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ABSTRACT 

E conomie and technical problems related to the redu ction of petroleum resources require the 
valorisation of renewable raw material. Re cently, microalgae emerged as promising alternative feedstock 
that represents an enormous biodiversity with multiple benefits exceeding the potential of conventional 
agricultural feedstock. Thus, this comprehensive review arti cle spots the light on one of the most 
interesting microalga Chlorella vulgaris. It assembles the history and a thorough des cription of its 
ultrastructure and composition a ccording to growth conditions. The harvesting te chniques are presented 
in relation to the nove! algo-refinery concept, with their te chnological advancements and potential 
applications in the market. 
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1. Introduction

Microalgae have an ancient history that left a footprint 3.4 bil
lion years aga, when the oldest known microalga, belonging to the 
group of cyanobacteria, fossilised in rocks of Western Australia. 
Studies confirmed that until our days their structure remains 
unchanged and, no matter how primitive they are, they still 
represent rather complicated and expertly organised forms of life 
[1 ]. Nevertheless, other reports estimated that the actual time of 
evolution of cyanobacteria is thought to be doser to 2.7 billion 
years aga [2,3]. Hence, evolutionary biologists estimate that algae 
could be the ancestors of plants. Thus, through time algae gave rise 
to other marine plants and moved to the land during the 
Palaeozoic Age 450 millions years aga just like the scenario of 
animais moving from water onto land. However, evolutionists 
need to overcome multiple obstacles ( danger of drying, feed, 
reproduction, and protection from oxygen) to definitely confirm 
this scenario complemented with more scientific evidence. 

Like any other phytoplankton, microalgae have a nutritional 
value. The first to consume the blue green microalga were the 
Aztecs and other Mesoamericans, who used this biomass as an 
important food source [4]. Nowadays, these microscopie organisms 
are still consumed as food supplement such as Chlorella vulgaris and 
Spirulina platensis [5] and their products are also used for different 
purposes like dyes, pharmaceuticals, animal feed, aquaculture and 
cosmetics. For the last two decades, microalgae started to take a 
new course with increasing applications motivated by the depletion 
of fossil fuel reserves, the consequent increase in oil prices and the 
global warming concern. These dramatic thresholds are forcing the 
world to find global strategies for carbon dioxide mitigation by 
proposing alternative renewable feedstocks and intensifying 
researches on third-generation biofuels. In this context, microalgae 
are regarded nowadays as a promising sustainable energy resource 
due to their capacity to accumulate large quantities of lipids suitable 
for biodiesel production that performs much like petroleum fuel 
[6,7]. They also proved to be a source of products such as proteins, 
carbohydrates, pigments, vitamins and minerais [8]. In addition, 
microalgae capture sunlight and perform photosynthesis by produ
cing approximately half of atmospheric oxygen on earth and 
absorbing massive amounts of carbon dioxide as a major feed. 
Therefore, growing them next to combustion power plants is of 
major importance due to their remarkable capacity to absorb carbon 
dioxide that they convert into potential biofuel, food, feed and 
highly added value components [9-14]. 

Microalgae can grow in bath fresh and marine water as well as 
in almost every environmental condition on earth from frozen 
lands of Scandinavia to hot desert soils of the Sahara [15]. If 
production plants were installed in an intelligent way, microalgae 
would not compete with agricultural lands, there would be no 

conflict with food production [16] and especially would not cause 
deforestation. 

Microalgae represent an enormous biodiversity from which 
about 40.000 are already described or analysed [17]. One of the 
most remarkable is the green eukaryotic microalga C. vulgaris, 

which belongs to the following scientific classification: Domain: 
Eukaryota, Kingdom: Protista, Divison: Chlorophyta, Class: Tre
bouxiophyceae, Order: Chlorellales, Family: Chlorellaceae, Genus: 
Chlorella, Specie: Chlorella vulgaris. Hence, Martinus Willem Bei
jerinck, a Dutch researcher, first discovered it in 1890 as the first 
microalga with a well-defined nucleus [18]. The name Chlorella 

cornes from the Greek word chloras (XÀ.rup6ç;), which means 
green, and the Latin suffix el/a referring to its microscopie size. lt 
is a unicellular microalga that grows in fresh water and has been 
present on earth since the pre-Cambrian period 2.5 billion years 
aga and since then its genetic integrity has remained constant [ 1 ]. 
By the early 1900s, Chlorella protein content ( > 55% dry weight) 
attracted the attention of German scientists as an unconventional 
food source. In the 1950s, the Carnegie Institution of Washington 
[19] took over the study and managed to grow this microalga on a
large scale for CO2 abatement. Nowadays, Japan is the world leader
in consuming Chlorella and uses it for medical treatment [20,21]
because it showed to have immune-modulating and anti-cancer
properties [22-26]. After feeding it to rats, mice and rabbits in the
form of powder, it showed protection properties against haema
topoiesis [27] age-related diseases like cardiovascular diseases,
hypertension and cataract; it lowers the risk of atherosclerosis and
stimulates collagen synthesis for skin [28,29]. Furthermore, C.
vulgaris is also capable of accumulating important amounts of
lipids, especially after nitrogen starvation with a fatty acid profile
suitable for biodiesel production [30,31 ].

The available reviews have focused so far on evaluating micro
algae as an important source of lipids for biofuel production 
[32,33] and also explained in details the different production 
processes and harvesting techniques. The following review covers 
greater information about C. vulgaris, including not only produc
tion and harvesting techniques already conducted on this micro
alga, but also detailed information about its ultrastructure and 
chemical composition accompanied by cell wall breaking techni
ques and extraction processes. The last section focuses on the 
multiple applications and potential interests of this microalga in 
different areas and not only on the production of fatty compounds. 

2. Morphology

C. vulgaris is a spherical microscopie cell with 2-10 µm dia
meter [33-35] and has many structural elements similar to plants 
(Fig. 1 ). 



2.1. Cell wall 

The rigidity preserves the integrity of the cell and is basically 

a protection against invaders and harsh environment. It varies 

according to each growth phase. During its early formation in its 

autosporangia, the newly formed cell wall remains fragile, forming 

a 2 nm thin electron-dense unilaminar layer [33,36]. The cell wall 

of the daughter cell gradually increases in thickness until it 

reaches 17-21 nm after maturation [33,35], where a microfibrillar 

layer is formed representing a chitosan-like layer composed of 

glucosamine [36,37], which accounts for its rigidity. In the mature 

stage, cell wall thickness and composition are not constant because 

they can change according to different growth and environmental 

conditions. Furthermore, some reports [38,39] explained the rigidity 

of the cell wall by focusing on the presence of a sporopollenin layer, 

even though it is generally accepted that C. vulgaris has a unilaminar 

cell wall that Jacks sporopollenin, which is an extremely resistant 

polymerised carotenoid found on the cell wall of Haematococcus 

pluvialis [40] and Chlorellafusca [41]. However, a contradictory study 

conducted on C. vulgaris by Martinez et al. [42] reported the presence 

of sporopollenin by observing an outer trilaminar layer and by 

detecting resistant residues after being submitted to acetolysis. 

2.2. Cytoplasm 

It is the gel-like substance confined within the barrier of the 

cell membrane and it is composed of water, soluble proteins and 

minerais. It hosts the internai organelles of C. vulgaris such as 

mitochondria, a small nucleus, vacuoles [43], a single chloroplast 

and the Golgi body [44]. 

2.2.1. Mitochondrion 

Every mitochondrion contains some genetic materials, the 

respiratory apparatus and has a double-layer membrane; the outer 

membrane surrounds the whole organelle and is composed of an 

equal ratio of proteins and phospholipids. Nevertheless, the inner 

Cytoplas 

Lipid droplets 

Golgi body-----1--�• 

Vacuole 
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Starch 
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Fig. 1. Schematic ultrastructure of C. vulgaris representing different organelles. 

membrane is composed of thrice more proteins than phospholi

pids; it surrounds the internai space called the matrix, which 

contains the majority of mitochondrial proteins [44]. 

2.2.2. Chloroplast 

C. vulgaris has a single chloroplast with a double enveloping

membrane composed of phospholipids; the outer membrane is 

permeable to metabolites and ions, but the inner membrane has a 

more specific function on proteins transport. Starch granules, 

composed of amylose and amylopectin, can be formed inside the 

chloroplast, especially during unfavourable growth conditions. The 

pyrenoid contains high levels of ribulose-1,5-bisphosphate carbox

ylase oxygenase (RuBisCO) and is the centre of carbon dioxide 

fixation. The chloroplast also stores a cluster of fused thylakoids 

where the dominant pigment chlorophyll is synthesised masking 

the colour of other pigments such as lutein. During nitrogen stress, 

lipid globules mainly accumulate in the cytoplasm and the 

chloroplast [15,45]. 

3. Reproduction

C. vulgaris is a non-motile reproductive cell (autospore) that

reproduces asexually and rapidly. Thus, within 24 h, one cell of 

C. vulgaris grown in optimal conditions multiplies by autosporula

tion, which is the most common asexual reproduction in algae.

In this manner, four daughter cells having their own cell wall

are formed inside the cell wall of the mother cell (Figs. 2 and 3)

[33,35]. After maturation of these newly formed cells, the mother

cell wall ruptures, allowing the liberation of the daughter cells and

the remaining debris of the mother cell will be consumed as feed

by the newly formed daughter cells.

4. Production

Annual production of Chlore/la reached 2000 t (dry weight) in 

2009, and the main producers are Japan, Germany and Taiwan 

[46]. This microalga has a rapid growth rate and responds to 

each set of growth condition by modifying the yield of a specific 

component. C. vulgaris is ideal for production because it is 

remarkably resistant against harsh conditions and invaders. On 

the one hand, lipid and starch contents increase and biomass 

productivity ceases or decreases [47] during unfavourable growth 

conditions such as nitrogen and phosphorus limitation, high CO2 

concentration, excessive exposure to light [30,48-50], excess of 

iron in the medium [51] or increase in temperature [52]. On the 

other hand, protein content increases during normal and managed 

growth conditions (nitrogen supplementation). Therefore, many 

growth techniques have been tested in order to voluntarily target 

biomass productivity, lipid, proteins, carbohydrates and pigments 

content. 

Fig. 2. Drawings showing the different phases of daughter cell-wall formation in Chlore/la vulgaris: (a) early cell-growth phase; (b) late cell-growth phase; (c) chloroplast 

dividing phase; (d) early protoplast dividing phase; (e) late protoplast dividing phase; (f) daughter cells maturation phase and (g) hatching phase [35]. 



Fig. 3. Newly formed cells emerging outside the cell wall of the mother cell after 

hatching [33]. 

4.1. Autotrophic growth 

4.1.1. Open pond systems 

Open ponds are the most common way of production and are 
the cheapest method for large-scale biomass production. These 
systems are categorised into natural waters (lakes, lagoons and 
ponds) or wastewater or artificial ponds or containers. They are 
usually built next to power plants or heavy industry with massive 
carbon dioxide discharge where the biomass absorbs nitrogen 
from the atmosphere in the form of NOx. In order to allow easy 
exposure of ail the cells to sunlight, especially at the end of the 
exponential growth phase, the optimal pond depth is 15-50 cm 
[46,52]. On the other hand, open pond systems have some 
limitations because they require a strict environmental control to 
avoid the risk of pollution, water evaporation, contaminants, 
invading bacteria and the risk of growth of other algae species. 
In addition, temperature differences due to seasonal change cannot 
be controlled and C02 concentration and excess exposure to sun
light are difficult to manage. Moreover, near the end of the 
exponential growth phase, some cells are not sufficiently exposed 
to sunlight because other cells floating near the surface cover them, 
leading to lower mass yields. Therefore, stirring of the medium is 
preferable and is currently practiced. 

4.1.2. Closed photo-bioreactor 

This technology was implemented mainly to overcome some 
limiting factors in the open pond systems, thus growing the 
biomass in a managed environment (pH, light intensity, tempera
ture, carbon dioxide concentration) to obtain higher cell concen
tration as well as products that are more suitable for the 
production of pure pharmaceuticals, nutraceuticals and cosmetics. 
In addition, these systems are more appropriate for sensitive 
strains that cannot compete and grow in harsh environment. 
Feeding the biomass with C02 cornes by bubbling the tubes. 
Fluorescent lights are used in case the tubes are not or not 
sufficiently exposed to sunlight. The tubes are generally 20 cm or 
less in diameter [32] and the thickness of their transparent walls is 
few millimetres, allowing appropriate light absorption. Hence, 
multiple designs have been used and tested: fiat-plate photo
bioreactor [53,54], tubular photo-bioreactor [55] and column 
photo-bioreactor [56]. Degen et al. [57] achieved 0.11 g L - 1 h- 1 

dry biomass productivity after growing the cells of C. vulgaris in a 
fiat panel airlift photobioreactor under continuous illumination 
(980 µE m-2 ç 1). Nonetheless, the main disadvantages of a
closed system are the cost of the sophisticated construction, small 
illumination area and sterilising costs [58]. 

4.2. Heterotrophic growth 

This technique does not require light and the biomass is fed 
with organic carbon source. Thus, microalgae are grown in a 
stirred tank bioreactor or fermenter where a higher degree of 
growth are expected as well as low harvesting cost due to the 
higher dry biomass productivity achieved ( up to 0.25 g L - 1 d - 1) 

and high accumulation of different components such as lipids 
22-54 mg L - 1 d- 1 [42,59,60]. The carbon sources used for C.

vulgaris are glucose, acetate, glycerol and glutamate with max
imum specific growth rate obtained with glucose. Nevertheless,
the major disadvantage of this system is the price and availability
of sugars, which compete with feedstocks for other uses such as
food and biofuel productions.

4.3. Mixotrophic growth 

C. vulgaris is capable of combining both autotrophic and
heterotrophic techniques by performing photosynthesis as well 
as ingesting organic materials such as glucose, which is the most 
appropriate for C. vulgaris [ 59-63 ]. Hence, the cells are not strictly 
dependent on light or organic substrate to grow. This technique 
competes favourably with autotrophic systems and according to 
Yeh and Chang [63] mixotrophic conditions showed high dry 
biomass productivity (2-5 g L - 1 d- 1) and lipids productivity 
(67-144 mg L - 1 d- 1). The main advantages of mixotrophic meta
bolism are limiting the impact of biomass Joss during dark 
respiration and reducing the amount of organic substrates used 
for growing the biomass. 

4.4. Other growth techniques 

Growth of C. vulgaris can take an additional dimension by co
immobilising it with plant growing bacterium Azospirillum brasi

lense in alginate beads [64,65]. This technique has been extra
polated to C. vulgaris and other microalgae from the hypothesis 
that A brasilense promotes terrestrial plant growth performance 
by interfering with the host plant hormonal metabolism and 
provides 02 for the bacteria to biodegrade pollutants and then 
the microalga consumes C02 released from bacterial respiration 
[66]. Consequently, depending on the strain of C. vulgaris [67] this 
technique has an impact on prolonging its life span, enhancing 
biomass production, increasing cell size (62% larger) and accumu
lating pigments and lipids. Simultaneously, uptake of zinc, cad
mium, phosphorus, nitrogen and other heavy metals from 
wastewater increases. On the other hand, growing C. vulgaris with 
its associative bacterium Phyllobacterium myrsinacearum also has a 
different impact by ceasing its growth or cell death [68]. Further
more, mixing and shear stress have an effect on increasing the 
photosynthetic activity and growth of C. vulgaris. Thus, optimal 
conditions (tip speed of 126 cm ç 1 and friction velocity 
2.06 cm s- 1) increased the photosynthetic activity by 4-5% with 
48-71% stronger growth compared to null tip speed or friction
velocity. Nevertheless, higher tip speed and friction velocity
decreased both photosynthetic activity and growth to the value
of the unstirred condition and even lower [69].



4.5. Harvesting 

4.5.1. Centrifugation 

This process contributes to 20-30% of the total biomass 
production cost [55]. The most common harvesting technique for 
C. vulgaris is centrifugation (5000 rpm, 15 min) [30,70] because it
is highly efficient (95% recovery), not time consuming, and treats
large volumes. In addition, the morphology of C. vulgaris permits
high centrifugai stress without damaging its structure during the
process. Other techniques are also applied such as flocculation,
flotation and filtration or by combining two techniques to max
imise recovery of the biomass.

4.5.2. Flocculation 

During the exponential growth phase, the algal cells have 
high negative surface charge and are difficult to neutralise, and 
thus the cells remain dispersed. After reaching the stationary 
or the declining phase, the negative charge decreases, allowing 
the cells to aggregate and to form lumps, thereby resulting 
in a process called auto-flocculation. This phenomenon is asso
ciated with elevated pH due to C02, nitrate and phosphate assimi
lation [71 ]. Moreover, auto-flocculation can occur by interactions 
between algae and bacteria or excreted organic molecules or by 
simply cutting C02 supply; this method is Jess expensive but time
consuming. In general, culture of microalgae is very stable and 
auto-flocculation probability is negligible and sometimes mislead
ing. In order to accelerate coagulation, it is necessary to increase 
the pH by adding a base. The most effective is sodium hydroxide, 
which induces more than 90% flocculation at pH 11 and requires 
Jess quantity (9 mg of NaOH per gram of dry biomass) [71,72]. But 

on an industrial scale, lime seems to be the most cost-efficient. 
This mechanism is associated with Mg2 + from hydrolysed Mg 
(OH)2, which precipitates attracting with it the negatively charged 
microalgal cells. Chitosan is also an interesting flocculating agent 
[73], which showed maximum efficiency at pH 7 with 90% 
microalgal recovery. Further on, using bioflocculants like Paeniba

cillus sp. with the presence of a co-flocculant (CaCl2 ) also showed 
an efficient flocculation (83%) at pH 11 [74]. Flocculation is some
times considered as a pre-harvesting step in order to facilitate 
or complement other harvesting methods like centrifugation or 
filtration [75,76]. 

4.5.3. Flotation 

To our knowledge, there is very limited evidence of its feasibility, 
but this method consists of trapping the cells using dispersed 
micro-air bubbles. Flotation can also occur naturally when the lipid 
content in microalgae increases. Cheng et al. [77] induced effective 
flotation on C. vulgaris by using dispersed ozone gas (0.05 mg g- 1 

biomass). Thus, unlike flocculation, this method does not require 
synthetic chemicals, but its economic viability is not yet known, 
especially on an industrial scale. 

4.5.4. Filtration 

This method involves continuous passing of the broth with the 
microalga across a filter on which algal cells will concentrate 
constantly until it reaches a certain thickness. Due to the small size 
of C. vulgaris, conventional filtration is not an adequate method 
to be applied. Instead, ultrafiltration or microfiltration is more 
efficient. Fouling generated by soluble compounds like exopoly
saccharides of some microalgae such as Porphyridium is one of 
the major limitations during the ultrafiltration process, but with 
Chlorella this phenomenon is negligible, and thus its structure 
provides more important permeation flux without the need of an 
additional unit operation like swirling while filtering [78,79]. More
over, microfiltration and ultrafiltration are affected by different 

parameters such as filter type; transmembrane pressure, flow 
velocity, turbulent cross-flow and growth phase, and therefore 
a compromise that takes into consideration these parameters 
should be made. Furthermore, they can be accompanied by another 
harvesting technique (flotation or flocculation) that improves the 
process [75,76,80]. 

5. Primary composition

5.1. Proteins 

Proteins are of central importance in the chemistry and 
composition of microalgae. They are involved in capital raies such 
as growth, repair and maintenance of the cell as well as serving as 
cellular motors, chemical messengers, regulators of cellular activ
ities and defence against foreign invaders [44]. 

Total proteins content in mature C. vulgaris represents 42-58% 
of biomass dry weight [81-85], and varies according to growth 
conditions. Proteins have multiple raies, and almost 20% of the 
total proteins are bound to the cell wall, more than 50% are 
internai and 30% migrate in and out of the cell [86]. Their 
molecular weight revealed by SOS-PAGE comprises between 12 
and 120 kDa, with the majority between 39 and 75 kDa after 
growing C. vulgaris under autotrophic or heterotrophic conditions. 
Nevertheless a higher intensity peak is observed for cells grown in 
autotrophic conditions [82,87]. 

Protein nutritional quality is determined by its amino acid 
profile [81,88], and like the majority of microalgae, the amino acid 
profile of C. vulgaris compares favourably and even better with the 
standard profile for human nutrition proposed by World Health 

Organisation (WHO) and Food and Agricultural Organisation 
(FAO), because the cells of C. vulgaris synthesise essential and 
non-essential amino acids (Table 1 ). Furthermore, regardless of the 
extraction procedure, C. vulgaris proteins showed excellent emul
sifying capacity [89] that is comparable and even better than the 
commercial ingredients. Results showed that the emulsifying 
capacity of C. vulgaris proteins extracted at pH= 7 reached 
3090 ± 50 mL oil/g protein with a stability of 79 ± 1%. Therefore, 
proteins of C. vulgaris open the gate for additional valorisation 
options of this microalga in the market, especially in the food 
sector. 

Protein extraction is technically the same for ail microalgae and 
is mainly conducted by solubilisation of proteins in alkaline 
solution [ 83,90,91 ]. Further purification can be followed by pre
cipitating the solubilised proteins with trichloroacetic acid (25% 
ICA) [92,93] or hydrochloric acid (0.1 N HCI) [94]. Another 
separation method could be applied by means of ultrafiltration. 
Indeed, this method is usually applied for harvesting the cells 
but considering the study conducted by Safi et al. [95 ], a two-stage 
ultrafiltration process was applied on the aqueous extract of 
Tetraselmis suecica containing solubilised molecules (starch, pro
teins and low molecular weight polysaccharides). The first phase 
of the process completely retained starch molecules, and then the 
second phase completely retained proteins, allowing only small 
polysaccharides to be present in the filtrate of the second phase 
of the process. This process could be extrapolated to C. vulgaris 

with minor modifications of the eut-off of the ultrafiltration 
membranes [95]. 

Quantification is carried out by elemental analysis, Kjeldahl, 
Lowry assay, Bradford assay or the dye binding method. However, 
the first two analyses take into consideration total nitrogen 
present in the microalga, and multiplying it by the standard 
nitrogen to protein conversion factor (NTP) 6.25 may lead to 
overestimation or underestimation of the true protein quantity. 
Therefore, several studies calculated from an amino acid profile 



Table 1 

Amino acid profile of Chlore/la vulgaris compared to other resources expressed in grams per 100 g of protein. 

Amino acids C. vulgarisb 
C. vulgaris" C. vulgarise 

Aspartic acid 9.30 10.94 9.80 
Tbreonine 5.30 6.09 5.15 
Serine 5.80 7.77 4.32 
Glutamic acid 13.70 9.08 12.66 
Glycine 6.30 8.60 6.07 
Alanine 9.40 10.90 8.33 
Cysteine n.d 0.19 1.28 
Valine 7.00 3.09 6.61 
Methionine 1.30 0.65 1.24 
Isoleucine 3.20 0.09 4.44 
Leucine 9.5 7.49 9.38 
Tyrosine 2.80 8.44 3.14 
Phenylalanine 5.50 5.81 5.51 
Histidine 2.00 1.25 1.97 
Lysine 6.40 6.83 6.68 
Arginine 6.90 7.38 6.22 
Tryptophan n.d 2.21 2.30 
Ornithine n.d 0.13 n.d 
Praline 5.00 2.97 4.90 

n.d: not detected; N/A: not available. 

a [83]. 
b [192,193]. 
C [194]. 

recommended a new NTP lower than the standard 6.25 [96-100]. 

Nevertheless, a study conducted by Safi et al. [83] correlated the 

evaluation of the NTP to the rigidity of the cell wall by evaluating 

the NTP of five crude microalgae including C. vulgaris and their 

protein extract, and concluded that no universal conversion factor 

could be recommended for multiple reasons such as cell wall 

rigidity, growth conditions, growth media and environmental 

uncertainty. Gonzalez-Lopez et al. [97] determined the NTP using 

a different technique that correlates protein content (Lowry assay) 

to total nitrogen content (Kjeldahl and elemental analysis) and 

also estimated that the I<jeldahl method correlates better with the 

Lowry assay. In addition, Servaites et al. [84] quantified proteins of 

12 different microalgae including C. vulgaris by staining the 

protein isolate with Coomassie brilliant blue R-250 {CBB) on a 

paper and then eluting the remaining stained proteins in 1% 

sodium dodecyl sulphate {SOS) followed by measuring the absor

bance at 600 nm. This method gave almost similar results com

pared to the Dumas method. On the other hand, the colorimetric 

method of Lowry [101] was also considered as one of the most 

accurate methods to quantify proteins [102], but with time this 

method showed to only quantify hydro-soluble proteins 

[83,88, 101-105 ], which represents the major part of proteins. 

The Lowry assay is more acceptable than the Bradford assay 

because the latter does not react with ail the amino acids present 

in the extract, thus giving lower protein concentrations [92]. 

5.2. Lipids 

Lipids are a heterogeneous group of compounds that are 

defined not by their structure but rather by the fact that they 

are soluble in non-polar solvents and relatively insoluble in water 

[90]. During optimal growth conditions C. vulgaris can reach 5-40% 

lipids per dry weight of biomass [81 ], and are mainly composed of 

glycolipids, waxes, hydrocarbons, phospholipids, and small 

amounts offree fatty acids [15,17]. These components are synthe

sised by the chloroplast and also located on the cell wall and on 

membranes of organelles ( chloroplast and mitochondrion mem

branes). Nevertheless, during unfavourable growth conditions, 

lipids content (mainly composed of triacyglycerols) can reach 

58% [8,81,106]. Unlike other lipids, triacylglycerols do not perform 

Recornrnendation from FAO/WHOb Eggsb Soyab 

N/A 11.00 1.30 
4.00 5.00 4.00 
N/A 6.90 5.80 
N/A 12.60 19.00 
N/A 4.20 4.50 
N/A n.d 5.00 
3.50 2.30 1.90 
5.00 7.20 5.30 
N/A 3.20 1.30 
4.00 6.60 5.30 
7.00 7.00 7.70 
6.00 4.20 3.20 
N/A 5.80 5.00 
N/A 2.40 2.60 
5.50 5.30 6.40 
N/A 6.20 7.40 
1.00 1.70 1.40 
N/A n.d n.d 
N/A 4.20 5.30 

a structural role but instead accumulate as dense storage lipid 

droplets in the cytoplasm and in the inter-thylakoid space of the 

chloroplast [17]. 

Liu et al. [51 ] optimised a method that detects the accumula

tion of lipid droplets inside the cells of C. vulgaris after each 

growth phase. The method relies on staining the cells with Nile 

red dye and then observing the accumulation of lipids with 

fluorescence microscope by emitting blue light that reveals the 

lipid droplets, especially neutral lipids. This technique showed a 

correlation between the quantity of neutral lipids accumulated 

and fluorescence intensity. However, according to Chen et al. [107] 

without cell disruption, this method could be ineffective due to 

the presence of a thick cell wall of some microalgae that can 

prevent complete access of the reagent inside the cell. Thus, cell 

disruption is a necessity to prevent wrong measurements and 

quantification. 

The extraction process of total lipids from C. vulgaris is 

generally conducted by the method of Bligh and Dyer (a mixture 

of chloroform and methanol), or by hexane, or petroleum ether 

[31,49,51,58,108-110]. Quantification of total lipids is conducted 

gravimetrically after evaporating the extracting solvent; in addi

tion, column chromatography is carried out in order to separate 

different lipid constituents followed by evaporating the solvent 

and then weighing the remaining lipid extract [111 ]. Indeed, these 

solvents are not used on an industrial scale because they are 

harmful for the environment, toxic, highly flammable and con

taminate the extract [109]. Total lipids are composed of three 

major fractions phospholipids (PL), glycolipids {GL) and neutral 

lipids {NL). These fractions are fractionated by sequential elution of 

chloroform and acetic acid for NL, acetone and methanol for GL, 

and methanol for PL recovery [111 ]. Supercritical carbon dioxide 

{SC-C02 ) extraction has been identified as an alternative for a 

greener extraction since it gives pure extracts free of contamina

tion. Moreover, in order to increase the yield of extraction, a co

solvent to SC-C02 such as ethanol can be used or a preliminary cell 

disruption technique can be performed [112]. It is noteworthy that 

the addition of ethanol increases the extraction yield of total 

lipophilic molecules (lipids and pigments), but it could also bypass 

the energetic yet efficient cell disruption technique, and therefore 

the production cost could be significantly reduced [113]. 



The fatty acid profile changes with respect to growth condi
tions and is suitable for different applications. For instance, 
according to Yeh and Chang [63], the fatty acid profile of C. vulgaris 

grown under mixotrophic growth conditions can accumulate 
60-68% saturated and monounsaturated fatty acids composed of
palmitic acid C16:0, stearic acid C18:0 fatty acids, palmitoleic acid
C16:1 and oleic acid C18:1 [31]. Such a profile is more suitable for
biodiesel production [114]. On the contrary, if it is grown under
favourable growth conditions, its fatty acid profile is unsuitable
for biodiesel [106] but more suitable for nutritional uses because
it is more concentrated in polyunsaturated fatty acids such as
linoleic acid C18:2, linolenic acid C18:3, and eicosapentaenoic acid
C20:5 [107].

5.3. Carbohydrates 

Carbohydrates represent a group of reducing sugars and poly
saccharides such as starch and cellulose. Starch is the most 
abundant polysaccharide in C. vulgaris. It is generally located in 
the chloroplast and is composed of amylose and amylopectin, and 
together with sugars they serve as energy storage for the cells. 
Cellulose is a structural polysaccharide with high resistance, which 
is located on the cell wall of C. vulgaris as a protective fibrous 
barrier. In addition, one of the most important polysaccharides 
present in C. vulgaris is the p1 __.3 glucan [115], which has multiple 
health and nutritional benefits. 

Total carbohydrates are generally quantified by the sulphuric
phenol method [116,117], yielding simple sugars after hydrolysis at 
110 °C, then quantification of the latter by HPLC ( especially HPIC). 
Starch quantification is much better using the enzymatic method 
compared to the acidic method [118,119]. During nitrogen limita
tion, total carbohydrates can reach 12-55% dry weight.[120,121]. 

Moreover, C. vulgaris has a remarkably robust cell wall [122], 
mainly composed of a chitosan like layer, cellulose, hemicellulose, 
proteins, lipids and minerais [123-125]. 

The sugar composition (Table 2) of the cell wall is a mixture of 
rhamnose, galactose, glucose, xylose, arabinose and mannose 
[126-130], rhamnose being the dominant sugar [128,131,132]. 

5.4. Pigments 

The most abundant pigment in C. vulgaris is chlorophyll, which 
can reach 1-2% dry weight and is situated in the thylakoids. C. 
vulgaris also contains important amounts of carotenoids (Table 3) 
that act as accessory pigments by catching light; P-carotene for 
instance is associated with the lipid droplets in the chloroplast, and 
primary carotenoids are associated with chlorophyll in thylakoids 
where they trap light energy and transfer it into the photosystem. 
However, as in terrestrial plants, some pigments act as photo
protectors by protecting chlorophyll molecules from degradation 
and bleaching during strong exposure to radiation and oxygen [44]. 

These pigments have multiple therapeutic properties, such as 
antioxidant activities [133], protective effect against retina degen
eration [134,135], regulating blood cholesterol, prevention from 

Table 2 

Simple sugars composition of the cell wall poly

saccharides [128]. 

Neutra! sugars 

Rhamnose 

Arabinose 

Xylose 

Mannose 

Galactose 

Glucose 

Percent age (%) 

45-54 

2-9 

7-19 

2-7 

14-26 

1-4 

Table 3 

Potential pigments content in C. vulgaris under different growth conditions. 

Pigments µgg- 1 (dw) Referen ces 

p-Carotene 7-12,000 [20,65,70,139,170] 

Astaxanthin 550,000 [170,195,196] 

Cantaxanthin 362,000 [139,140,170,195] 

Lutein 52-3830 [20,65] 

[67,70] 

[139,170] 

Chlorophyll-a 250-9630 [65] 

[20,67] 

[68,139] 

Chlorophyll-b 72-5770 [65] 

[20,67] 

[70,139] 

Pheophytin-a 2310-5640 [70] 

Pheophytin-b N/A [70] 

Violoxanthin 10-37 [65] 

[67] 

N/A: not available. 

chronic diseases (cardiovascular and colon cancer) and fortifying 
the immune system [136,137]. Pheophytins are biochemically 
similar to chlorophyll but lacking Mg++ ion; they can form after 
chlorophyll degradation during the growth of microalgal cells or 
during harsh extraction conditions. In addition, these pigments are 
lipophilic and their extraction is generally associated with lipid 
extraction. 

Many studies worked on optimising the extraction process of 
pigments using solvents (dimethyl formamide, dichloromethane, 
acetone, hexane, and ethanol), soxhlet, ultrasound-assisted extrac
tion [70, 138-141 ], and pressurised liquid extraction (PLE) that 
showed useful simultaneous extraction of carotenoids and chlor
ophyll, and also minimised the formation of pheophytins [70,142] 
at high temperature ( > 110 °C). Moreover, SC-CO2 extraction was 
also carried out to enhance carotenoids recoveries, and the best 
conditions were 35 MPa and 40-55 °C on crushed cells, and under 
these conditions the extract was golden and limpid unlike solvents 
extraction; thus by using SC-CO2, higher selectivity can be 
achieved [139,142]. This hypothesis was confirmed by Kitada 
et al. [20], using different optimum conditions (50 MPa and 
80 °C) because the study was conducted on whole cells; thus 
stronger conditions were required. In addition, co-solvent such as 
5% ethanol has been added as a booster to increase the extraction 
yield. Analyses and quantification of pigments are conducted by 
high performance liquid chromatography (HPLC) and spectro
photometry using specific equations [143] or by plotting the 
calibration curve for each pigment. 

5.5. Minerais and vitamins 

Minerais are determined after incinerating the biomass and 
then analysis by atomic absorption spectrophotometry (Table 4). 
They play important functional roles in humans [44]. For instance, 
potassium cation is principal for human nutrition; it is associated 
with intracellular fluid balance, carbohydrate metabolism, protein 
synthesis and nerve impulses. In addition, it is used as chemical 
fertilizer in agriculture in the form of chloride (KCI), sulphate 
(K2SO4) or nitrate (KNO3). Magnesium is important in maintaining 
normal and constant nervous activity and muscle contraction; 
hence magnesium deficiency in human organism can lead to 
depression and symptoms of suicidai behaviour. Zinc is an essen
tial component of enzymes, which participates in many metabolic 
processes including synthesis of carbohydrates, lipids and proteins 
and it is also a cofactor of the superoxide dismutase enzyme, 
which is involved in the protection against oxidative processes and 
reducing the severity of strong diarrhoea. 



Table 4 

Minerais profile of C. vulgaris. 

Minerais Minerai content (g 100 g-1) 

Maruyama et al. [203] Tokusoglu and Unal [197] Panahi et al. [198] 

Microelements 

Na N/A 1.35 N/A 

K 1.13 0.05 2.15 

Ca 0.16 0.59 0.27 

Mg 0.36 0.34 0.44 

p N/A 1.76 0.96 

Macroelements 

Cr N/A tr tr 

Cu N/A tr 0.19 

Zn N/A tr 0.55 

Mn N/A tr 0.40 

Se N/A tr N/A 

I N/A N/A 0.13 

Fe 0.20 0.26 0.68 

tr: traces; N/A: not available. 

Table 5 

Vitamins profile of C. vulgaris. 

Vitamins Content (mg 100 g-1) 

Maruyama Yeh Panahi 

et al. [203] et al. [114] et al. [198] 

B1 (Thiamine) 2.4 N/A 1.5 

B2 (Riboflavin) 6.0 N/A 4.8 

B3 (Niacin) N/A N/A 23.8 

B5 (Pantothenic acid) N/A N/A 1.3 

B6 (pyridoxine) 1.0 N/A 1.7 

B7 (Biotin) N/A N/A 191.6 

B9 (Folie acid) N/A N/A 26.9 

B12 (Cobalamin) tr N/A 125.9 

C (Ascorbic acid) 100.0 39.0 15.6 

E (Tocopherol) 20.0 2787.0 N/A 

A (Retinol) N/A 13.2 N/A 

tr: traces; N/A: not available. 

Vitamins are classified as water-soluble (C and B) and fat

soluble (A, D, E, and K). C. vulgaris has an important vitamin profile 

(Table 5) that are key elements for cell growth and differentiation 

in the human body (Vitamin A), and have antioxidant activity that 

acts as radical scavenger together with improving blood circula

tion and controlling muscle functions (Vitamins E and C) [144]. 

Vitamin B complex occupies the largest number in living organ

isms and is a major actor for enzymes activity in metabolism [145], 

promotes red blood cells growth, reduces the risk of pancreatic 

cancer, and maintains healthy skin, hair and muscles. Vitamins 

profile is sensitive to growth conditions; thus the best concentra

tion was achieved after 24 h autotrophic growth with 10% C02, but 

during heterotrophic conditions vitamins content was higher than 

autotrophic due to the presence of glucose in the medium and 

used as carbon source to produce organic compounds [87]. 

Another possible explanation for the high content of vitamins 

may be the alterations in the ultrastructure of the photosynthetic 

apparatus which were found to be associated with changes in 

cellular components [146]. 

6. Cell disruption techniques

C. vulgaris has a resistant cell wall, which is a major barrier for

digestibility and extraction process of ail internai components. 

Breaking the cell wall is an important challenge and a costly unit 

operation. Multiple techniques have been carried out on C. vulgaris 

(Table 6). Cooling the system during mechanical cell breaking is 

always required because the high-energy input overheats the 

broken microalga and jeopardises the integrity of target compo

nents by damaging or oxidising them. Enzymatic treatment is a 

promising technique that requires a deep understanding of the 

ultrastructure and composition of the cell wall in order to select 

the appropriate enzyme and to reduce the enzyme concentration 

required to hydrolyse the cell wall. According to Lee et al. [108] 

and Zheng et al. [31] the best cell disruption techniques with 30% 

dry weight lipid recovery of C. vulgaris grown under autotrophic 

conditions were autoclaving, microwave, enzymatic and grinding 

with liquid nitrogen. Nonetheless, the quality of the target mole

cules is susceptible to be different with respect to the cell disruption 

method applied. Thus, the amino acid profile of proteins obtained 

after conducting an alkaline treatment on C. vulgaris is different 

from the amino acid profile obtained after high-pressure homo

genisation [147]. 

The success of cell disruption techniques is generally assessed 

by conducting microscopie observations or by comparing the 

extracted yield of a component before and after applying the cell 

disruption. 

7. Applications and potential interests

7.1. Biofuels 

Dependency on energy sources is growing faster, especially 

with the exponential increase in demand, which is leading to more 

dramatic consequences for the environment. Third generation 

biofuel form algae or microalgae is considered as one of the 

alternatives to current biofuel crops such as soybean, corn, rape

seed and lignocellulosic feedstocks because it does not compete 

with food and does not require arable lands to grow [16]. However, 

biofuel from microalgae is promising in the long term because it is 

now accepted that the production cost is still high and cannot yet 

compete with conventional fuel. But it competes favourably with 

crops by their potential of producing 10-20 times more oil [148] 

within a shorter period of time. As mentioned previously, C. 

vulgaris has the potential to accumulate high amounts of lipids, 

especially while growing it under mixotrophic conditions. Its fatty 

acid profile showed to be suitable for biodiesel production with an 

oxidative stability after transforming it to biodiesel, and has 

properties [149] that comply with the US Standard (ASTM 6751), 

European Standard (EN 14214), Brazilian National Petroleum 

Agency (ANP 255) and Australian Standard for biodiesel [150] 

and also compared favourably with (ASTM and EN) an Indian 

biodiesel standard [ 61 ]. After lipid extraction the remaining 

residue is rich in proteins, carbohydrates and minor amounts of 

lipids. Thus, Wang et al. [149] applied fast pyrolysis on C. vulgaris 

remnants using an atmospheric-pressure fluidised bed reactor at 

500 °C and obtained bio-oil and biochar representing 94% of 

energy recovery from the remnant, without forgetting the small 

amount of biogas recovered. However, the quality of bio-oil was 

poor due to the presence of nitrogen in significant amounts (12.8% 

dry weight). Besides, C. vulgaris has high starch content and algal 

starch proved to be a good source for bioethanol production. 

Hirano et al. [151] extracted starch from C. vulgaris and achieved 

65% ethanol-conversion rate after saccharification and fermenta

tion with yeast. Hydrothermal liquefaction is another alternative 

route for biofuel production from microalgae. It involves the 

reaction of biomass in water at high temperature with or without 

the presence of a catalyst to obtain bio-crude [152]. The main 

advantage of this method is that it improved 10-15% the energetic 



Table 6 

Different cell disruption techniques carried out on C. vulgaris. 

Cell disruption 

Acid treatment 

Alkaline treatment 

Autoclaving 

Head milling 

Electroporation 

Enzymatic lysis 

French press 

Manual grinding 

High pressure homogeniser 

Microwaves 

Osmotic shoclc 

Ultra-sonication 

N/A: not available . 

Table 7 

Time 

25min 
60min 
5min 
20min 

5min 

2min 
N/A 

60min 
10h 
N/A 

10h 

24h 

N/A 

N/A 
1-lO min 
N/A 
N/A 
5min 
5min 
48 h 
60min 
6min 

20min 

5min 
15-60min 

Experimental set-up References 

Hot Ac20+H2S04 ( 9:1, v-v) [70] 
2N NaOH [83] 
125 °C+ 1.5 MPa [106] 
Beads: 0.4-0.6 mm [31] 
Rotational speed: 1500 rpm 
Beads: 0.1 mm, [106] 
Rotational speed: 2800 rpm 
Beads: 1 mm [59] 
Electric field: 3 kV/cm [73] 
Electrode: 2 cm 
Snailase ( 5  mg L - 1), 37 °C [31] 
Cellulase or lysozyme ( 5 mg L - 1 ), 55 "C 
4% Cellulase+ 1% others (w/v) [199] 
25 mM sodium phosphate buffer 
pH 7.0 

0.5 M mannitol 
4% Cellulase+ 1% macerozyme RlO+ 1% pectinase (w/v) [90] 
pH 6.0 
25 mM phosphate buffer 
0.6 M sorbitol/mannitol ( 1: 1) 

Cellulase 0.5 mg L [200] 
0.5 M mannitol 

138MPa [201] 
N/A [78] 
With liquid nitrogen or quartz [31] 
With dry ice [169] 
N/A [202] 
100 °C, 2450 MHz [31,106] 
40-50 °C, 2450 MHz [107] 
10% NaCI [106] 
2N NaOH [83] 
10W [84] 
600W [31] 
lOkHz [106] 
N/A [50] 

Cumulative energy demand and energy production associated with the production 
of 1 MJ of biodiesel from C. vulgaris [159]. 

taking into account ail the energetic debt for 1 MJ biodiesel 

production from C. vulgaris. The only positive balance obtained 

was 0.57 MJ for wet oil extraction with low nitrogen for cell 

growth (Table 7), and ail the other revealed negative balance. 

Hence, microalgal biofuel production still needs efficient improve

ment to reduce energy input needed in order to reach competitive 

prices with petroleum in the market, and more important to be an 

overall sustainable production. 

Oil Nitrogen for Energy Cumulative energy Yield 

extraction culture production (MJ) demand (MJ) (MJ) 

Dry Sufficient 2.7 5.29 -2.59 

Wet Sufficient 3.84 3.99 -0.15 
Dry Low 1.57 2.32 -0.75 
Wet Low 2.23 1.66 0.57 

value of C. vulgaris by acting on the whole biomass, suggesting that 

oil is also derived from carbohydrates and proteins [153], and thus 

no need to stress the microalgae to increase lipid content. Hence, 

the best conditions applied on C. vulgaris in a batch reactor were 

300-350 °C, with 150-200 bar in water or with the presence of an

organic acid or heterogeneous catalysts, and the results indicate

that bio-oil formation follows the trend lipids > proteins > carbo

hydrates [152-154].

Nowadays, algal biofuel is suffering from several drawbacks, 

jeopardising its commercialisation on an industrial scale due to 

high production cost that is far from being competitive with fossil 

fuel, and also questioning the sustainability of this production. 

Hence, different studies considered life cycle assessment analysis 

as an effective tool to identify the reasons leading to production 

deficit and exploring its environmental impact [155-162]. There

fore, it was agreed that the major costs corne from infrastructure, 

production set-up, fertilizers, harvesting, drying the biomass, 

transportation, water footprints, cell disruption and oil extraction 

process. For instance, Lardon et al. [163] performed an analysis by 

7.2. Human nutrition 

C. vulgaris is one of the few microalgae that can be found in the

market as a food supplement or additive [5,140], colourant (C. 

vulgaris after carotenogenesis) and food emulsion [119]. These 

products corne in different forms such as capsules, tablets, extracts 

and powder [164,165]. Nevertheless, despite ail the healthy 

benefits that C. vulgaris and other microalgae can provide, with 

their remarkable richness in proteins, lipids, polysaccharides, 

pigments and vitamins, they are rather considered as nutraceu

ticals instead of food products due to the Jack of clear common 

official legislations in terms of quality and requirements regarding 

microalgae [ 166,167]. Moreover, C. vulgaris extract proved to have 

preservative activity higher than those obtained synthetically, i.e., 

butylated hydroxyanisole (BHA) and butylated hydroxytoluene 

(BHT) [168]. 

7.3. Animal feed 

It is estimated that about 30% of microalgal production is sold 

for animal feed purposes [169] due to the increasing demand for 
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food with natural composition instead of synthesised ingredients. 
This has triggered intensive research into finding natural ingre
dients that improve the quality of animal food products [119]. 
Thus, while stressing C. vulgaris, it accumulates important amount 
of carotenoids and after feeding it to animais such as fish and 
poultry it showed interesting pigmentation potential for fish flesh 
and egg yolk in poultry, together with enhancing health and 
increasing life expectancy of animais [165,169-174]. Moreover, C. 
vulgaris showed a protective effect against heavy metals and other 
harmful compounds (lead, cadmium, and naphtalene) by reducing 
significantly the oxidative stress induced by these harmful com
pounds, and increasing the antioxidant activity in the organisms of 
tested animais [175-177]. 

7.4. Wastewater treatment 

Many studies demonstrated the remarkable potential of C. 
vulgaris in fixating up to 74% carbon dioxide when grown in a 
photobioreactor [178], and in absorbing 45-97% nitrogen, 28-96% 
phosphorus and in reducing the chemical oxygen demand (COD) 
by 61-86% from different type of wastewater such as textile, 
sewage, municipal, agricultural and recalcitrant [179-185]. Micro
algae provide a pathway for the removal of vital nutrients (nitro
gen and phosphorus), carbon dioxide, heavy metals and pathogens 
present in wastewaters and necessary for their growth. In addi
tion, saving and requirements for chemical remediation and 
possible minimisation of fresh water use for biomass production 

are the main drivers for growing microalgae as part of a waste
water treatment process [46]. Thus, a faster growth rate accom
panied by an elimination of water-contamination level is a 
promising and advantageous process. Furthermore, performance 
of C. vulgaris in synthesised wastewater was improved when co
immobilised in alginate beads with microalgae growth-promoting 
bacteria, and removed 100% of ammonium (NH4 +) during four 
consecutive cycles of 48 h, and 83% for phosphorus after one cycle 
of 48 h [186]. Thus, C. vulgaris is considered as one of the best 
microalga for bioremediation of wastewater with an impressive 
potential to completely remove ammonium and sometimes mod
est potential to eliminate phosphorus present in the medium 
[187]. 

7.5. Agrochemical applications 

Blue-green algal extract excretes a great number of substances 
that influence plant growth and development [188]. These micro
organisms have been reported to benefit plants by producing 
growth promoting regulators, vitamins, ami.no acids, polypeptides, 
antibacterial and antifungal substances that exert phytopathogen 
biocontrol, and polymers such as exopolysaccharides that improve 
plant growth and productivity [189]. 

The bio-fertilisation effect using algae extract are recom
mended for increasing the growth parameters of many plants 
[190,191]. This is due to the biochemical profile of algae extract 
rich in nitrogenase, nitrate reductase, and minerais, which are 



essential nutrients for plant growth. The effect of the aqueous 

extract of C. vulgaris as foliar feeding on nutrients status, growth, 

and yield of wheat plant (Triticum aestivum L. var. Giz 69) has been 

investigated [192]. Thus, this study found that a concentration of 

50% (v/v) algae extract as one time foliar spray (25 days after 

sowing) increased the growth yield and weight gain by 140% and 

40%, respectively. Moreover, another study showed the bio

fertilisation impact of C. vulgaris on growth parameters and 

physiological responses of Lactuca sativa germination seeds in 

culture medium containing microalga grown for 3, 6, 9, 12 and 15 

days [193]. As a result, the addition of C. vulgaris to the culture 

medium or soil significantly increased fresh and dry weight of 

seedlings as well as pigments content. The best treatments were 

2 and 3 g dry alga kg- 1 soil. Ali these studies were conducted on 

the Iiquid extract of C. vulgaris as bio-fertilizer for plant growth. 

Therefore, further studies should be carried out to estimate costs 

on a large scale of the algae cell extract as foliar fertilizer, 

compared to other commercial foliar fertilizers present in the 

market. 

8. Algo-refinery concept

The concept of biorefinery has been inspired from the petro

Ieum refinery concept. It reflects a platform that integrates a 

process to fractionate the components of a biomass [194,195] to 

produce multiple products, and thus a biorefinery takes advantage 

of the various components in the biomass in order to improve the 

value derived from each component and also generating its own 

power, which maximises profitability and preserve the environ

ment Hence, C. vulgaris with ail its potential and richness in 

proteins, carbohydrates, lipids, pigments, minerais and vitamins 

described previously deserves to be completely refined (Fig. 4) 

without forgetting that every operation unit should take into 

account the next stage and preserve the integrity of ail compo

nents of interest in the downstream process. 

9. Conclusion

This review reflects a broader image about the potential 

benefits of C. vulgaris, and gives an insight about the technological 

advancements already conducted. C. vulgaris can easily be cultured 

with inexpensive nutrient regime and has faster growth rate as 

compared to terrestrial energy crops and high biomass produc

tivity. However, production-processing cost remains too high to 

compete in the market. Indeed, this is the major problem facing 

the microalgal industry nowadays, but it should be recognised that 

much improvements have been achieved during the Iast decade 

and expectations are estimating that the nearest future of micro

algal industry will be strongly competitive on different Ievels in 

the market. The remarkable values of C. vulgaris set the ground

work to additional research for futuristic applications where it will 

be represented as a strong candidate for tomorrow's bio-industry. 
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