposed to treat local variations 

in spectrum arising from gas non-uniformities [7]. “Correlation” is a concept which is 

fundamentally based on a probabilistic view of the problem. 

The general definition of random variables provided, for instance, in Ref. [8] can be 

reformulated in terms of gas spectra as follows: as absorption coefficients are functions of 

wavenumbers, k-distributions are associated with a measure on the wavenumbers axis, e.g., 

widths of spectral intervals. The definition of a measure can be interpreted in Monte Carlo 

terminology as the choice of a method to randomly sample wavenumbers.  



Let us introduce the probability measure over the wavenumber axis as a non-negative 

mathematically integrable function   such that  
0

1d  


 . 

Let  , uniformly distributed over the  0,1   interval and which will be referred to as a “germ”,  

correspond to the output of some random number generator in a Monte Carlo approach. 

Wavenumbers can be sampled with respect to the probability measure   by application of the 

inverse transformation theorem, widely used in Monte Carlo methods [9] as: 

  '      P  (1) 

where the probability with respect to  for any wavenumber '  to be lower than a prescribed 

value   is defined as: 

    
0

' " "d



      P   (2) 

This is illustrated in Figure 1. 

FIGURE 1 HERE 

It is possible to evaluate the probability with respect to measure   for the spectral absorption 

coefficient       to be lower than a given prescribed value k  by: 1/ sampling uniformly 

over the interval  0,1  a large number N of values of ; 2/ calculating the corresponding 

wavenumbers     by solving Eq. (2); 3/ evaluating the absorption coefficients   
  at these 

randomly chosen spectral locations ; 4/ determining the amount  N k of such values that are 

lower than the prescribed limit k.  

The probability  k P  can then be estimated as the ratio   /N k N .  



When N approaches infinity, one then converges toward the following limit: 

        
0

F k k H k d      


   P  (3) 

where H is the Heaviside step function which is 0 if 0k    and 1 if 0k   . It indicates 

the membership of a given wavenumber to the set  : k   . The use of the Heaviside 

function in Eq. (3) mostly formalizes the continuous limit, for large values of N, of the counting 

process used in step 4/. 

By Eq. (3), the Absorption Line Distribution Function (ALDF) with respect to  , that 

corresponds to the k-distribution, is defined. When the measure      b bI T I T   , the 

ALDF is called the Absorption Line Blackbody Distribution function (ALBDF) [2]. 

3.  RANK TRANSMUTATION MAPS AND WEIGHTS 

Now, let us assume that we want to evaluate the following integral, where  f k   is any regular 

function of the absorption coefficient:    
0

bf I T d  


 . Then, according to full spectrum k-

distribution methods: 

        
4

0 0

b

T
f I T d f k dF k 


 



 

   (4) 

where      
 

   4

0 0

1
b b

b

F k H k I T d H k I T d
T I T

   


   



 

      .  

Here,  F F k  represents the fraction of blackbody intensity at temperature T  emitted in the 

spectral regions over which the spectral absorption coefficient       takes values lower 



than k.  F k  is a particular case of function  F k   for which the measure 

     b bI T I T    .  

Let us construct a function, mathematically called a rank transmutation map [10], defined as: 

      1 , 0,1Gr X F F X X

       (5) 

The function Gr maps the interval [0,1] onto itself, and is such that: 

    F k Gr F k
      (6) 

The principle of the definition of the rank transmutation map Gr is illustrated Figures 2 - 4.  

FIGURE 2 HERE 

FIGURE 3 HERE 

FIGURE 4 HERE 

Both sides of Eq. (6) can be differentiated with respect to k to give: 

 
     dGr X F kdF kdF k

dk dk dX


    (7) 

From Eq. (7), it is noted that the function Gr is strictly increasing because  and F F  are two 

distribution functions both increasing with respect to the variable k, and thus that Gr can be 

inverted. 

Eq. (7) can be used inside Eq. (4) to yield: 

 

         

   
 

 

   
 

0 0

0

1

0

b b

b

b

f I T d I T f k dF k

dGr X F k
I T f k dF k

dX

dGr X
I T f k d

dX

 





 


 

 





  



   

 





 (8) 



The last equality in Eq. (8) arises from the inversion of Eq. (5)     1F k Gr F k            

which is related to the inverse transformation theorem.  

Now let us choose  f k  so that Eq. (4) represents the total transmissivity of a gas path of length 

L, e.g.,    expf k k L  (notice that the same method applies to any function of the variable 

k). We obtain in this situation: 

        
 1

0 0

exp expb b

dGr X
L I T d I T k L d

dX
 


   

 
       (9) 

This integral can be approximated using any numerical quadrature of order n  on the  0,1   

interval. If the weights and abscissas of the quadrature are  and i iw x  respectively, we have: 

      
 

 
10

exp exp
n

i

b b i i

i

dGr X x
L I T d I T w k x L

dX
  






      (10) 

Eq. (10) has the same mathematical form as full spectrum weighted sum of gray gases models 

shown as 

        
10

exp exp
n

b b i i

i

L I T d I T a k x L  




       (11) 

but in which the weights are 

 
 i

i i

dGr X x
a w

dX


   (12) 

and where the values of the absorption coefficients  ik x  are defined, from Eq. (5), as the 

solution of: 

      1

i i iGr x F F x F k x

        (13) 

It can be noticed that: 



- if the function      b bI T I T   , which is a measure which defines F , is chosen 

then the previous relationships provide      1Gr X X k X F X  and   which gives 

the same result as full spectrum k-distribution models in uniform media; 

- more generally, if      b bI T I T   , as is for instance used in the so-called LBL 

PMC approach [3] for which the measure on the wavenumber axis is defined as 

 
 

 
0

b

b

I T

I T d

 

 


 

 






, then the method allows formulating the model in a way which 

is similar to common approaches. The only distinction then is that the choice of the 

measure on the wavenumber axis is not the same as these usual global models. 

- if some reference source temperature 0T  is defined, and one chooses 

     0 0b bI T I T   , we obtain the usual FSK and Generalized SLW model weights 

in uniform and non-uniform media [11] as we then have, with the notation 

 
 

   0 0

0 0

1
b

b

F k H k I T d
I T

  


  :  

 
 

 

 

   

 

 1
0

1

0

1

0 0 F k

dF Y F X

dF kdGr X dGr XdY

dX dX dkdF Y F X

dY

 











  
     

  

 (14-a) 

 
 

 

 

   

 

 1
0

1

0

1
00 0 F k

dF Y F X dF Y k

dGr X dGr XdY dY

dX dX dF Y kdF Y F X

dYdY

 













      


  
      

 (14-b) 

Eqs. (14) shows that the weights in generalized SLW (14-a) and FSK (14-b) methods 

are rigorously equivalent, as the only difference between the two approaches lies in the 

mathematical form chosen to write dGr dX . Notice that we have used to write Eq. (14-

a): 



   
 

 
 

 

 

 0

0

0

1dF k dk
F k dk d

dk ddF k

dk

 
   

 



        
  

 (14-c) 

Developments provided in this section show that the measure on the wavenumber axis does not 

explicitly require the definition of some reference Planck temperature, as shown in Eq. (2). This 

reference source temperature is only used in the definition of the probability measure over the 

wavenumber axis, and thus represents only one possible way to sample wavenumbers and 

define probability laws.  This finding is significant, since it relieves global methods 

theoretically from the requirement that a reference state be specified.  

From Eq. (9) it can be readily shown that the differential form of the Radiative Transfer 

Equation, RTE, associated with the present theoretical development is 

 
 

     
 

 
,

, b

dI s dGr X
k I s k I T

ds dX

 
  


     (15-a) 

and the total radiative intensity is  

      
1

0 0

,I s I s d I s d   


    (15-b) 

It is interesting to note that with the specific choice  
 

 

 

 

0

b b

P b

b

I T I T

k I T
I T d

   

 

 
 

 


 



,  

which corresponds to the probability measure used in the so-called LBL Photon Monte Carlo 

method – LBL PMC  [12], one obtains the RTE formulation: 

 
 

     
,

, P b

dI s
k I s k I T

ds


     (15-c) 

where Pk  is the Planck mean absorption coefficient. It should be noted that, in this case, values 

of  k   need to be sampled from 
   b P bI T k I T

F
 

  which is not the usual ALDBF. 



4. EXTENSION TO NON-UNIFORM GASES 

Up to now our analysis has mostly concerned uniform gaseous media. In this section, as more 

than one thermophysical state of the gas will be considered in real applications, we will use the 

following notations: 
m

  will represent the spectral absorption coefficient in the thermophysical 

state m . The corresponding distribution will be written    ,m

mF k F k   . The joint 

distribution for two thermophysical states 1  and 2  will be denoted

   12

1 2 1 1 2 2, , ; ,F k k F k k    . 

4.1. Statistical dependence model 

Let us consider a pair of thermophysical states represented by two absorption coefficients, 
1

   

and 
2

  and choose arbitrarily two positive real numbers 1k  and 2k . As in the previous section, 

we can define the joint probability of the “event”  1 2

1 2 and k k     from Eq. (3) as,  

 

         

     

12 1 2 1 2

1 2 1 2 1 2

0

1 2

1 2

0

,  and F k k k k H k H k d

H k H k d

    

 

      

    





        

  





P P

 (16) 

Then, from the definition of the Heaviside step function, the two following inequalities hold: 

 

       

       

1 2 1 2

1 2 1 2

0
1

1 1 1

1 1 1

0

 and 

 

k k H k H k d

H k d k F k

   

  

      

    







       

    





P P

P

 (17) 

and: 



 

       

       

1 2 1 2

1 2 1 2

0
1

2 2 2

2 2 2
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Eqs. (17-18) can be combined into a single equation: 

       1 2 1 2

1 2 1 2min ; and   k k k k          P P P  (19) 

As soon as one of the two following relations holds    1 2

1 2: :k k         or 

   2 1

2 1: :k k       , then the following relationship is verified:  

       
     
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  



  (20) 

We will focus now our attention on the special case set by Eq. (20), which corresponds to the 

equality in Eq. (19). 

By differentiating Eq. (20) with respect to 1k  for instance, as symmetrical relationships can be 

obtained if we differentiate first with respect to 2k , we find: 
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Using again the definition of the Heaviside step function, these two relationships can be 

summarized into: 
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 (22) 

Then, differentiation of Eq. (22) with respect to 2k  yields: 



 
 

   
   2 12 1 2

1 2 1 22 1

2 1

1 2 1 2

,F k k F k F k
F k F k

k k k k

  

 
  

      
 (23) 

where   is the Dirac delta function. 

This shows that Eq. (23) is valid as soon as one of the two following relationships holds: 

   1 2

1 2: :k k        or    2 1

2 1: :k k       .  

Eq. (23) can be analyzed as follows: the finite increment form of the left-hand side represents 

the probability, divided by the product 1k 2k , for the spectral absorption coefficients 
1

   and 

2

  to be simultaneously inside small intervals of widths 1k   and 2k  around 1k  and 2k . The 

Dirac function at the RHS means that this probability is null almost everywhere except when: 

     2 1

2 1F k F k   (24) 

This last equation thus defines the statistical dependence that exists between the two spectra as 

soon as Eq. (20) holds. Indeed, it means that once a value for 1k  that represents the absorption 

coefficient in the first state  is chosen, then the value of the absorption coefficient in state 2 

cannot be considered as arbitrary but must comply with the implicit equation (24).  

Eq. (24) can be further analyzed using C-curves which are parametric plots, with respect to 

parameter  ,  in the 
1 2,X Y     plane depicting the relationships between spectra [13]. If 

Eq. (24) holds, then the set of points defined implicitly as    2 2 1 1F F     0  which 

characterizes the C-curve corresponds to an increasing function h whose equation is given 

explicitly as:  

        
1

2 1 2 1, where h h k F F k    


      (25) 

It can be observed that: 



- Equality (24) is similar to the implicit equation encountered in full spectrum models, 

involving the ALBDF in the SLW approach, but formulated here in terms of an arbitrary 

measure over the wavenumber axis. 

- If, for instance, the first state (superscript “1”) is called a “reference”, then one obtains 

by Eq. (24) or equivalently Eq. (25) the so-called “reference approaches”,  see Table 1. 

The “correlating” function required in the FSK method is then given explicitly by Eq. 

(25) with the specific choice      b ref b refI T I T    where refT  is a prescribed 

reference source temperature. 

- The “correlating” function h is defined in terms of the     function, see Eq. (25). This 

means that when      b ref b refI T I T   , the h function involves ALBDFs evaluated 

at the same reference source temperature.   

TABLE 1 HERE 

4.2. Relationship with copula’s theory 

Most of the results presented in this section can be obtained directly if one invokes copula’s 

theory [14].  

A two-dimensional copula is a bi-variate probability distribution function 

       , : 0,1 0,1 0,1C X Y    increasing in each of its variables and such that 

   0, ,0 0C Y C X   and    ,1 , 1,C X X C Y Y  . It was shown by Sklar [15] that any bi-

variate distribution function, such as Eq. (16), can be written by combining a copula with the 

distribution functions associated with the single variables, taken separately as 

     12 1 2

1 2 1 2, ,F k k C F k F k  
     .  



Eq. (20) corresponds to the definition of the upper Frechet-Hoeffding bound copula 

   , min ,C X Y X Y  and defines random variables, otherwise known as spectra in k-

distribution methods, which are called comonotonic (for common monotonicity).  

The Spearman rank correlation coefficient measures the non-linear dependency between 

random variables. It can be obtained directly from the copula [16] as: 
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The coefficient S  is equal to 1 in the case of comonotonic variables, i.e., when 
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Comonotonicity thus complies with the original definition of “correlation” between spectra as 

“rank correlation”, as described in Ref. [7] which is, to the best of our knowledge, the first to 

introduce the concept of “correlated” spectra.   

The main interest in thinking of the problem in terms of comonotonicity is that mathematically, 

two random variables are comonotonic if and only if they can be written as strictly increasing 

functions of a single “germ” random variable [17]. This simply means that any absorption 

coefficients at a local states, index loc, along a non uniform path can be obtained from the same 

uniform random variable   over the [0,1] interval as: 



     
1

loc

lock F 


     (27) 

This allows the representation of the statistical dependence between spectra through the use of 

this unique variable  .  As a consequence this avoids recourse to any reference state.  

The so-called “Rank Correlated Generalized SLW model” is essentially founded on this last 

theorem [17]. These developments justify theoretically the approach provided in section 2.1 

from Ref. [5] which does not require the definition of any reference state.  

The present method also generalizes to the full spectrum the technique used over narrow bands, 

over which no reference state needs to be defined but the treatment of non-uniformities is 

however based on the same model of statistical dependence between spectra in distinct states 

as used here.  However, over narrow bands, the formulation is simpler because the most natural 

way to sample wavenumbers is uniformly: no weighting by a Planck function or use of some 

specific     function has a sense, as it would unnecessarily complicate the problem.  

5. THE RANK CORRELATED GENERALIZED SLW MODEL 

It is beyond the scope of the present work to try to define what should be the best choice for 

function    . There are multiple possibilities. However, some of the developments provided 

here were used recently to propose a new formulation of the SLW model that does not require 

the specification of a reference state of the gas. This model, together with its connections with 

the SLW and FSK reference approaches, is described in this section. Details about this new 

SLW technique can be found in Ref. [5]. 

As noticed in Section 2, the Generalized SLW and FSK approaches are rigorously the same in 

uniform media, as they correspond to two different ways to write the mapping function Gr, Eqs. 

(14). In these two models the definition of the function    , refT     requires the choice 

of a reference blackbody source temperature refT . We will restrict our discussion to this 



particular case in this section and use        , ref b ref b refT I T I T     , which 

corresponds to the usual way this function is defined in these methods. 

The subtle difference between these two models lies in the way “correlation” between spectra 

is introduced. Indeed, in the FSK method “correlation” assumes the existence of an increasing 

function, written 
*k   in ref. [3] (see Eq. (20.116)), that associates gas spectra in distinct states. 

In the Generalized SLW intervals of wavenumbers are assumed to be kept unchanged for given 

fixed values of the absorption coefficient in the different states.   Maintaining the same spectral 

intervals allows avoiding the appearance of Leibniz terms when spectral integrals are evaluated 

over non-uniform paths. Both methods are equivalent as they lead to the same dependence 

structure, mathematically formalized by Eqs. (20-25). However, from a pure technical 

perspective, FSK is formulated in a way which is similar to Eq. (25),  requiring the explicit 

definition of a reference state, whereas SLW is closer to Eq. (24) in the sense that it only uses 

relationships between spectral intervals associated with distinct states.  

Both approaches are rigorously the same, as soon as some reference gas spectrum is chosen. 

Indeed, in this situation, the reference spectrum is used to provide some discretization of the 

interval of k-values in the reference state, and the spectral intervals used for the “correlation” 

are then set by these fixed k-values. Notice that the FSK method as it has been formulated to 

date cannot omit the definition of a reference state, due to the way the treatment of non-

uniformities is handled with regard to some functional relationship between gas spectra. 

What is different in the Rank Correlated SLW model is the way spectral intervals are defined 

to construct gray gases. Indeed, in this model they are obtained by solving Eq. (27), that is 

directly related to the inverse transformation theorem, by using the same “germ” random 

variable    to generate gray gas spectra in all thermophysical states. 



This simply means that according to the assumption of rank correlation,  i.e., comonotonicity 

of gas spectra, only a discretization of the interval of variations of  the “germ”   is required to 

define: 1/ the gray gases absorption coefficients in any state and, as a consequence, 2/ the 

spectral intervals over which gas spectra are assumed to be constant.  Consequently, they are 

considered to be the same for any state and do not depend on the choice of any reference 

thermophysical condition. This is illustrated in Figure 5 (General case) and Figure 6 (Rank 

Correlated SLW approach). 

One can notice that the way the Rank Correlated SLW model was introduced in Ref. [5] may 

look somewhat different than the method proposed here. A comment is given here to clarify 

this point. 

The definition of the spectral intervals in the RC-SLW model is based on the following 

assumption of relationship, similar to Eqs. (A3.1) from Ref. [5], and already introduced in 

Section 4.1: 

        1 2 1 2

1 2 1 2: :  or : :k k k k                 (28) 

where k1 and k2 are two arbitrary possible values of the absorption coefficient.  

Let us assume that k1 and k2 are such that the first inclusion applies. In this case, using Eq. (16) 

from the present work, one obtains: 
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Symmetrically, if the second inclusion is true the following relation holds: 
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This means that if Eq. (28) holds, then one of the two equations (29) is true. This shows that 

Eq. (28) can be rewritten equivalently as: 

       1 2 1 2

1 2 1 2min ;k k k k           and   P P P  (30) 

which is Eq. (20). 

FIGURE 5 HERE 

FIGURE 6 HERE 

Application of this new SLW model to radiative heat transfer calculations over a wide range of 

benchmarks can be found in Ref. [5]. We propose here an additional example that illustrates 

the strength of the method as an illustration of one of many possible theoretical approaches 

using the theoretical development presented here. 

The case considered was initially proposed in Ref. [18] as one which is challenging for 

modelling with the ADF (Absorption Distribution Function) method. It consists of a mixture of 

H2O and N2 at constant water molar fraction 0.1. The gas temperature is described by the 

triangular profile depicted in Figure 7. It is maximum at the center of the medium (2500 K) and 

minimum at the two boundaries (500 K). The gas is surrounded by black walls at 500 K. The 

distance between the walls is L = 2H = 0.4 m.  This example problem features very high spatial 

temperature gradients, designed to test the models developed previously and that based on the 

general theoretical development here. In Figure 8 results of comparisons between LBL 

calculations based on the HITEMP2010 spectroscopic database, and the original SLW model 



using the reference approach proposed in Ref. [2] are provided. Two reference temperatures 

were considered for the comparison: 1/ the maximum temperature of the gas, Tmax = 2500 K; 

and 2/ the volume-average temperature Taverage = 1000 K.  There are, of course, other possible 

definitions of the reference temperature.  These two are selected simply to illustrate the 

sensitivity of the predictions. In this situation, the choice of the reference state has an important 

impact on the results with maximum relative errors that reach 10% for the reference temperature 

equal to Tmax, and as high as 50% for the reference temperature Taverage selected. This leads to 

the conclusion that there may be some optimal choice for the reference state. In Figure 9, the 

same kind of comparison is made between LBL calculations and the RC-SLW model (based on 

the theoretical development here which does not require specification of a reference state). 

From this figure, one can observe that the change in the blackbody source temperature results 

in relative errors below 10% and 4%, respectively, for the reference temperatures Tmax and 

Taverage selected. 

The following conclusions can thus be drawn: 1/ the RC-SLW model provides more accurate 

results than the original SLW model based on a reference state ; 2/ results on radiative powers 

are almost insensitive to the choice of the blackbody source temperature. This second point 

suggests that the choice of the measure, when it depends on a reference blackbody source 

temperature, does not have a significant impact on the quality of the model’s output in terms of 

radiative powers.  

FIGURE 7 HERE 

FIGURE 8 HERE 

FIGURE 9 HERE 

Local thermodynamic states of the problems considered differ only by the value of the gas 

temperature, and therefore, the reference state is defined by the choice of temperature refT .  



The Rank Correlated SLW model based on the comonotonicity definition of spectra correlation 

does not use the reference temperature refT , but this formulation requires the specification of 

the blackbody source temperature bT   if the probability measure is defined with the help of the 

Planck blackbody spectral emissive power        , b b b b bT I T I T      as is usual for the 

SLW method. 

It is interesting to investigate the sensitivity of the original Reference Approach SLW (RA-

SLW) to the choice of the reference temperature refT  and compare it to sensitivity to the choice 

of the blackbody source temperature bT  for the RC-SLW method, and assess their overall 

performance.  This analysis can be performed for the example problem examined here with the 

help of the spatially averaged relative absolute error of prediction of the total divergence of the 

net radiative flux defined by the following equation: 

 
   

0

1
     100,  in %

L

SLW LBL

LBL

Relative Error Q x Q x dx
L max Q x

   
   

The dependence of the average error on refT  for the RA-SLW method (where Tref and Tb are 

taken to be identical) and on bT  for the RC-SLW method in the range from the minimum gas 

temperature in the layer to the temperature higher than the maximum temperature is presented 

in Figure 10. 

FIGURE 10 HERE 

For this example problem the relative error of the RA-SLW method depends strongly on refT , 

varying between 4% to 35%, with the lower values corresponding to higher values of the gas 

temperature in the medium (the minimum error value 4% is attained at about refT 2000K ). 



Some sort of optimization routine may be needed to find the reference state which provides this 

best prediction.   

By contrast, the minimum relative error of RA-SLW method is the maximum error of the RC-

SLW method.  The smallest values of relative error for RC-SLW correspond to the blackbody 

source temperature near the spatial average gas temperature of the layer (with the minimum 

value of 1.34 % at 
bT 750 K ). However, in general, the RC-SLW is rather insensitive to the 

choice of 
bT .  As can be seen from Figure 10, any value of 

bT will yield an error below 4% 

percent, and all of them are below the optimal result of the traditional RA-SLW method which 

can be obtained by optimization. 

It can thus be concluded that the overall performance of the RC-SLW method is better than the 

performance of traditional SLW reference approach even without the necessity of optimization 

process. This confirms that for the problem considered, the Rank Correlated SLW spectral 

model based on the comonotonicity principle is the best spectral model, which yields the best 

possible prediction of the radiation transfer in non-isothermal gaseous medium.  

 

6. CONCLUSION 

The purposes of the present work were threefold: 1/ to develop a universal global model theory 

based on an arbitrary measure on the wavenumber axis, 2/ to use this general form to justify the 

method used in the so-called Rank Correlated Generalized SLW model [5], 3/ to introduce some 

tools that may be helpful to understand and formalize the concept of correlation between spectra 

in distinct thermophysical states.  

It was shown that global models can be formulated rigorously without any need to specify either 

a blackbody source temperature or a gas reference state. This was done by : 1/ formulating the 



global models in terms of an arbitrary probability measure on the wavenumber axis such that 

the dependence of global methods for the radiative properties of gases with the source 

blackbody temperature arises from the usual ways to define this measure, 2/ studying in detail 

the statistical dependency model between spectra in distinct states involved in all full spectrum 

approaches and usually referred to as « correlation ».  We have shown here that this dependence 

model is called in copula’s theory comonotonicity, and that this concept can be used in gas 

radiation modeling to show that no reference state is actually required to develop rigorously an 

approximate treatment of non-uniformities. The present derivation thus greatly simplifies the 

building of full spectrum models, as well as their practical implementation, as they do not 

depend anymore on any « a priori » definition of their building parameters. Furthermore, the 

approach complies with existing methods, which are in fact combinations of the RTE set by 

Eqs. (15-a,15-b), some method to evaluate the “local” weights, Eqs. (12,14), and to “correlate” 

spectra, Eq. (24) . The fundamental theoretical development presented here led us to propose a 

new and efficient SLW approach that does not require the specification of a gas reference state: 

the Rank Correlated Generalized SLW modeling [5]. The RC-SLW approach is a preferred 

possible spectral model which does not require a reference state, although the accuracy still 

remains slightly dependent on the choice of the reference blackbody source temperature which 

still suggests some optimization. The approach developed in the present paper, which can use 

any probability measure, provides all the theoretical foundations required to formulate and 

solve this issue.    

Indirectly, the present paper also shows that any absorptivity, i.e., l-distribution [4,19], and k, 

i.e., k-distribution, based model can be introduced using the same restricted set of statistical 

tools: rank transmutation maps and copulas. The connection with copulas theory: 1/ appears 

rather naturally within the frame of both k- and l- distribution modellings; 2/ allows the direct 

use of many theorems and mathematical results already proved in the mathematical community 



and that would be otherwise quite difficult or unintuitive to justify in non-uniform gas radiation 

modelling. Consequently, to some extent it thus simplifies the treatment of path-dependent non-

uniformities more than it actually complicates the problem. The present work is an illustration 

of this fact: “correlation” used in gas radiation modelling for many years strictly coincides with 

the statistical concept of “comonotonicity” (both methods assume Spearman’s coefficients 

between gas spectra to be 1, viz. that any pair of gas spectra can be related through a strictly 

increasing function). Results related to comonotonic variables show that no reference state is 

actually required to build a full spectrum “correlated” model. This simplifies the building of 

such models without neither reducing the accuracy of the approach significantly nor involving 

an increase in its computational cost. 

 

ACKNOWLEDGMENTS. This work was supported by the French National Research Agency 

under the grant ANR-12-BS09-0018 SMART-LECT. 

 

 

 

 

  



REFERENCES 

[1] RIVIERE Ph., SOUFIANI A., PERRIN M.-Y., RIAD H., GLEIZES A. Air mixture 

radiative property modelling in the temperature range 10000-40000 K, JQSRT 1996;56:29-45. 

[2] DENISON M.K., WEBB B.W. The spectral line based weighted-sum-of-gray-gases model 

in non-isothermal non-homogeneous media, ASME J. Heat Transfer 1995;117:359-365. 

[3] MODEST M.F., ZHANG H. The full-spectrum correlated-k distribution for thermal 

radiation from molecular gas-particulate mixtures, ASME J. Heat Transfer,2002;124:30-38.  

[4] ANDRE F. The l-distribution method for modeling non-gray absorption in uniform and non-

uniform gaseous media, JQSRT 2016;179:19-32. 

[5] SOLOVJOV V.P., ANDRE F., LEMONNIER D., WEBB B.W. The rank correlated SLW 

model of gas radiation in non-uniform media, JQSRT 2017; 

http://dx.doi.org/10.1016/j.jqsrt.2017.01.034. 

[6] AMBARTZUMIAN V. The effect of the absorption lines on the radiative equilibrium of 

the outer layers of the stars, Publ. Obs. Astron. Univ. Leningrad 1936;6:7-18. 

[7] LACIS A.A., WANG W.C., HANSEN J.E. Correlated k-distribution method for radiative 

transfer in climate models: application to effect of cirrus clouds on climate, 4th NASA Weather 

and Climate Program Sci. Rev. 1979:309-314. 

[8] SCHORACK G.R. Probability for statisticians, Springer texts in statistics, Springer, 2000. 

[9] DUNN W.L., SHULTIS J.K. Exploring Monte Carlo Methods, Elsevier, 2012. 

[10] SHAW W.T., BUCKLEY I.R.C. The alchemy of probabilistic distributions: beyond Gram-

Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map, 

presented at the First IMA Computational Finance Conference, 23rd March 2007. 



[11] CHU H., LIU F., CONSALVI J.-L. Relationship between the spectral line based weighted-

sum-of-gray-gases model and the full spectrum k-distribution model, JQSRT 2014 ;143 :111-

120. 

[12] MODEST M.F. Radiative Heat Transfer, 3rd Edition, Academic Press, New York, 2013. 

[13] ANDRE F., HOU L., SOLOVJOV V.P., GALTIER M. An exact formulation of k-

distribution methods in non-uniform gaseous media and its approximate treatment within the 

Multi-Spectral framework, Journal of Physics: Conference Series 2016, 676, Number 1.  

[14] NELSEN R.B. An introduction to Copulas - Second Edition, Springer series in statistics, 

Springer, 2006. 

[15] SKLAR A. Fonctions de répartitions et leurs marges, Publications of the Institute of 

Statistics, Université de Paris, 1959;8:229-231. 

[16] BALAKRISHNAN N., LAI C-D. Continuous bivariate distributions – Second edition, 

Springer, 2009. 

[17] DHAENE J., DENUIT M., GOOVAERTS M.J., KAAS R., VYNCKE D. The concept of 

comonotonicity in actuarial science and finance: theory, Insurance: Mathematics and 

Economics 2002;31:3-33.  

[18] PIERROT L., SOUFIANI A., TAINE J. Accuracy of narrow-band and global models of 

radiative transfer in H2O, CO2 and H2O-CO2 mixtures at high temperature, JQSRT 

1999;62:523-548. 

[19] ANDRE F. An analysis of the symmetry issues in the l-distribution method of gas radiation 

in non-uniform gaseous media, JQSRT 2017;190:78-87. 

 

 



LIST OF TABLES 

 

 

Method Methodology / assumptions 

 

FSK [3] 

1.  Start with the definition of a reference state ref  . 

2. Assume that any spectrum can be written as a strictly monotonous 

function of the reference absorption spectrum.  

 

SLW reference 

approach [2] 

1. Start with the definition of a reference state. 

2. Use the corresponding spectrum to discretize the wavenumber 

axis. 

3. Assume that the same intervals can be used for any other states. 

 

Rank 

correlated 

SLW 

[5] 

1. Assume the existence of a “germ” random variable / function. 

2. Assume that any spectrum can be written as a strictly monotonous 

function of the “germ” – this is the assumption of rank correlation 

/ co-monotonicity, as defined by Eq. (26) -. 

3. Then any state can be used to discretize the wavenumber axis. 

4. Use the same intervals for all thermophysical states. 

 

 

TABLE 1. Similarities and differences between reference approaches and the rank correlated 

SLW model. See also Ref. [11]. 
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FIGURE 1. Illustration of the method to sample randomly spectral locations along the 

wavenumber axis.  
0

1d  


 . 



 

FIGURE 2. Definition of functions F   and F . 



 

FIGURE 3. Functions F   and F  are both increasing with respect to k. 



 

FIGURE 4. Visualization of definition of function Gr by Eq. (5), where the solid line is a 

parametric curve given by equation 
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FIGURE 5. Comonotonicity: with arbitrary measure. 

 



 

FIGURE 6. Comonotonicity: Rank Correlated Generalized SLW model [5] with measure

       , ref b ref b refT I T I T     . 

 

 



 

FIGURE 7. Triangular temperature profile considered for the comparison of the SLW model 

with the reference approach described in Ref. [2], RC-SLW model Ref. [5] and LBL 

calculations. 



 

FIGURE 8. Comparison of the SLW model with the reference approach of Ref. [2] (RA-

SLW) with LBL reference calculations. Triangular temperature profile of Figure 7; H2O-N2 

mixture (xH2O = 0.1) at atmospheric pressure. Relative errors are calculated as 
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FIGURE 9. Comparison of the RC-SLW [5] model with LBL reference calculations. 

Triangular temperature profile of Figure 7 ; H2O-N2 mixture (xH2O = 0.1) at atmospheric 

pressure. H = 0.2 m. Relative errors are calculated as 
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FIGURE 10. Relative errors of the RA-SLW and RC-SLW models for different blackbody 

source temperatures. 

 

 


