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Abstract

The Extended Kalman Filter (EKF) is both the historical algo-
rithm for multi-sensor fusion and still state of the art in numerous
industrial applications. However, it may prove inconsistent in the
presence of unobservability under a group of transformations. In this
paper we first build an alternative EKF based on an alternative non-
linear state error. This EKF is intimately related to the theory of the
Invariant EKF (IEKF). Then, under a simple compatibility assump-
tion between the error and the transformation group, we prove the
linearized model of the alternative EKF automatically captures the
unobservable directions, and many desirable properties of the linear
case then directly follow. This provides a novel fundamental result in
filtering theory. We apply the theory to multi-sensor fusion for naviga-
tion, when all the sensors are attached to the vehicle and do not have
access to absolute information, as typically occurs in GPS-denied envi-
ronments. In the context of Simultaneous Localization And Mapping
(SLAM), Monte-Carlo runs and comparisons to OC-EKF, robocentric
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EKF, and optimization-based smoothing algorithms (iSAM) illustrate
the results. The proposed EKF is also proved to outperform standard
EKF and to achieve comparable performance to iSAM on a publicly
available real dataset for multi-robot SLAM.

1 Introduction

Multi-sensor fusion for navigation of autonomous and non-autonomous ve-
hicles, or for Simultaneous Localization And Mapping (SLAM) or Visual
Inertial Odometry (VIO) is classically handled by the Extended Kalman Fil-
ter (EKF). Although powerful alternative techniques have since emerged, the
EKF is both the historical algorithm - originally implemented in the Apollo
program - and still a prevalent algorithm in the academia and in the industry,
see e.g., [7,13,40].

One major limitation of the EKF is its inconsistency, that is, the filter
returns a covariance matrix that is too optimistic [2], leading to inaccurate
estimates. EKF inconsistency in the context of SLAM has been the ob-
ject of many papers, see e.g. [1,16,22–24,26,27,29,31,36]. Theoretical analy-
sis [24,29,31] reveals inconsistency is caused by the inability of EKF to reflect
the unobservable degrees of freedom of SLAM. Indeed, the filter tends to erro-
neously acquire information along the directions spanned by these unobserv-
able degrees of freedom. The Observability Constrained (OC)-EKF [26,29]
constitutes one of the most advanced solutions to remedy this problem and
has been fruitfully adapted, e.g. for VIO, cooperative localization, and un-
scented Kalman filter [25,28,36]. The idea is to pick a linearization point that
is such that the unobservable subspace “seen” by the filter is of appropriate
dimension.

In this paper we propose a novel general theory. We first propose to build
EKFs based on an alternative error e = η(x, x̂), generalizing the Invariant
EKF (IEKF) methodology [5]. This means the covariance matrix P reflects
the dispersion of e, and not of x − x̂. When unobservability stems from
symmetries, the technique may resolve the consistency issues of the EKF.
Indeed symmetries are encoded by the action φα(x) of a transformation group
G [39], where α ∈ G denotes the corresponding infinitesimal unobservable
transformation. Under the simple condition that the image of matrix
∂
∂α
η(φα(x),x) is independent of x, the EKF based on e is proved to possess

the desirables properties of the linear case regarding unobservability, and is
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thus consistent.

1.1 Specific Application to SLAM

The specific application to SLAM was released by the authors on Arxiv in
2015 [4] and encountered immediate successes reported in [6,12,14,20,21,41,
42], although the work was never published elsewhere.

More precisely, we noticed back in [10] the SLAM problem bears a non-
trivial Lie group structure. In the Arxiv preprint [4] we formalized the group
introduced in [10] and called it SEl+1(3), and we proved that for odome-
try based SLAM, using the right invariant error of SEl+1(3) and devising an
EKF based on this error, i.e., a Right-Invariant EKF (RIEKF), the linearized
system possesses the desirable properties of the linear case, since it automat-
ically correctly captures unobservable directions for SLAM. Thus, virtually
all properties of the linear Kalman filter regarding unobservability may be
directly transposed: the information about unobservable directions is non-
increasing (see Proposition 2), the dimension of the unobservable subspace
has appropriate dimension (this relates to the result of OC-EKF [25,28,29]),
the filter’s output is invariant to linear unobservable transformations, even
if they are stochastic and thus change the EKF’s covariance matrix along
unobservable directions [42]. The right-invariant error for the proposed Lie
group structure was also recently shown to lead to deterministic observers
having exponential convergence properties in [38].

Along the same lines, using the right-invariant error of the group SE2(3)
we proposed in [5] also led to alternative consistent IEKF for visual inertial
SLAM and VIO applications [12,14,20,21,41]. In particular, [20] demon-
strates that an alternative Invariant MSCKF based on the right-invariant
error of SE2(3) naturally enforces the state vector to remain in the unob-
servable subspace, a consistency property which is preserved when consid-
ering point and line features [21], or when a network of magnetometers is
available [14].

1.2 Paper’s Organization

Section 2 presents the general theory. Section 3 applies the theory to the
general problem of navigation in the absence of absolute measurements,
as typically occurs in GPS-denied environments. Section 4 is dedicated to
SLAM and compares the proposed EKF to conventional EKF, OC-EKF [29],

4



robocentric mapping filter [15] and iSAM [32,33]. In Section 5, we show
our alternative EKF achieves comparable results to iSAM and outperforms
the conventional EKF on a multi-robot SLAM experiment using the UTIAS
dataset [35].

Preliminary ideas and results can be found in the 2015 technical report
[4]. Although the present paper is a major rewrite, notably including a
novel general theory encompassing the particular application to SLAM of [4],
and novel comparisons and experiments, [4] serves as preliminary material
for the present paper. Matlab codes used for the paper are available at
https://github.com/CAOR-MINES-ParisTech/esde.

2 General Theory

Let us consider the following dynamical system in discrete time with state
xn ∈ X and observations yn ∈ Rp:

xn = f (xn−1,un,wn) , (1)

yn = h (xn,vn) , (2)

where f(·) is the function encoding the evolution of the system, wn ∼
N (0,Qn) is the Gaussian process noise, un is the input, h(·) is the ob-
servation function and vn ∼ N (0,Rn) a Gaussian measurement noise.

We now define mathematical symmetries, see [8,39].

Definition 1. An action of a (Lie) group G on X is defined as a family of
bijective maps φα : X → X , α ∈ G satisfying

∀x ∈ X φId(x) = x, (3)

∀α, β ∈ G,x ∈ X φα (φβ (x)) = φαβ (x) , (4)

where Id corresponds to the identity of the group G.

Definition 2. Let φ·(·) be defined as in (3)-(4). We say that system (1)-(2)
is totally invariant under the action of φ·(·) if

1. the dynamics are equivariant under φ·(·), i.e.,

∀α,x,u,w φα (f(x,u,w)) = f (φα(x),u,w) , (5)
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2. the observation map h(·) is invariant w.r.t. φ·(·)

∀α,x h(φα(x),v) = h(x,v). (6)

“Symmetry” is defined as invariance to transformations φα(·). Through-
out the paper we will rather use the term invariant, along the lines of the
preceding definition.

As in this paper we pursue the design of consistent EKFs, we will focus
on the system “seen” by an EKF: it consists of the linearization of system
(1)-(2) about the estimated trajectory (x̂n)n≥0 in the state space. Along the
lines of [24,28] we use the linearized system about a trajectory.

Let (xn)n≥0 denote a solution of (1) with noise turned off. The local
observability matrix [17] at xn0 for the time interval between time-steps n0

and n0 +N is defined as

O(xn0) =


Hn0

Hn0+1Fn0+1
...

Hn0+NFn0+N · · ·Fn0+1

 , (7)

with the Jacobians Fn = ∂f
∂x
|xn−1,un,wn , Hn = ∂h

∂x
|xn,vn .

First we show the directions spanned by the action of G are necessarily
unobservable directions of the linearized system, that is, they lie in the kernel
of the observability matrix.

Proposition 1. If system (1)-(2) is invariant in the sense of Definition
2, then the directions ∂

∂α
φα|Id(xn0) infinitesimally spanned by φ·(·) at any

xn0 necessarily lie in KerO(xn0), with O(xn0) defined by (7), and are thus
unobservable.

Proof. Differentiating1 (5) and (6) w.r.t. α at Id we obtain

∂

∂α
φα
∣∣
α=Id

(f(x,u,w)) =
∂f

∂x
|(x,u,w)

∂

∂α
φα
∣∣
α=Id

(x), (8)

∂h

∂x
|(x,v)

∂

∂α
φα
∣∣
α=Id

(x) = 0 ∀x ∈ X . (9)

1On Lie groups differentiation can indeed be rigorously defined as ∂
∂αφα

∣∣
α=Id

(x)δα :=
d
dsφexp(sδα)(x)|s=0 with δα in the Lie algebra, which mean partial derivative of φα (x) with
respect to α at α = Id.
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Let (xn)n≥0 denote a solution of (1) with noise turned off. (9) applied

at xn0 yields Hn0

∂
∂α
φα|Id(xn0) = 0. Considering then (8) at xn0 leads to

∂
∂α
φα|Id (f(xn0 ,un0+1,wn0+1)) = Fn0+1

∂
∂α
φα|Id (xn0). Applying (9) at xn0+1

= f(xn0 ,un0+1,wn0+1) yields Hn0+1
∂
∂α
φα|Id (xn0+1) = 0, and thus Hn0+1

Fn0+1
∂
∂α
φα|Id (xn0) = 0. A simple recursion proves ∂

∂α
φα|Id (xn0) ⊂ KerO(xn0).

Indeed, no matter the number of observations and moves, we are in-
herently unable to detect an initial (infinitesimal) transformation φα(·), the
problem being invariant to it.

2.1 Observability Issues of the Standard EKF

Let (x̂n)n≥0 be a sequence of state estimates given by an EKF. The linearized
system “seen” by the EKF involves the estimated observability matrix

Ô(x̂n0) =


Ĥn0

Ĥn0+1F̂n0+1
...

Ĥn0+N F̂n0+N · · · F̂n0+1

 , (10)

where Jacobians are computed at the estimates. The directions spanned by
φ·(·) at x̂n0 necessarily lie in KerO(x̂n0), as proved by Proposition 1, but
there is a null probability that they lie in Ker Ô(x̂n0), because of the noise
and Kalman updates, see [28]. A major consequence is that the EKF gains
spurious information along the unobservable directions.

In fact, this problem stems from the choice of estimation error x− x̂ that
does not match unobservability of system (1)-(2): changing the estimation
error may resolve the problem.

2.2 EKF Based on a Nonlinear Error

In this section, we define an EKF based on a nonlinear function η(x, x̂) ∈ X
that provides an alternative to the usual linear estimation error x − x̂. We
prove consistency under compatibility assumptions of the group action and
η(·, ·).
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The methodology builds upon the alternative errors

en−1|n−1 = η
(
xn−1, x̂n−1|n−1

)
, (11)

en|n−1 = η
(
xn, x̂n|n−1

)
. (12)

The filter is displayed in Algorithm 2. As the covariance matrix Pe is
supposed to reflect the dispersion of e, we need to define Jacobians w.r.t our
alternative state error. At line 2 F̂e

n, Ĝe
n are Jacobians of the error propaga-

tion function, and at line 3, Ĥe
n, Ĵen are Jacobians of the error measurement

defined through the following first order approximations

en|n−1 ' F̂e
nen−1|n−1 + Ĝe

nwn, (13)

yn − h
(
x̂n|n−1,0

)
' Ĥe

nen|n−1 + Ĵenvn. (14)

At line 4, e+
n denotes the (best) error estimate according to the EKF.

However, defining the (best) state corresponding to estimate x̂n|n is not
straightforward as in the linear case where x̂n|n = x̂n|n−1 + e+

n . At line 5
we use a retraction ψ : X × Rq → X , that is, any function ψ (·) which is
consistent with the error to the first order, i.e., e+

n ≈ η(x̂n|n, x̂n|n−1).
Note that, we recover the conventional EKF if we let e = η (x, x̂) = x− x̂

be the usual linear error.

Algorithm 1: EKF based on a non-linear state error

Input: initial estimate x̂0 and uncertainty matrix Pe
0

while filter is running do
Propagation

1 x̂n|n−1 = f
(
x̂n−1|n−1,un,0

)
;

2 Pe
n|n−1 = F̂e

nP
e
n−1|n−1(F̂

e
n)T + Ĝe

nQn(Ĝe
n)T ;

Update

3 Kn = Ĥe
nP

e
n|n−1/

(
Ĥe
nP

e
n|n−1(Ĥ

e
n)T + ĴenRn(Ĵen)T

)
;

4 e+
n = Kn

(
yn − h

(
x̂n|n−1,0

))
;

5 x̂n|n = ψ
(
x̂n|n−1, e

+
n

)
; // state update

6 Pe
n|n =

(
I−KnĤ

e
n

)
Pe
n|n−1;
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2.3 Compatibility Assumptions and Main Consistency
Result

The matrix2 ∂
∂α
|Idη(φα(x),x) reflects how infinitesimal transformations of

the state produced by the action of G affect the error variable e = η(·, ·).
In Assumption 1 below this matrix is used to define a kind of compatibility
between an invariance group G and a nonlinear error function η(·, ·), which
leads to the main result of this paper (Theorem 1).

Assumption 1. The image of the matrix ∂
∂α
|Idη(φα(x),x) is a fixed subspace

C that does not depend on x.

Proposition 1 proved that if the system (1)-(2) is totally invariant, then
the directions infinitesimally spanned by φ·(·) at any point xn0 lie in KerO(xn0),
with O(xn0) defined by (7), and thus they are unobservable. We have also
recalled this is not true for the linearized system seen by the EKF, i.e. for
Ô(x̂n0) [28]. We have the following powerful result:

Theorem 1. If the system (1)-(2) is invariant, and under Assumption 1,
the unobservable directions C spanned by φ·(·) at any point x̂n0, measured
using error η(·, ·) necessary lie in Ker Ôe(x̂n0), with (F̂e

n, Ĥ
e
n)n≥n0 defined by

(13)-(14).

2To fix ideas and help the reader understand the tools, let us pick an example.
For instance we can let the state space be X = R2 and φα(·) a rotation of angle
α around the origin. The group G = S1 is the circle, and the identity element is
Id = 0 + 2kπ. In this case, using polar coordinates, i.e. x = [r cos θ, r sin θ]

T
we have

φα(r cos θ, r sin θ) = [r cos(θ + α), r sin(θ + α)]
T

. The directions spanned by φ·(·) at x are
∂
∂α |Idφ(x) = [−r sin θ, r cos θ]

T
which is a vector orthogonal to x in R2. Now, consider an

error η(·, ·) between two elements of the state space X . What we advocate in the preset
paper is that nonlinear errors may be much better suited for EKF design, but to keep
things simple at this stage assume merely that η(·, ·) denotes the linear error. In this case
we have η(φα(x),x) = φα(x) − x. This is an element of the state space R2, and we can

differentiate with respect to α. We find ∂
∂α |Idη(φα(x),x) = [−r sin θ, r cos θ]

T
. Of course,

it would have been different if we had chosen a different error. If we choose the polar
coordinates error, that is η(·, ·) is a two component vector with first component the dif-
ference of norms and second component the difference of angles in polar coordinates, then
we find η(φα(x),x) = [0, α]

T
which is quite different, and thus ∂

∂α |Idη(φα(x),x) = [0, 1]
T

.
We see to some extent this error is more “compatible” with the symmetry group we chose
since it is the same at any x ∈ R2. In this footnote, the group was of dimension 1, i.e.
it was encoded by a one dimensional element α. If α had another component, we would
need to differentiate with respect to it also. As a result we would not obtain a vector
∂
∂α |Idη(φα(x),x) but a matrix, each column being associated to a component of α.
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Proof. Let M̂n := ∂
∂α
|Idη(φα(x̂n), x̂n). Recalling (14), we have h(φα(x̂n)) −

h(x̂n) ' Ĥe
nη(φα(x̂n), x̂n) ' Ĥe

nM̂nδα with δα a linearized approximation to
α ∈ G. But also h(φα(x̂n)) − h(x̂n) ' ∂h

∂x
|(x̂n,0)

∂
∂α
φ|Id(x̂n)δα. From (9) the

latter is 0. Thus Ĥe
nu = 0 for any u ∈ C, i.e. Ĥe

nC = 0.
Using (13), F̂e is defined as

η (f(x), f(x̂)) ' F̂eη (x, x̂) , (15)

thus η(f(φα(x̂n)), f(x̂n)) ' F̂e
n+1η(φα(x̂n), x̂n) ' F̂e

n+1M̂nδα. Besides, using
(5) yields

η(f(φα(x̂n)), f(x̂n)) = η(φα(f(x̂n)), f(x̂n)) (16)

' ∂

∂α
|Idη(φα(f(x̂n)), f(x̂n))δα ∈ C (17)

applying Assumption 1 at f(x̂n). Thus for any δα we have F̂e
n+1M̂nδα ⊂ C

and thus F̂e
n+1C ⊂ C. We have thus proved

Ĥe
nC = 0, F̂e

n+1C ⊂ C, for any n and x̂n. (18)

This proves the result through an immediate recursion.

We obtain the consistency property we pursue: the linearized model has
the desirable property of the linear Kalman filter regarding the unobservabil-
ities, when expressed in terms of error η(·, ·). As a byproduct, the unobserv-
able subspace seen by the filter is automatically of appropriate dimension.

2.4 Consequences in Terms of Information

In the linear Gaussian case, the inverse of the covariance matrix output by
the Kalman filter is the Fisher information available to the filter (as stated
in [2] p. 304). Thus, the inverse of the covariance matrix P−1n|n output by
any EKF should reflect an absence of information gain along unobservable
directions. Otherwise, the output covariance matrix would be too optimistic,
i.e., the filter inconsistent [2].

Note that, the covariance matrix Pe
n|n reflects the dispersion of the error

en|n of (11)-(12), as emphasized by the superscript e. We have the following
consistency result.
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Proposition 2. Let un0 ∈ Im ∂
∂α
|Idη(φα(x̂n0), x̂n0) be an unobservable di-

rection spanned by φ·(·) at the estimate x̂n0, measured using alternative error
η(·, ·). Let (un)n≥n0 with un = F̂e

nun−1 be its propagation through the lin-
earized model. Under Assumption 1 the Fisher information according to the
filter about (un)n≥n0 is non-increasing , i.e.,

uTn (Pe
n|n)−1un ≤ uTn−1(P

e
n−1|n−1)

−1un−1. (19)

Proof. At propagation step we have

uTn (Pe
n|n−1)

−1un = uTn−1(F̂
e
n)T (F̂e

nP
e
n−1|n−1(F̂

e
n)T + Ĝe

nQn(Ĝe
n)T )−1F̂e

nun−1

(20)

6 uTn−1(F̂
e
n)T
(
F̂e
nP

e
n−1|n−1(F̂

e
n)T
)−1

F̂e
nun−1 (21)

since Q is positive semidefinite. As (F̂e
n)−1F̂e

n = I we have just proved
uTn (Pe

n|n−1)
−1un 6 uTn−1(P

e
n−1|n−1)

−1uTn−1.

At update step (in information form) we have

uTn (Pe
n|n)−1un = uTn

(
(Pe

n|n−1)
−1 + (Ĥe

n)T R̂−1n Ĥe
n

)
un. (22)

But using (18) we see ui ∈ C ∀i ≥ n0 and thus He
nun = 0 so uTn (Pe

n|n)−1un =

uTn (Pe
n|n−1)

−1un 6 uTn−1(P
e
n−1|n−1)

−1un−1.

The theorem essentially ensures the linearized model of the filter has a
structure which guarantees that the covariance matrix at all times reflects an
absence of “spurious” (Bayesian Fisher) information gain over unobservable
directions, ensuring strong consistency properties of our alternative EKF.

3 Application to Multi-Sensor Fusion for Nav-

igation

In this section, we consider a navigating vehicle or a robot equipped with
sensors which only measure quantities relative to the vehicle’s frame. Thus
the vehicle cannot acquire information about its absolute position and ori-
entation, which results in inevitable unobservability. The state space is
X = SO(3)× R3l+3m+k and the state x is defined as

x = (R, p1, · · · , pl, v1, · · · , vm, b) ∈ X , (23)
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where R ∈ SO(3) represents the orientation of the vehicle, i.e., its columns
are the axes of the vehicle’s frame, and where

1. {pi ∈ R3}i=1,...,l are vectors of the global frame, such as the vehicle’s
position,

2. {vi ∈ R3}i=1,...,m are velocities in the global frame, and higher order
derivatives of the pi’s.

3. {b} ∈ Rk, are quantities being invariant to global transformations,
such as sensors’ biases or camera’s calibration parameters.

Without restriction, we consider in the following l = m = 1 for convenience
of notation.

Definition 3. The Special Euclidean group SE(3) describes rigid motions
in 3D and is defined as SE(3) = {α = (Rα,pα),Rα ∈ SO(3),pα ∈ R3}.
Given α, β ∈ SE(3), the group operation is αβ = (RαRβ,Rαpβ + pα) and
the inverse α−1 = (RT

α ,−RT
αpα). We denote Id the identity.

Changes of global frame are encoded as the action φα(x) of an element
α ∈ SE(3) on X . Thus, quantities expressed in the global frame (such as
the vehicle position) are rotated and translated by the action φα(·), whereas
quantities expressed in the vehicle’s frame, such as Inertial Measurement Unit
(IMU) biases, are left unchanged. The action then writes (with i = 1, . . . , l
and j = 1, . . . ,m)

φα(x) =
(
RαR, Rαpi + pα, Rαvj, b

)
. (24)

Assumption 2. The vehicle’s dynamic does not depend on the choice of
global frame, and the vehicle’s sensors only have access to relative observa-
tions, i.e. no absolute information is available.

As a result, the equations write (1)-(2) and are invariant to the action of
SE(3) in the sense of Definition 2.

To differentiate w.r.t. elements of SE(3) we resort to its Lie algebra and
do in detail what is sketched in Footnote 1.

Definition 4. The Lie algebra se(3) of SE(3) encodes small rigid motions
about the identity. It is defined as {((δω)×, δp) ; δω, δp ∈ R3}, where (ω)×
is the skew symmetric matrix associated with cross product with ω ∈ R3.
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For any δα ∈ se(3), we have α := expSE(3)(δα) ∈ SE(3) where expSE(3)(·)
denotes the exponential map of SE(3) (for a definition see (37)-(39) below
with l = 1,m = 0, k = 0).

For more information about SE(3) and its use in state estimation for
robotics see the recent monographs [3,18].

Writing (Rα,pα) = expSE(3) ([(δω)×, δp]) in (27) we see the directions
infinitesimally spanned by φ·(·) at x in the direction δα = ((δω)×, δp) write
for the state (23):

∂

∂α
φα|Id(x)δα =

(
(δω)×R, (δω)×pi + δp, (δω)×vj, b

)
(25)

where i = 1, . . . , l and j = 1, . . . ,m.

Example 1. [SLAM] Consider a simple SLAM system with one robot and
one landmark [28]. Let pR be the position of the robot, R the orientation of
the robot, and pL the landmark’s position. The state is

x = (R, pR, pL) ∈ X = SO(3)× R6. (26)

The dynamics write f(x,u,w) = (RR̄,pR + RR̄p̄,pL) where R̄, p̄ denote
orientation and position increments typically measured through odometry.
The observation of the landmark in the robot’s frame is of the form y =
h̃(RT (pL − pR)). Translations and rotations of the global frame correspond
to actions of elements α = (Rα,pα) ∈ SE(3) as

φα(x) = (RαR, RαpR + pα, RαpL + pα) . (27)

The system is obviously invariant.
Referring to (25), as l = 2,m = 0 and pR = p1,pL = p2, the directions

spanned by φ·(·) at x are as follows(
(δω)×R, (δω)×pR + δp, (δω)×pL + δp

)
, (28)

with ((δω)×, δp) ∈ se(3). As a direct consequence of Prop. 1, those directions
are unobservable. The system continues to be invariant even if a sophisticated
model is assumed: the motion equations do not depend a choice of global
frame.
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Example 2. [VIO, or Visual Inertial Navigation System (VINS)] Consider
a vehicle equipped with an IMU and a camera, as in [36]. Let v denote the
vehicle velocity, b the IMU bias and/or scale factors. The state is

x = (R, pR, v, b) (29)

and observations correspond to landmarks’ bearings in the vehicle frame,
whereas inputs un ∈ R6 are provided by an IMU. A change of global frame
α = (Rα,pα) writes

φα(x) = (RαR, RαpR + pα, Rαv, b) , (30)

where we restrict Rα to be around the gravity axis, i.e. with Rαg = g, since
the vertical is measured [36]. The action φ·(·) is then also invariant.

3.1 EKF Based on a Nonlinear Error

For the general state x of (23) consider the nonlinear error

η(x, x̂) =
(
RR̂T , p̂i − R̂RTpi, v̂j − R̂RTvj,b− b̂

)
. (31)

where i = 1, . . . , l and j = 1, . . . ,m. We set l = m = 1 for simplicity. To
linearize, we have the following first order vector approximation of (51) that
lives in R3(1+l+m)+k

η̌(x, x̂) =
(
eR, p̂− (eR)×p, v̂ − (eR)×v, b− b̂

)
, (32)

RR̂T = expSO(3)(eR) ' I + (eR)× + o(‖eR‖2), (33)

where eR ∈ R3.

Proposition 3. The error (51) is compatible with the action (24) of SE(3)
in the sense of Assumption 1.

Proof. For α ∈ SE(3), using (51) we obtain that

η(φα(x),x) =
(
RαRRT , p−R(RαR)T [Rαp + pα], . . .

v −R(RαR)TRαv, b− b
)

(34)

=
(
Rα,−RT

αpα, 03, 0k
)
, (35)

such that η(φα(x),x) turns out to be independent of x, and the result is
readily obtained by differentiation at α = Id.
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3.2 Choice of the Retraction

When the state space is a Lie group, and one uses errors that are invariant
with respect to right multiplication, the theory of Invariant EKF (IEKF)
[5,9] suggests to use ψ (x, e) = exp(e)x where exp(·) denotes the Lie group
exponential. In [10], it was noticed a natural Lie group structure underlies the
(odometry based) SLAM problem. In the preprint [4] of the current article,
we formalized more elegantly this group, and called it SEl+1(3). The current
paper is a generalization to more complete state (23), which may be endowed
with the group structure SEl+m(3)×Rk (direct product of groups SEl+m(3)
and Rk). For state (23) we thus suggest x+ = ψ (x, e) := expSEl+m(3)×Rk(e)x,
i.e.

ψ (x, e) =
(
δR+R, δR+pi + δp+

i , δR
+vj + δv+

j ,b + δb+
)

(36)

with i = 1, . . . , l, j = 1, . . . ,m, and where[
δR+ δp+

1 · · · δp+
l δv+

1 · · · δv+
m

0 I3l+3m

]
(37)

:= I + S +
1− cos(‖eR‖)
‖eR‖2

S2 +
‖eR‖ − sin(‖eR‖)

‖eR‖3
S3, (38)

S :=

[
(eR)× ep1 · · · epl

ev1 · · · evm

0 03l+3m

]
, (39)

δb+ = eb, 0 = 03+3m+3l×3 and I = I3+3m+3l×3.

3.3 Extension to Problems Involving Multiple Robots

Consider a problem consisting of M systems, see e.g. Section 5. We have M
global orientations, one for each system, that transform as the global frame’s
orientation. For such problems, we define a collection of xi of (23), and the
alternative state error of the problem η(·, ·) merely writes

η (x1, . . . ,xM) = (η1 (x1, x̂1) , . . . , ηM (xM , x̂M)) , (40)

where ηi (xi, x̂i) is the error (51) for the i-th system.
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Error EKF, [29] proposed, see (51) Robocent. [15]

orientation θ̂ − θ θ̂ − θ θ̂ − θ
position p̂R − pR p̂R −R(θ̂)R(θ)TpR R(θ̂)T p̂R −R(θ)TpR

landmark p̂L − pL p̂L −R(θ̂)R(θ)TpL R(θ̂)T (p̂L − p̂R) . . .

−R(θ)T (pL − pR)

Figure 1: Alternative state error definitions on the 2D SLAM problem for
different solutions (extension of the approach to 3D is immediate), with state
x = (θ,pR,pL) with pR the position of the robot, θ its orientation, and pL
a landmark position. R(θ) denotes the planar rotation of angle θ.

4 Simulation Results

This section considers the 2D wheeled-robot SLAM problem and illustrates
the performances of the proposed approach. We conduct similar numerical
experiment as in the sound work [28] dedicated to EKF inconsistency and
benefits of the OC-EKF, i.e., a robot makes 7 circular loops and 20 landmarks
are disposed around the trajectory, see Figure 2. We refer the interested
reader to the available Matlab code for the parameter setting and reproducing
the present results.

We compare our approach to standard EKF which conveys an estimate of
the linear error; OC-EKF [28] which linearizes the model in a nontrivial way
to enforce the unobservable subspace of Ô to have an appropriate dimen-
sion; robocentric EKF [15,19,37] which express the state in the robot’s frame
and then devise an EKF; and iSAM [32,33], a popular optimization tech-
nique both for SLAM and odometry estimation which finds the most likely
state trajectory given all past measurements. The differences between the
estimation errors used by the various EKF variants are recapped in Figure
1.

The results confirm the consistency guarantees of Theorem 1 and Propo-
sition 2 are beneficial to the EKF in practice.

4.1 Monte-Carlo Based Numerical Results

Figure 3 displays the Normalized Estimation Error Squared (NEES), Root
Mean Square Error (RMSE) and distance to Maximum-Likelihood estimate,
over 1000 Monte-Carlo runs.
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Figure 2: Simulated trajectory : the displayed loop is driven by a robot able
to measure the relative position of the landmarks lying in a range of 5 m
around it. Velocity is constant as well as angular velocity.
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4.1.1 Consistency Evaluation

The NEES [2] provides information about the filter consistency, such that
NEES > 1 reveals an inconsistency issue: the actual uncertainty is higher
than the computed uncertainty. As expected, the NEES of the robot pose es-
timates in Figure 3 indicates that the standard EKF is inconsistent, whereas
the other approaches are more consistent. The proposed EKF and iSAM
obtain the best NEES, whereas the NEES of OC-EKF and robocentric EKF
slightly increase after the first turn, i.e. at the first loop closure.

4.1.2 Accuracy Performances

We evaluate accuracy through RMSE of the robot position error. This con-
firms that: “solving consistency issues improves the accuracy of the estimate
as a byproduct, as wrong covariances yield wrong gains” [2]. Numerical
results are displayed in Figure 1.

4.1.3 Distance to Maximum-Likelihood Estimate

We use as a third performance criterion distance to the estimates returned
by iSAM [32], which are optimal in the sense that it returns the Maximum A
Posteriori (MAP) estimate. To this respect, we see that the proposed EKF
is the closest to iSAM.

4.1.4 Execution Time

We provide the execution time of the filters for the 100 Monte-Carlo runs
in Table 1, which are implemented in Matlab and tested on Precision Tower
7910 armed with CPU E5-2630 v4 2.20 Hz. The iSAM’s execution time is
not included since it cannot be compared: it is implemented using C++ and
an optimized code, whereas we used Matlab based simulations. It is thus
evidently lower. Regarding computational complexity, our proposed filter
has similar complexity as the standard EKF and OC-EKF, since its EKF-
based structure makes it quadratic in the state dimension, i.e., number of
landmarks. The use of a retraction at the update step instead of mere addi-
tion may slightly increase the computational burden, but the impact in the
execution time proves negligible. The robocentric filter is penalized because
it moves the landmarks during propagation, which in turn impacts the prop-
agation of the covariance matrix. In our solution landmarks remain fixed
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during propagation. Note that the proposed solution can be implemented
using recent techniques [30,34] to decrease computational load. To imple-
ment the robocentric and OC-EKF we report that we used the code of [28],
see Acknowledgments.

These simulations confirm that regarding SLAM, the proposed filter is an
alternative to the OC-EKF. Contrarily to OC-EKF the model is linearized at
the (best) estimate, and is thus much closer to standard EKF methodology,
and applies to a large class of problems without explicit computation of the
unobservable directions.

5 Experimental Results

This section validates the proposed filter on multi-robot SLAM on the UTIAS
dataset [35], to prove the feasibility and the benefits of the approach. Since
both robocentric and OC-EKF are not straightforwardly applied to multi-
robot SLAM, we compare our approach to iSAM and a standard EKF only,
both filter using a centralized scheme, although both can be used in decen-
tralized estimation [34] (an OC-EKF has been derived only for cooperative
localization in [29]).

The 2D indoor UTIAS dataset [35] consists of a collection of 9 individual
datasets of 20-70 min containing odometry and range and bearing measure-
ments data from 5 robots, as well as ground-truth for all robot poses and 15
landmark positions, and has been especially realized for studding the multi-
robot SLAM problem. The forward velocity and angular velocity commands
are logged at 67 Hz as odometry data. The maximum forward velocity of
a robot is 0.16 m/s, and the maximum angular velocity is 0.35rad/s. Each
robot and landmark has a unique identification barcode, that are detected in
rectified images captured by the camera on each robot. The encoded iden-
tification barcode as well as the range and bearing to each barcode is then
extracted, where the camera on each robot is placed to align with the robot
body frame. The ground-truth pose for each robot and ground-truth position
for each landmark is provided by a Vicon motion capture system at 100 Hz
with accuracy on the order of 10−3 m.
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Figure 3: Average performances of the different methods over 1000 runs.
NEES (for the robot 3-DoF pose) is the consistency indicator, and full con-
sistency corresponds to NEES equal to 1. We see proposed EKF and iSAM
are the more consistent, followed by OC-EKF and robocentric EKF, whereas
standard EKF is not consistent. The accuracy is evaluated in terms of the
robot position RMSE. Standard EKF shows degraded performances as com-
pared to others, which all achieve comparable performances. Finally, filters
are evaluated in terms of average proximity of robot’s estimated position with
iSAM’s, which computes the most likely state xn given all past measurements
y1, . . . ,yn. It is used as a reference of the best achievable estimate. We see
that the proposed EKF are the closest to iSAM. Dashed lines correspond
to 3σ confidence upper bounds, and we see EKF is over-optimistic. Figures
best seen in color.
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Filter EKF [29] [15] proposed

NEES 4.05 1.28 1.49 1.07
RMSE robot (m) 1.76 1.20 1.27 1.18

distance to iSAM (m) 0.45 0.36 0.41 0.30
Execution time (s) 275 290 414 278

Table 1: Average performances and computational time execution of the
filters over the 1000 Monte-Carlo runs.

5.1 Alternative Error Derivation

Let M robots navigate in an unknown environment of P landmarks, where
(piR, θi) is the pose of the i-th robot. Inspired from Section 3.3, we suggest
to treat each robot as a system with its own global orientation. Regarding
landmarks, we chose to consider each landmark as a system (23), whose
orientation is fixed and is associated with the orientation θj of the robot that
observes this landmark for the first time (we have then θjn+1 = θjn). Our error
leads to an increase of the dimension of the covariance matrix Pe, but clearly
improves the filter accuracy, as shown below.

To recap the difference with EKF for the present problem:

• The standard EKF conveys an estimate of the dispersion of the linear
error, which is (θ̂i − θi, p̂R,i − pR,i) for the i-th robot and p̂L,j − pL,j
for the j-th landmark.

• The proposed EKF conveys an estimate of the dispersion of an alter-
native error defined as (θ̂i− θi, p̂R,i− R̂iR

T
i pR,i) for the i-th robot and

(θ̂j − θj, p̂L,j − R̂jRjTpL,j) for the j-th landmark.

This is an application of the method of Section 3.3, where each landmark po-
sition is associated to a fixed orientation θj. Note that, deriving a robocentric
EKF seems non-trivial.

5.2 Experimental Results

We conducted preliminary tests to calibrate the motion model and to charac-
terize the noise properties of the motion and measurement models as follows:
standard deviation on odometry as 20 % of the robot velocity, and standard
deviation of range and bearing measurement as, respectively, 0.5 m and 3 ◦.
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Fig. 4: Pictures of the robots and landmarks used in UTIAS dataset [35].
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Fig. 5: Evaluation of the accuracy performances in terms of robot position
RMSE. As in previous simulations, the proposed EKF systematically out-
performs the standard EKF and achieves comparable results to iSAM.

standard EKF proposed EKF iSAM

RMSE robots (m) 0.14 0.09 0.09

Table 2: Average RMSE over all datasets for the three methods.
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We then define a maximum observation range of 5 m. This corresponds to
the most favorable setting for standard EKF.

Since the NEES is a statistical indicator and is very sensitive to parameter
tuning, we focus on the RMSE, which is plotted on Figure 5 for the robot
positions on all the available experiments. The RMSE for the standard EKF
is summarized over all datasets in Figure 2, with improvement for iSAM and
the proposed EKF of as much as 50 % compared to the standard EKF in
the more challenging dataset 9 (where visual barriers reduce the number of
barcode detections).

6 Conclusion

This work evidences the EKF for robot navigation is not inherently incon-
sistent but the choice of the estimation error for linearization is pivotal:
properly defining the error the EKF shall linearize yields consistency. For
SLAM, Monte-Carlo simulations and real experiments have evidenced our
alternative EKF outperforms the EKF and achieves similar performance as
state of the art iSAM. It thus offers an alternative to OC-EKF based on
a sound mathematical theory anchored in geometry. Moreover the general
theory goes beyond basic SLAM. Future works concern the application of the
method in various navigation problems and its derivation for both unscented
Kalman filter and optimization techniques [32,33].
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A 2D Mono-Robot Wheeled-SLAM

We detail in this section the proposed filter for the 2D mono-robot wheeled-
SLAM problem, which correspond to Section IV. This section starts by re-
calling the considering problem, details the proposed EKF and finishes with
the standard EKF algorithm for the reader to compare and see what the
differences are.
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We consider a 2D SLAM system with one robot and K landmarks. Let
pR,n ∈ R2 be the position of the robot, Rn ∈ SO(2) the orientation of the
robot, and pjL,n ∈ R2 the position of the j-th landmark. The state is given
as

xn =
(
Rn, pR,n, p1

L,n, · · · , pKL,n
)
∈ X = SO(2)× R2(K+1). (41)

The dynamics write

xn+1 = f(xn, un, wn) (42)

= (RnR(ωn + wωn), pR,n + Rn (p̄n + wp
n) , p1

L,n, · · · , pKL,n), (43)

where

un =

[
ωn
p̄n

]
∈ R3 (44)

denotes orientation and position increments typically measured through odom-
etry, and R(θ) is the rotation matrix of angle θ. The noise in the propagation
model is given as

wn =

[
wωn
wp
n

]
∈ R3, (45)

wn ∼ N (0,Qn) , (46)

and contains noise on both the angular and position increments.
The observation of the landmarks in the robot’s frame writes

yn =

y1
n
...

yKn

 ∈ R2K , (47)

ykn = h̃(RT
n (pkL,n − pR,n)) + nkn, k = 1, . . . , K, (48)

where for any landmark we have

h̃(p) = h̃

([
p1
p2

])
=

[ √
p21 + p22

arctan 2 (p2, p1)

]
(49)

which represents a range and bearing observation and nkn ∼ N
(
0,Nk

n

)
is the

noise in the measurement of the k-th landmark, letting

Nn = diag
(
N1
n, · · · ,NK

n

)
∈ R2K×2K (50)
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be the covariance matrix for all the noise in the observation (47). Only a
small fraction of the landmarks are observed at each step, i.e. only a subset
of (47) is used. We now detail the proposed EKF for the considered SLAM
problem. This EKF first appears in [4] and was then shown to remedy
consistency issues in this context.

A.1 Proposed EKF Derivation

For the considered problem, the non-linear error is defined as, see (25)

η(xn, x̂n) = (RnR̂
T
n , p̂R,n − R̂nR

T
npR,n, · · ·

p̂1
L,n − R̂nR

T
np1

L,n, · · · , p̂KL,n − R̂nR
T
npKL,n).

(51)

To linearize, we have the following first order vector approximation, see (26)-
(27)

η̌(xn, x̂n) = (eR,n, p̂R,n − (eR,n)×pR,n, · · ·
p̂1
L,n − (eR,n)×p1

L,n, . . . , p̂KL,n − (eR,n)×pKL,n) ∈ R4+2K , (52)

RnR̂
T
n = expSO(2)(eR,n) ' I + (eR,n)× + o(‖eR,n‖2). (53)

The proposed filter operates in two steps: propagation and update, see Al-
gorithm 2. We now detail these two steps.

Algorithm 2: EKF based on a non-linear state error

Input: initial estimate x̂0 and uncertainty matrix Pe
0

while filter is running do
Propagation

1 x̂n|n−1 = f
(
x̂n−1|n−1,un,0

)
;

2 Pe
n|n−1 = F̂e

nP
e
n−1|n−1(F̂

e
n)T + Ĝe

nQn(Ĝe
n)T ;

Update

3 Kn = Ĥe
nP

e
n|n−1/

(
Ĥe
nP

e
n|n−1(Ĥ

e
n)T + ĴenRn(Ĵen)T

)
;

4 e+
n = Kn

(
yn − h

(
x̂n|n−1,0

))
;

5 x̂n|n = ψ
(
x̂n|n−1, e

+
n

)
; // state update

6 Pe
n|n =

(
I−KnĤ

e
n

)
Pe
n|n−1;

25



A.2 Propagation

At this step, we first propagate the state with the noise free model to compute
x̂n|n−1. We then propagate the covariance, where Jacobian are obtained after
conserving only the first order error term in η(xn|n−1,xn). The Jacobian of
the propagation are given as

F̂e
n = I, (54)

Ĝe
n =


1 0

(p̂R,n−1|n−1)× I
(p̂1

L,n−1|n−1)× 0
... 0

(p̂KL,n−1|n−1)× 0

 . (55)

A.3 Update

This step considers the observations of the landmarks. The Jacobian for for
the measurements are given as

Ĥe
n =

 Ĥe,1
n
...

Ĥe,K
n

 , (56)

Ĥe,k
n = ∆h

(
ykn
)
M, (57)

∆h (y) =

[
yTJT

‖y‖2
yT

‖y‖

]
, (58)

where M is the matrix

M =

[
0 −R̂T

n|n−1︸ ︷︷ ︸
columns 3 and 4

0 · · · R̂T
n|n−1︸ ︷︷ ︸

columns 3+2k and 4+2k

0 · · · 0
]

(59)

and Ĵen = I. The non-zero parts of Ĥe,k
n in (57) correspond to the error

on the robot position and on the k-th landmark. Once the Kalman gain
Kn is computed, we compute the innovation e+

n and them update the state.
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The retraction required to update the state is given as the exponential of
SE1+K(2), see Section IV-A and see also [4]. We have thus

x̂n|n = ψ
(
x̂n|n−1, e

+
n

)
, (60)

= (δR+R̂n|n−1, δR
+p̂R,n|n−1 + δp+

R, · · ·
δR+p̂1

L,n|n−1 + δp1+
L , · · · , δR+p̂KL,n|n−1 + δpK+

L ), (61)

where

δR+ = R
(
e+
R

)
, (62)

δp+
R = Ae+

R, (63)

δpk+L = Aek+L , k = 1, . . . , K, (64)

A =

 sin(δe+R)

δe+R
−1−cos(δe+R)

δe+R
1−cos(δe+R)

δe+R

sin(δe+R)

δe+R

 , (65)

e+
n =


e+
R

e+
R

e1+
L
...

eK+
L

 . (66)

We conclude this step by updating the matrix covariance, see step 6 of Al-
gorithm 2.

A.4 Standard EKF Algorithm

We provide in this section the standard EKF algorithm. The standard EKF
follows Algorithm 2 with a simple linear error that we denote using the
superscript std.

In 3D, the difference between two rotation matrices does not make any
sense. It is thus customary to use the difference in the sense of group multi-
plication on SO(3), and this is what is referred to as “standard” EKF in the
following. Thus, the state error on which the EKF is built is as follows:

ηstd(xn, x̂n) = (RnR̂
T
n , p̂R,n − pR,n, · · ·

p̂1
L,n − p1

L,n, · · · , p̂KL,n − pKL,n). (67)
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The following first order vector approximation writes

η̌std(xn, x̂n) = (eR,n, p̂R,n − pR,n, · · ·
p̂1
L,n − p1

L,n, . . . , p̂KL,n − pKL,n) ∈ R4+2K , (68)

RnR̂
T
n = expSO(2)(eR,n) ' I + (eR,n)× + o(‖eR,n‖2). (69)

The Jacobians and the retraction are given as

F̂std
n =


1 0

0
R̂n−1|n−1Jp̄Tn−1|n−1 I

0 0 I

, (70)

J =

[
0 −1
1 0

]
, (71)

Ĝstd
n =


1 0

0 R̂n−1|n−1
0 0
... 0
0 0

 , (72)

Ĥstd
n =

 Ĥstd,1
n
...

Ĥstd,K
n

 , (73)

Ĥstd,k
n = ∆h

(
ykn
)

M, (74)

with M the matrix[
A −R̂T

n|n−1︸ ︷︷ ︸
columns 3 and 4

0 · · · R̂T
n|n−1︸ ︷︷ ︸

columns 3+2k and 4+2k

0 · · · 0
]

where we let

A = −JR̂T
n|n−1

(
pkL,n|n−1 − pR,n|n−1

)
(75)
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and

x̂n|n = ψ
(
x̂n|n−1, e

+
n

)
, (76)

= (δR+R̂n|n−1, p̂R,n|n−1 + e+
R, · · ·

p̂1
L,n|n−1 + e1+

L , · · · , p̂KL,n|n−1 + eK+
L ), (77)

where

δR+ = R
(
e+
R

)
(78)

and e+
n has the same form (66) as for the proposed EKF, and Ĵstd

n = I.

B 3D Mono-Robot Wheeled-SLAM

We detail in this section the proposed filter for the 3D mono-robot wheeled-
SLAM problem. This section starts by recalling for the reader to compare.
The similarities with the 2D problem (see Section A) are obvious.

We consider a 3D SLAM system with one robot and K landmarks. Let
pR,n ∈ R3 be the position of the robot, Rn ∈ SO(3) the orientation of the
robot, and pjL,n ∈ R3 the position of the j-th landmark. The state is given
as

xn =
(
Rn, pR,1, p1

L,n, · · · , pKL,n
)
∈ X = SO(3)× R3(K+1). (79)

The dynamics write

xn+1 = f(xn, un, wn) (80)

= (RnR(ωn + wω
n ), pR,n + Rn (p̄n + wp

n) , p1
L,n, · · · , pKL,n), (81)

where

un =

[
ωn

p̄n

]
∈ R6 (82)

denotes orientation and position increments typically measured through odom-
etry, and R(ω) = expSO(3) (ω). The noise in the propagation model is given
as

wn =

[
wω
n

wp
n

]
∈ R6, (83)

wn ∼ N (0, Qn) , (84)
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and contains noise on both the angular and position increments.
The observation of the landmarks in the robot’s frame is given as

yn =

y1
n
...

yKn

 ∈ R3K , (85)

ykn = h̃(RT
n (pkL,n − pR,n)) + nkn, k = 1, . . . , K, (86)

where the observation model for one landmark

h̃(p) = h̃

p1p2
p3

 =

[
p1/p3
p2/p3

]
(87)

represents a perspective projection observation given e.g. by a monocular
camera and nkn ∼ N

(
0,Nk

n

)
is the noise in the measurement of the k-th

landmark, letting

Nn = diag
(
N1
n, · · · ,NK

n

)
∈ R3K×3K (88)

be the covariance matrix for all the noise in the observation (85). Only a
small fraction of the landmarks are observed at each step, i.e. only a subset
of (85) is used. We now detail the proposed EKF for the considered SLAM
problem.

B.1 Proposed EKF Derivation

For the considered problem, the non-linear error is defined as in (31)

η(xn, x̂n) =
(
RnR̂

T
n , p̂R,n − R̂nR

T
npR,n, p̂

1
L,n − R̂nR

T
np1

L,n, · · · ,
p̂KL,n − R̂nR

T
npKL,n

)
. (89)

To linearize, we have the following first order vector approximation, see (32)-
(33)

η̌(xn, x̂n) =
(
eR,n, p̂R,n − (eR,n)×pR,n, p̂1

L,n − (eR,n)×p1
L,n, · · · ,

p̂KL,n − (eR,n)×pKL,n
)
∈ R6+3K , (90)

RnR̂
T
n = expSO(3)(eR,n) ' I + (eR,n)× + o(‖eR,n‖2). (91)

The proposed filter operates in two steps: propagation and update, see Al-
gorithm 2. We now detail these two steps.
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B.2 Propagation

At this step, we first propagate the state with the noise free model to compute
x̂n|n−1. We then propagate the covariance, where Jacobian are obtained after
conserving only the first order error term in η(xn|n−1,xn). The Jacobians of
the propagation are given as

F̂e
n = I, (92)

Ĝe
n =


1 0

(p̂R,n−1|n−1)× I
(p̂1

L,n−1|n−1)× 0
... 0

(p̂KL,n−1|n−1)× 0

 . (93)

B.3 Update

This step considers the observations of the landmarks. The Jacobian for for
the measurements are given as

Ĥe
n =

 Ĥe,1
n
...

Ĥe,K
n

 , (94)

Ĥe,k
n = ∆h

(
ykn
) [0 −R̂T

n|n−1︸ ︷︷ ︸
columns 3 and 4

0 · · · R̂T
n|n−1︸ ︷︷ ︸

columns 3+2k and 4+2k

0 · · · 0
]
,

(95)

∆h (y) =

[
1 0 −y1/y23
0 1 −y2/y23

]
, (96)

and Ĵen = I. Once the Kalman gain Kn is computed, we compute the inno-
vation e+

n and them update the state. The retraction required for updated
the state is given as the exponential of SE1+K(3), see Section IV-A. We have
thus

x̂n|n = ψ
(
x̂n|n−1, e

+
n

)
, (97)

=
(
δR+R̂n|n−1, δR

+p̂R,n|n−1 + δp+
R, δR

+p̂1
L,n|n−1 + δp1+

L , · · · ,
δR+p̂KL,n|n−1 + δpK+

L

)
, (98)
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where

e+
n =


e+
R

e+
R

e1+
L
...

eK+
L

 , (99)

[
δR+ δp+

R p1+
L · · · δpK+

L

0 I

]
=

I + S +
1− cos(‖e+

R‖)
‖e+

R‖2
S2 +

‖e+
R‖ − sin(‖e+

R‖)
‖e+

R‖3
S3 (100)

S =

[
(e+
R)× e+

R e1+
L · · · eK+

L

0 0

]
. (101)

We conclude this step by updating the matrix covariance.

B.4 Standard EKF Algorithm

We provide in this section the standard EKF algorithm. The standard EKF
follows Algorithm 2 with a different error as the proposed and where we use
the superscript std.

The non-linear error is defined as

ηstd(xn, x̂n) =
(
RnR̂

T
n , p̂R,n − pR,n, p̂

1
L,n − p1

L,n, · · · , p̂KL,n − pKL,n

)
. (102)

The following first order vector approximation writes

η̌std(xn, x̂n) =
(
eR,n, p̂R,n − pR,n, p̂1

L,n − p1
L,n, . . . , p̂KL,n − pKL,n

)
∈ R4+2K ,

(103)

RnR̂
T
n = expSO(3)(eR,n) ' I + (eR,n)× + o(‖eR,n‖2). (104)

The Jacobians and the retraction are given as

F̂std
n =


I 0

0
R̂n−1|n−1

(
p̄n−1|n−1

)
× I

0 0 I

, (105)
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Ĝstd
n =


I 0

0 R̂n−1|n−1
0 0
... 0
0 0

 , (106)

Ĥstd
n =

 Ĥstd,1
n
...

Ĥstd,K
n

 , (107)

Ĥstd,k
n = ∆h

(
ykn
) [
− R̂T

n|n−1
(
pkL,n|n−1 − pR,n|n−1

)
×

−R̂T
n|n−1︸ ︷︷ ︸

columns 3 and 4

0 · · · R̂T
n|n−1︸ ︷︷ ︸

columns 3+2k and 4+2k

0 · · · 0
]
, (108)

x̂n|n = ψ
(
x̂n|n−1, e

+
n

)
, (109)

=
(
δR+R̂n|n−1, p̂R,n|n−1 + δp+

R, p̂
1
L,n|n−1 + δp1+

L,n|n−1, · · · ,
p̂KL,n|n−1 + δpK+

L,n|n−1
)
, (110)

where

δR+ = expSO(3)

(
e+
R

)
, (111)

and e+
n has the same form (66) as for the proposed EKF, and Ĵstd

n = I.

C 2D Multi-Robot Wheeled-SLAM

We detail in this section the proposed filter for the 2D multi-robot wheeled-
SLAM problem. This section starts by recalling the considering problem and
details the proposed EKF. The similarities with the mono-robot problem (see
Section A) are immediate.

We consider a 2D SLAM system with M robots and K landmarks. Let
pmR,n ∈ R2 be the position of the m-th robot, Rm

n ∈ SO(2) the orientation of
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the m-th robot, and pjL,n ∈ R2 the position of the j-th landmark. The state
is given as

xn =
(
R1
n, . . . ,R

M
n , p1

R,n, . . . ,p
M
R,n, p1

L,n, · · · , pKL,n
)

(112)

∈ X = SO(2)× R2(K+M).

The dynamics writes

xn+1 = f(xn, un, wn) (113)

= (R1
nR(ω1

n + wω,1n ), . . . ,RM
n R(ωMn + wω,Mn ), p1

R,n + R1
n

(
p̄1
n + wp,1

n

)
,

. . . , pMR,n + RM
n

(
p̄Mn + wp,M

n

)
,p1

L,n, · · · , pKL,n) (114)

where

un =

u1
n
...

uMn

 ∈ R3M , (115)

umn =

[
ωmn
p̄mn

]
∈ R3, (116)

denotes orientation and position increments typically measured through odom-
etry for each robot, and R(θ) is the rotation matrix of angle θ. The noise in
the propagation model is given as

wn =

w1
n

...
wM
n

 ∈ R3M (117)

wm
n =

[
wω,mn
wp,m
n

]
(118)

wn ∼ N (0,Qn) , (119)

and contains noise on both the angular and position increments.
The observations of the landmarks robots in the M robot’s frames are
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given as

yn =

 y1,1
n
...

yK+M−1,M
n

 ∈ R2M(K+M−1), (120)

yk,mn = h̃(RmT
n (pkL,n − pmR,n)) + nk,mn , k = 1, . . . , K, m = 1, . . . ,M (121)

yk,mn = h̃(RmT
n (pk−KR,n − pmR,n)) + nk,mn , (122)

k = K + 1, . . . , K +M, m = 1, . . . ,M, k 6= m

where the observation model for one landmark or one robot

h̃(p) = h̃

([
p1
p2

])
=

[ √
p21 + p22

arctan 2 (p2, p1)

]
(123)

represents a range and bearing observation and nk,mn ∼ N
(
0,Nk,m

n

)
is the

noise in the measurement, letting

Nn = diag
(
N1,1
n , · · · ,NK+M−1,M

n

)
∈ R2M(K+M−1)×2M(K+M−1) (124)

be the covariance matrix for all the noise in the observation (47). Only a
small fraction of the landmarks are observed at each step, i.e. only a subset
of (47) is used. We now detail the proposed EKF for the considered SLAM
problem.

C.1 Proposed EKF Derivation

For the considered problem, the non-linear error is defined as, (25)

η(xn, x̂n) =
(
R1
nR̂

1T
n , . . . ,R

M
n R̂MT

n

p̂1
R,n − R̂1

nR
1T
n p1

R,n, . . . p̂
M
R,n − R̂M

n RMT
n pMR,n,

p̂1
L,n − R̂1

LR1T
L p1

L,n, · · · , p̂KL,n − R̂K
L RKT

L pKL,n
)
. (125)

To linearize, we have the following first order vector approximation, see (26)-
(27)

η̌(xn, x̂n) =
(
e1
R,n, . . . , eMR,n,

p̂1
R,n − (e1

R,n)×p1
R,n, . . . , p̂MR,n − (eMR,n)×pMR,n

p̂1
L,n − (e1

RL,n)×p1
L,n, . . . , p̂KL,n − (eKRL,n)×pKL,n

)
∈ R3(M+K), (126)

RnR̂
T
n = expSO(2)(eR,n) ' I + (eR,n)× + o(‖eR,n‖2). (127)
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The proposed filter operates in two steps: propagation and update, see Al-
gorithm 2. We now detail these two steps.

C.2 Propagation

TODO During these state, we first propagate the state with the noise free
model to compute x̂n|n−1. We then propagate the covariance, where Jacobian
are obtained after conserving only the first order error term in η(xn|n−1,xn).
The Jacobian of the propagation are given as

F̂e
n = I, (128)

Ĝe
n =


I 0

(p̂R,n−1|n−1)× I
(p̂1

L,n−1|n−1)× 0
... 0

(p̂KL,n−1|n−1)× 0

 . (129)

C.3 Update

This step considers the observations of the landmarks. The Jacobian for for
the measurements are given as

Ĥe
n =

 Ĥe,1
n
...

Ĥe,K
n

 , (130)

Ĥe,k
n = ∆h

(
ykn
) [0 −R̂T

n|n−1︸ ︷︷ ︸
columns 3 and 4

0 · · · R̂T
n|n−1︸ ︷︷ ︸

columns 3+2k and 4+2k

0 · · · 0
]
,

(131)

∆h (y) =

[
yTJT

‖y‖2
yT

‖y‖

]
(132)

and Ĵen = I. Once the Kalman gain Kn is computed, we compute the inno-
vation e+

n and them update the state. The retraction required for updated
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the state is given as the exponential of SE1+K(2), see Section IV-A of [11].
We have thus

x̂n|n = ψ
(
x̂n|n−1, e

+
n

)
, (133)

=
(
δR+R̂n|n−1, δR

+p̂R,n|n−1 + δp+
R, δR

+p̂1
L,n|n−1 + δp1+

L , · · · ,
δR+p̂KL,n|n−1 + δpK+

L

)
(134)

where

δR+ = R
(
e+
R

)
, (135)

δp+
R = Ae+

R, (136)

δpk+L = Aek+L , k = 1, . . . , K, (137)

A =

 sin(δe+R)

δe+R
−1−cos(δe+R)

δe+R
1−cos(δe+R)

δe+R

sin(δe+R)

δe+R

 , (138)

e+
n =


e+
R

e+
R

e1+
L
...

eK+
L

 . (139)

We conclude this step by updating the matrix covariance.
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