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Abstract

Data-driven generative 3D face models are used to com-
pactly encode facial shape data into meaningful paramet-
ric representations. A desirable property of these models is
their ability to effectively decouple natural sources of varia-
tion, in particular identity and expression. While factorized
representations have been proposed for that purpose, they
are still limited in the variability they can capture and may
present modeling artifacts when applied to tasks such as
expression transfer. In this work, we explore a new direc-
tion with Generative Adversarial Networks and show that
they contribute to better face modeling performances, es-
pecially in decoupling natural factors, while also achiev-
ing more diverse samples. To train the model we introduce
a novel architecture that combines a 3D generator with a
2D discriminator that leverages conventional CNNs, where
the two components are bridged by a geometry mapping
layer. We further present a training scheme, based on auxil-
iary classifiers, to explicitly disentangle identity and expres-
sion attributes. Through quantitative and qualitative results
on standard face datasets, we illustrate the benefits of our
model and demonstrate that it outperforms competing state
of the art methods in terms of decoupling and diversity.

1. Introduction
Generative models of 3D shapes are widely used for

their ability to provide compact representations that allow
to synthesize realistic shapes and their variations accord-
ing to natural factors. This is particularly true with faces
whose 3D shape spans a low dimensional space, and for
which generative models often serve as strong priors to
solve under-constrained problems like reconstruction from
partial data. Given that faces present natural factors of vari-
ation, for instance identity and expression, modeling these
in a decoupled manner is an important problem, with ap-
plications such as 3D face animation [44, 22], expression
transfer [23, 41] and recognition [1]. In this work, we build

on Generative Adversarial Networks (GANs) [17] to learn
decoupled representations for 3D face models, and study
how the use of discriminative losses can contribute to solv-
ing this problem.

Since the seminal work of Blanz and Vetter [4], numer-
ous approaches have been proposed to build data-driven
generative models of the 3D face. Most commonly, varia-
tions among different identities are modeled by linear shape
statistics such as PCA [4, 5]. When expressions need to be
considered the identity and expression subpaces are typi-
cally modeled as two independent linear factors which are
additively combined [1]. In practice this can produce ar-
tifacts when transferring expressions among very different
facial shapes, an issue that has to be explicitly accounted
for, e.g. [41]. Multilinear models [43, 8, 14] present rela-
tive improvements by considering a tensor decomposition
combining the two spaces, but training requires a complete
labeled data tensor which is very hard to get in practice,
and transferring expressions by simply switching the latent
coefficients can still present artifacts [18].

With the aim to relax the linear assumption in modeling
3D faces, deep generative models with autoencoder archi-
tectures have recently been proposed. They demonstrate
benefits in modeling geometric details [3], non-linear de-
formations present in facial expressions [32], and increas-
ing robustness to different types of capture noise [14]. Yet,
none of these approaches decouple the factors of variation
with the exception of [14], where an initialization with fully
labeled data is required whose size increases exponentially
in the number of considered factors.

In this work, we investigate the use of GANs for 3D
face modeling and provide insights on their ability to learn
decoupled representations. In particular, our comparisons
with recent approaches based on autoencoder architec-
tures [14, 32] demonstrate that our proposed approach can
better decouple identity and expression, and exhibit more
variability in the generated data.

While current deep learning techniques have shown im-
pressive results in the image domain, extending these to 3D
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data is not straightforward. We propose a novel 3D-2D ar-
chitecture in which a multilayer perceptron generates a 3D
face shape given a latent code, while a regular convolutional
network is used as a 2D discriminator. This is allowed by
an intermediate geometry mapping layer that transforms a
3D surface mesh into a geometry image encoding the mesh
vertex locations. To effectively decouple the factors of vari-
ation we build on auxiliary classifiers [30] that aim to cor-
rectly guess the label associated with each factor, e.g. iden-
tity and expression, and introduce a loss on the classifier
features for the unlabeled samples.

To summarize, our contributions are:

1. A generative 3D face model that captures non-linear
deformations due to expression, as well as the relation-
ship between identity and expression subspaces.

2. A novel 3D-2D architecture that allows to generate 3D
meshes while leveraging the discriminative power of
CNNs, by introducing a geometry mapping layer that
acts as bridge between the two domains.

3. A training scheme that enables to effectively decouple
the factors of variation, leading to significant improve-
ments with respect to the state-of-the-art.

2. Related Work
Due to the importance of 3D face modeling for numerous

applications, many works have been proposed to learn ex-
pressive generative models. We focus here on data-driven
approaches, often called 3D Morphable Models (3DMM)
in the literature. Blanz and Vetter [4] use principal com-
ponent analysis (PCA) to learn the distribution of the facial
shape and appearance across different identities scanned in
a neutral expression. To handle other expressions, subse-
quent works model them by either adding linear factors [1]
or by extending PCA to a multilinear model [43]. Thanks
to their simple structure these models are still heavily used,
and have recently been extended by training from large
datasets [5], modeling geometric details [29, 6, 7], and in-
cluding other variations such as skeletal rotations [26].

Autoencoders for 3D Faces Recent works leverage deep
learning methods to overcome the limitations of (multi-
)linear models. Ranjan et al. [32] proposed an autoencoder
architecture that learns a single global model of the 3D face,
and as such the different factors cannot be decoupled di-
rectly. However, an extension called DeepFLAME is pro-
posed that combines a linear model of identity [26] with the
autoencoder trained on expression displacements. While
expressions are modeled non-linearly, the relationship be-
tween identity and expression is not addressed explicitly.
Fernández Abrevaya et al. [14] developed a multilinear au-
toencoder (MAE) in which the decoder is a multilinear ten-
sor structure. While the relationship between the two spaces

is accounted for, transferring expressions still presents some
artifacts. Furthermore, to achieve convergence the tensor
needs to be initialized properly, which implies that the size
of labeled training data needed for initialization increases
exponentially in the number of factors considered. We com-
pare our proposed approach to DeepFLAME and MAE, as
they achieve state-of-the-art results on decoupling identity
and expression variations.

Bagautdinov et al. [3] propose a multiscale model of 3D
faces at different levels of geometric detail. Two recent
works [42, 40] use autoencoders to learn a global or cor-
rective morphable model of 3D faces and their appearance
based on 2D training data. However, none of these methods
allow to disentangle factors of variation in the latent space.
Unlike the aforementioned works, we investigate the use of
GANs to learn a decoupled model of 3D faces.

GANs for 3D faces Recently, some works have proposed
to combine a 3DMM with an appearance model obtained
by adversarial learning. Slossberg et al. [38] train a GAN
on aligned facial textures and combine this with a linear
3DMM to generate realistic synthetic data. Gecer et al. [16]
train a similar model and show that GANs can be used as
a texture prior for accurate fitting to 2D images. Deng et
al. [10] fit a 3DMM to images and use a GAN to complete
the missing parts of the resulting UV map. All these meth-
ods rely on linear 3DMMs, and hence to shape spaces lim-
ited in expressiveness. While these works focus on improv-
ing the appearance aspect, we follow a different objective
with a generative shape model that decouples identities and
expressions.

To the best of our knowledge, the only work that learns
3D facial shape variations using a GAN is [36], which is
an extension of [38]. The authors propose to learn identity
variations by training a GAN on geometry images, but un-
like our work they do not model the non-linear variations
due to expression nor the correlation between identity and
expression, since the main focus is on the appearance.

Two other methods learn to enhance an input 3D face ge-
ometry with photometric information using a GAN. Given
a texture map and a coarse mesh, Huynh et al. [21] augment
the latter with fine scale details, and given an input image
and a base mesh, Yamaguchi et al. [45] infer detailed ge-
ometry and high quality reflectance. Both works require the
conditioning of an input, and unlike us they do not build a
generative 3D face model.

3. Background
Generative Adversarial Networks [17] are based on a

minimax game, in which a discriminator D and a genera-
tor G are optimized for competing goals. The discriminator
is tasked with learning the difference between real and fake
samples, while the generator is trained to maximize the mis-



Figure 1: Our proposed architecture. A MLP generates the 3D coordinates of the mesh, while the discrimination occurs in
2D space thanks to the geometry mapping layer. Identity and expression codes zid, zexp are used to control the generator, and
classification losses are added to decouple between the two. A feature loss is introduced to ensure consistency over features
with fixed identities or expressions.

takes of the discriminator. At convergence, G approximates
the real data distribution. Training involves the optimization
of the following:

min
G

max
D
LGAN = Ex∼pdata

[logD(x)]

+ Ez∼pz
[log(1−D(G(z)))], (1)

where pdata denotes the distribution of the training set, and
pz denotes the prior distribution for G, typically N (0, I).

GANs have been shown to be very challenging to train
with the original formulation and prone to low diversity in
the generated samples. To address this, Arjovsky et al. [2]
propose to minimize instead an approximation of the Earth
Mover’s distance between generated and real data distribu-
tions, which is the strategy we adopt in this work:

LGAN = Ex∼pdata
[D(x)]− Ez∼pz

[D(G(z))]. (2)

In particular we use the extension in [20] which uses a gra-
dient penalty in order to enforce that D is 1-Lipschitz.

When labels are available, using them has proven to be
beneficial for GAN performance. Odena et al. [30] pro-
posed Auxiliary Classifier GANs (AC-GAN), in which D
is augmented so that it outputs the probability of an image
belonging to a pre-defined class label c ∼ pc. In this case,
the loss function for G and D is extended with:

Lreal
C = Ex∼pdata,c∼pc

[logP (C = c|x)], (3)

Lfake
C = Ez∼pz,c∼pc [logP (C = c|G(z, c))]. (4)

In order to evaluate if a model is correctly decoupling,
we need to be able to distinguish whether two identites or
expressions sharing the same latent code are perceptually
similar. Thus, our work builds on the idea of auxiliary clas-
sifiers in order to learn a decoupling of the shape variations
into factors, as will be explained in the next Section.

4. Method

We consider as input a dataset of registered and rigidly
aligned 3D facial meshes, where each mesh is defined by
(V,F), the set of 3D vertices V ∈ R3×nv and the set of
triangular faces F ∈ N3×nf that connect the vertices. Our
goal is to build an expressive model that can decouple the
representation based on known factors of variation. In con-
trast to classical approaches in which a reconstruction error
is optimized, we rely instead on the adversarial loss enabled
by a convolutional discriminator. To this end, we introduce
an architecture in which a geometry mapping layer serves
as bridge between the generated 3D mesh and the 2D do-
main, for which convolutional layers can be applied (Sec-
tion 4.1). To learn a decoupled parameterization, we build
on the idea of Auxiliary Classifiers and introduce a feature
loss to further improve the results (Section 4.3). We will
consider here a model that decouples between identity and
expression, however the principle can be easily extended to
more factors.

(a) Geometry image (b) Original and reconstructed meshes

Figure 2: While a GAN could be used to generate geometry
images, recovering the mesh from them is prone to artifacts,
e.g. erroneous boundary interpolations (red) and precision
loss (blue) in 2b. In this work we generate instead the 3D
mesh, while geometry images are used only for discrimina-
tion.



4.1. Geometry Mapping Layer

While deep learning can be efficiently used on regularly
sampled signals, such as 2D pixel grids, applying it to 3D
surfaces is more challenging due to their irregular structure.
In this work we propose to generate the 3D coordinates of
the mesh using a multilayer perceptron, while the discrim-
inative aspects are handled in the 2D image domain. This
allows to benefit from efficient and well established archi-
tectures that have been proven to behave adequately under
adversarial training, while still generating the 3D shape in
its natural domain.

In particular, a 2D representation of a mesh can be
achieved through a UV parameterization φ : V → D that
associates each vertex vk ∈ V with a coordinate (u, v)k in
the unit square domain D. Continuous images can be ob-
tained by interpolating the (x, y, z) vertex values according
to the 2D barycentric coordinates, and storing them in the
image channels. Borrowing the term from [19], we call this
a geometry image (see Figure 2a).

Note that although our method could generate geome-
try images instead of 3D meshes, this would introduce an
unnecessary additional reconstruction step that is likely to
cause information loss and artifacts in the final meshes, as
illustrated in Figure 2b. This is due to the fact that a single
planar unfolding of a mesh may create distortions such as
triangle flipping [37], and a many-to-one mapping may be
obtained even with a bijective parameterization due to the fi-
nite size of images. In addition, as elaborated in [19], unless
border vertices are preassigned to distinct pixels which can
be challenging for large meshes, sampling these locations
results in erroneous interpolations. Generating 3D point co-
ordinates instead allows to avoid reconstruction artifacts,
and to apply common mesh regularization techniques that
simplify and improve the learning process. We use geome-
try images only as the representation for the discriminative
component that evaluates the 3D generator through CNNs.

The mapping layer operates as follows. Given a mesh
made of vertices V = {vk/k = 1..nv}, a target image size
n×n, and a pre-computed UV parameterization φ, we build
two images IU , IV of dimension n × n, and three images
Iv1 , Iv2 and Iv3 of dimension n×n×3 each. For each pixel
(i, j), we consider the φ-projected mesh triangle (v̂1, v̂2, v̂3)
containing it. The barycentric abscissa and ordinate of pixel
(i, j) in triangle (v̂1, v̂2, v̂3) are then stored in images IU

and IV respectively, and the original face vertex coordinates
v1, v2 and v3 are stored in images Iv1 , Iv2 and Iv3 . The
mapping layer computes the output geometry image I as:

I = IU ∗ Iv1 + IV ∗ Iv2 + (1− IU − IV) ∗ Iv3 , (5)

where ∗ denotes element-wise multiplication and 1 ∈ Rn×n

is the matrix of ones. Since this layer simply performs in-
dexing and linear combinations on the elements of V us-

ing the predefined parameters in IU and IV , all operations
are differentiable and the gradients can be back-propagated
from the discriminated image to the generated mesh.

4.2. Architecture

Figure 1 depicts our proposed architecture. The genera-
tor consists of two fully connected layers that map the latent
code z to a vector of size 3nv containing the stacked 3D
coordinates of displacements from a reference face mesh.
The output vertex positions are passed through the mapping
layer to generate a geometry image of size n × n, which
is then processed by the discriminator in order to classify
whether the generated mesh is real or fake. We also con-
sider auxiliary classifiers for the discriminator, denoted as
Cid and Cexp. The design of D shows two main differences
with respect to the original AC-GAN. First, instead of clas-
sifying only one type of labels, we use here classifiers for
both identity and expression. This favors decoupling, since
the classification of one factor is independent of the choice
of the labels for the other factors. Second, we provide dis-
tinct convolutional layers for the real/fake, identity and ex-
pression blocks. This is motivated by the observation that
the features required to classify identities and expressions
are not necessarily the same.

4.3. Decoupled Model Learning

We rely on the discriminator not only to generate realis-
tic faces, but also to decouple the factors of variation. For
this, we optimize D such that it maximizes

LD = LGAN + λC(LID + LEXP ). (6)

Here, LGAN denotes the standard adversarial loss (see
Equation 2), and LID,LEXP the classification losses mea-
sured against the labels provided with the dataset and
weighted by scalar λC . These losses are defined similarly
to Equation 3 as:

LID = Ex∼pdata,c∼pid
c
[logP (C = c|x)],

LEXP = Ex∼pdata,c∼pexp
c

[logP (C = c|x)], (7)

where pidc and pexpc denote the distribution of identity and
expression labels, respectively. To account for missing la-
bels with real data samples, we ignore the sample contribu-
tion in the classification loss if it is not labeled.

The generator G takes as input a random vector z =
{zid, zexp, znoise}, which is the concatenation of the iden-
tity code zid ∼ pid, the expression code zexp ∼ pexp and
a random noise znoise ∼ pnoise. It produces the location
of nv displacement vectors from a reference mesh, and is
trained by minimizing:

LG = λ1LGAN − λ2
(
Lid
CL + Lexp

CL

)
+λ3

(
Lid
FEAT + Lexp

FEAT

)
+ λ4Lreg,

(8)



where LGAN is the standard GAN loss (Equation 2); Lid
CL

and Lexp
CL are classification losses; Lid

FEAT and Lexp
FEAT are

feature losses that aim to further increase the decoupling
of the factors; Lreg is a regularizer; and λ1, λ2, λ3, λ4 are
weights for the different loss terms. We explain each of
these in the following.

Classification Loss In addition to the adversarial loss, the
generator is trained to classify its samples with the correct
labels by maximizing:

Lid
CL = Ez∼pz,c∼pid

c
[logP (C = c|G(z))]

Lexp
CL = Ez∼pz,c∼pexp

c
[logP (C = c|G(z))]. (9)

In order to generate data belonging to a specific class, we
sample one identity/expression code zid, zexpr for each la-
bel and fix it throughout the training; this becomes the input
for G each time the classification loss must be evaluated.
We denote the set of fixed codes for identity and expression
as T id and T exp respectively.

Feature Loss The classification loss is limited to codes in
T id/T exp, which have associated labels. We found that bet-
ter decoupling results can be obtained if we include a loss
on the classifier features. We measure this by generating
samples in pairs which share the same identity or expres-
sion vector, and measuring the error as:

Lid
FEAT =

2

N

∑
zid

(1− cos(f1,zid , f2,zid)) , (10)

Lexp
FEAT =

2

N

∑
zexp

(
1− cos(f1,zexp , f2,zexp)

)
. (11)

Here, N is the batch size, and fi,zid =
f (G(zid, zexp,i, znoise,i)) are feature vectors obtained
by inputting the sample G(zid, zexp,i, znoise,i) through the
classifier Cid and extracting the features from the second to
last layer. That is, given two inputs which were generated
with the same identity vector, Lid

FEAT enforces that their
feature vectors in the identity classifier are also aligned.
The definition is analogous for fi,zexp

with Cexp.
To enable training with both classification and feature

loss, for each batch iteration we alternate between the sam-
pling of labeled identity codes zid ∈ T id with unlabeled
expression codes zexp ∼ pexp, and the sampling of un-
labeled identity codes zid ∼ pid with labeled expression
codes zexp ∈ T exp. The classification is evaluated for the
labeled factor only, while the feature loss is used for unla-
beled codes, and the alternation allows to better cover the
identity and expression sub-spaces during training.

Regularization Generating a 3D mesh allows us to rea-
son explicitly at the surface level and define high order

loss functions using the mesh connectivity. In particular,
we enforce spatial consistency over the generated faces by
minimizing the following term on the output displacements
v = G(z):

Lreg = ||Lv||22, (12)

where L is the cotangent discretization of the Laplace-
Beltrami operator. This regularization is crucial to generate
geometrically valid and plausible faces.

5. Results

We provide in this section results obtained with our
framework, which demonstrate its benefits particularly in
decoupling. We first clarify our set-up with implementation
details in Section 5.1 and the datasets used in 5.2. We then
explain in Section 5.3 the proposed metrics for the evalua-
tion of a 3D face model, and introduce a new measure for
analyzing the diversity of the generated samples. In Sec-
tion 5.4 we perform ablation studies to verify that all the
components are necessary to effectively train an expressive
model. Finally, in Section 5.5 we compare our results to
state-of-the-art 3D face models that can decouple the latent
space, and show that our approach outperforms with respect
to decoupling and diversity. Additional results can be found
in the supplemental material.

5.1. Implementation Details

We set the weights to λC = 0.1 (Equation 6), λ1 =
λ2 = 1, λ3 = 0.5 and λ4 = 100 (Equation 8). The classifi-
cation losses are further weighted to account for unbalanced
labels [24]. For the generator, we use two fully connected
layers with an intermediate representation of size 512 and
ReLU non-linearity. For the discriminator we use a variant
of DC-GAN [31], with the first two convolutional blocks
shared between Creal, Cid and Cexpr, while the remain-
ing are duplicated for each module (more details can be
found in supplemental). The models were trained for 200
epochs using ADAM optimizer [25] with β1 = 0.9 and
β2 = 0.999, a learning rate of 0.0002 and a batch size of 64.
During training we add instance noise [39] with σ = 0.1 to
the input of D. The discriminator is trained for 3 iterations
each time we train the generator. The models take around 2
hours to train on a NVidia GeForce GTX 1080 GPU.

The template mesh contains 22129 vertices. We pre-
compute the UV map φ using harmonic parameteriza-
tion [12], setting the outer boundary face vertices to a
unit square to insure full usage of the image domain. We
generate geometry images of size 64 × 64; we experi-
mented with other image sizes but the best decoupling re-
sults were obtained with this resolution. The dimensions for
(zid, zexp, znoise) are set to (65, 15, 5) to facilitate compar-
ison with [14], and the feature vectors used in Equations 10
and 11 are of size 2048.



5.2. Datasets

All models were trained using a combination of four
publicly available 3D face datasets. In particular, we use
two datasets containing static 3D scans of multiple sub-
jects: BU-3DFE [47] and Bosphorus [34], and combine
these with two datasets of 3D motion sequences of multi-
ple subjects: BP4D-Spontaneous [48] and BU-4DFE [46].
The static datasets provide variability of identities, while
the motion datasets provide variability of expressions and a
larger number of training samples. We registered BU-3DFE
and Bosphorus with a template fitting approach [33], and
the motion datasets with a spatiotemporal approach [15].

The final dataset contains 30559 registered 3D faces and
was obtained by subsampling the motion sequences. We
provide identity labels for all meshes, while the expression
labels are limited to the seven basic emotional expressions,
which appear in both static datasets. For BU-4DFE, expres-
sion labels are assigned to three frames per sequence: the
neutral expression to the first and last frame, and the labeled
expression of the sequence to the peak frame. For BP4D,
one neutral frame is manually labeled per subject (this is a
requirement for comparison to [32]). Overall, due to the use
of motion data, only 7% of it is assigned expression labels.

5.3. Evaluation Metrics

A generative model of the 3D face should cover the space
spanned by the input 3D faces, with a parameterization that
is effective for the problem being studied. We thus evaluate
the models in terms of diversity of the generated samples,
decoupling of identity and expression spaces, and specificity
to the 3D facial shape. In particular, we believe it is im-
portant to simultaneously consider both decoupling and di-
versity, as they provide complementary information on the
model. For instance, a good decoupling can be obtained
when the diversity is poor, since small variations facilitate
the classification of samples as “same”. Conversely, a large
diversity can be obtained when decoupling is poor, since the
identities/expressions sharing the same code can yield very
different shapes. We detail these in the following.

Diversity We consider it important to measure the diver-
sity of the 3D face shapes generated by a model. This is
particularly true with GANs that are known to be prone to
mode collapse. To the best of our knowledge this has not
yet been considered in the context of 3D face models and
we propose therefore to evaluate as follows. We sample p
pairs of randomly generated meshes and compute the mean
vertex distance among the pairs; diversity is then defined as
the mean of the distances over the p pairs. We expect here
to see higher values for more diverse models. We evalu-
ate on three sets of sampled pairs: (1) among pairs chosen
randomly (global diversity), (2) among pairs that share the
same identity code (identity diversity) and (3) among pairs

that share the same expression code (expression diversity).
For all cases we evaluate on 10000 pairs. For comparison,
the training set is also evaluated on these three metrics by
leveraging the labels.

Decoupling To evaluate decoupling in both identity and
expression spaces we follow the protocol proposed in [11].
In particular, we first train two networks, one for identity
and one for expression, that transform an image represen-
tation of the mesh to an n-dimensional vector using triplet
loss [35], where n = 128 in our experiments. The trained
networks allow to measure whether two meshes share the
same identity or expression by checking whether the dis-
tance between their embeddings is below a threshold τ .

To measure identity decoupling, we generate n random
faces xi = G(ziid, z

i
exp, z

i
noise), and for each random face

we fix the identity code and sample m faces Y(xi) =
{G(ziid, zjexp, z

j
noise), j = 1..m}. We then use the em-

bedding networks to evaluate whether the original faces xi

and their corresponding samples in Y(xi) correspond to the
same identity, and report the percentage of times the pairs
were classified as “same”. We proceed analogously for ex-
pression decoupling. We set n = 100, m = 100, τ = 0.14
for identity and τ = 0.226 for expression; more implemen-
tation details are given in the supplemental material.

Specificity Specificity is a metric commonly used for the
evaluation of statistical shape models [9] and whose goal is
to quantify whether all the generated samples belong to the
original shape class, faces in our case. For this, n samples
are randomly drawn from the model and for each the mean
vertex distance to each member of the training set is mea-
sured, keeping the minimum value. The metric then reports
the mean of the n values. We use here n = 1000.

5.4. Ablation Tests

We start by demonstrating that each of the proposed
components is necessary to obtain state-of-the-art quality
in the generated samples as well as decoupling. To this
end, we compare our approach against the following alter-
natives: (1) without mesh regularization (Equation 12); (2)
with identity classification only; and (3) without feature loss
(Equations 10 and 11).

Table 1 gives the evaluation metrics for each of these op-
tions, and Figure 3 provides qualitative examples. From the
results we observe that: (1) The mesh regularization is cru-
cial to generate samples that are realistic facial shapes. This
is reflected by a very large value in specificity as well as low
diversity, due to the fact that the model never converged to
realistic faces (see Figure 3a). (2) Considering classifica-
tion in only one factor concentrates the generation process
entirely in the latent space of that factor, as indicated by the
very low diversity in identity without expression classifica-



(a) Without mesh regularization

(b) Without expression classification

(c) Without feature loss

(d) Proposed

Figure 3: Qualitative results for alternative approaches. From left to right: randomly generated samples (gray), random
samples with a same expression code (pink), random samples with a same identity code (blue).

tion. As shown in Figure 3b, fixing the identity code while
varying the expression produces no visible change in the
output mesh. On the other hand, fixing the expression code
produces variation both in identity and expression, hence
resulting in a very poor decoupling. This justifies the use
of classifiers for each of the factors. (3) Without the fea-
ture loss the model can still achieve good results, but both
expression decoupling and diversity are lower than with the
full model and the inclusion of the feature loss improves ex-
pression classification by almost 10%. Note that decoupling
the expression space is significantly more challenging than
identity, as the provided labels are very sparse. This effect
is illustrated on Figure 3c, where models with the same ex-
pression code can lead to faces with different expressions.
Our approach provides more coherent faces, as shown in
Figure 3d.

5.5. Comparisons

We compare our approach against state-of-the-art gener-
ative 3D face models. Our goal is to build a decoupled latent
space, and thus we focus our comparison to works that ei-
ther enforce this explicitly [14], or combine a model trained
on expressions with a linear space of identities [32]. We
train all models using the same dimensions (65 for identity
and 20 for expression).

The model proposed in [14], called MAE in the follow-
ing, was trained with the same dataset and the same label

Dec-Id Dec-Exp Div Div-Id Div-Exp Sp.
Training data − − 4.89 3.30 5.04 −
w/o mesh reg. 99.6 99.1 1.41 0.65 1.25 3.61
w/o exp. class. 100.0 42.8 4.81 0.11 4.87 2.01
w/o feat. loss 96.0 80.3 4.47 1.75 4.01 2.00
MAE [14] 99.5 53.3 3.89 0.92 3.76 2.00
COMA [32] 97.5 65.5 3.38 1.71 2.90 2.47
Ours 98.6 89.7 4.74 1.94 4.22 2.01

Table 1: Quantitative evaluation with respect to decou-
pling of identity and expression (Dec-, percentage), diver-
sity (Div-, in mm) and specificity (Sp., in mm.). Higher is
better, except for specificity.

information (Section 5.2) for 200 epochs, with the default
parameters given in the paper. We initialize the encoder and
the decoder from the publicly available models.

The model proposed in [32], called COMA in the fol-
lowing, does not explicitly favor decoupling and thus we
use the DeepFLAME alternative [26], which we also train
with the same dataset. This results in a PCA model built
from 299 identities and an autoencoder trained on 30330
displacements from the corresponding neutral face. For the
identity space we manually selected one neutral frame for
each sequence in BP4D-Spontaneous, as this dataset does



Source Target COMA MAE Ours

(a) Transferring expression to a target face

(b) Sampling novel identities from the transferred expression.

Figure 4: Comparison against MAE and COMA in terms of
expression transfer. Top: expression code zexpr transferred
to a target identity. Bottom: using zexpr from the source in
the top row, we sample novel identities. From left to right:
COMA, MAE, ours.

not provide labels. The model was trained using the pub-
licly available code for 200 epochs.

Model quality We show quantitative results with respect
to decoupling, diversity and specificity in the bottom of Ta-
ble 1. Note that our approach significantly outperforms the
other two in terms of expression decoupling, which as ex-
plained is more challenging than identity due to the sparse
expression labels. This is shown qualitatively in Figure 4,
where we transferred expressions by simply exchanging the
latent code zexp. We can see here that the expression is well
preserved by our model.

With respect to identity decoupling the three methods
perform similarly well and while MAE achieves the best
value, this is combined with the lowest diversity in identity
(Div-Id), which suggests limited generative capabilities.

We also outperform both methods in terms of diversity.
Combined with a specificity value that is among the best,
this implies that our model has learned to generate signifi-
cant variations that remain valid facial shapes.

Reconstruction of Sparse Data We also tested the gen-
eralization of the model with the reconstruction of partial
face data given very sparse constraints. To this purpose, we
use the dataset provided by [32], which contains 12 subjects
performing 12 extreme expressions. We take the middle
frame of each sequence and manually label 85 landmarks
(see supplemental), resulting in a testing set of 144 subjects.

Method λ = 0 λ = 0.01 λ = 10
MAE 4.46 4.06 2.78
COMA 3.05 3.02 2.83
Ours 2.62 2.55 2.42

Table 2: Reconstruction of sparse data under different reg-
ularization weights (RMSE, in mm).

The face model is fitted by minimizing:

argmin
z

p∑
i=1

||ṽi(z)− vi||22 + λ||z||22, (13)

where vi are the 3D locations of the p key-points in the
testing set, ṽi(z) are the corresponding key-points in the
face model generated with code z, and λ the regularization
weight. We optimize using a gradient descent approach [25]
starting from a randomly sampled code z. Note that this is a
challenging scenario since the training set does not contain
such expressions, and the correspondences are very sparse.

We compare our results with those obtained with MAE
and COMA, using the same optimization for all methods.
We measure the reconstruction error against the ground-
truth surface and report the RMSE. Quantitative results can
be found in Table 2 for different regularization weights λ.
Note that our method outperforms the other two in all cases,
including without regularization (λ = 0). We found that our
model can produce reasonable faces in most cases, while
MAE and COMA easily produce un-realistic faces when
the regularization is not strong enough (qualitative exam-
ples can be found in the supplemental material).

6. Conclusion
We explored in this work the use of adversarial train-

ing for learning decoupled 3D facial models and showed
that we can achieve state-of-the-art performance in terms
of decoupling and diversity of the generated samples. This
was obtained through a novel 3D-2D architecture that bene-
fits from advances in 2D convolutional networks while still
generating the data in the 3D domain, as well as a training
scheme that explicitly encourages decoupling through the
use of classifiers. Although the expressiveness of the model
remains limited by the diversity of the training data and
the accuracy of its labels, we show that adversarial learn-
ing has the potential to make better use of the available data
in building performant 3D facial models. Another benefit
of our framework lies in its ability to easily extend to other
factors of variation (an illustration of this can be found in
supplemental). Hence, we believe that this work will open
up new exciting directions towards solving the challenging
problem of building highly expressive and accurately de-
coupled 3D facial shape models.
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A Decoupled 3D Facial Model by Adversarial Training
Supplementary Material

Identity-Expression-Viseme Model

One of the benefits of our framework lies in its ability to easily extend to other factors of variation. As an illustration,
we trained a model that decouples identity, expression and viseme (the visual counterpart of a phoneme). The results can be
found in Figure 5, where we show qualitative examples obtained by modifying the different factors of variation individually.

We trained the model using the audiovisual 3D dataset of Fanelli et al. [13], which contains sequences of 14 subjects
performing 40 speech sequences in neutral and “expressive” mode. We assign phoneme labels using the Montreal Forced
Aligner tool [27] with the provided audio, which are mapped to visemes following [28]. For expression, we manually labeled
699 frames with the aid of the provided expression ratings of each sequence. This resulted in a database with 100% labeled
identites, 68% labeled visemes, and 3% labeled expressions. We set the latent dimensions to (50, 50, 50, 5) for identity,
expression, viseme and noise, respectively.

Note this is a simplified model of speech, since the temporal information is not taken into account. Yet, we can see in
Figure 5 that a decoupling between the aspects affected by phoneme production, and those affected by expressions such as
happiness or surprise can be easily distinguished by our framework. It is also worth noting that these results were obtained
with fully automatic labels for viseme, and very sparse manual labels for expression, thus simplifying the efforts required
to annotate the dataset. Unlike the identity and expression factors, which are intuitively easier to separate, the viseme and
expression factors are more intertwined and decoupling them is very challenging even for a human annotator. In spite of this,
our results show that we can reasonably decouple the three factors.

Expression
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Figure 5: Example of decoupling between identity, expression and viseme.



Latent Space Manipulation
Thanks to the decoupling of identity and expression spaces, we can synthesize new expressions by simple manipulation

of the latent space. We show here two possibilities for this.
Given a source mesh obtained with G(zsrcid , zsrcexpr, z

src
noise) and a target mesh obtained with G(ztargetid , ztargetexpr , ztargetnoise ), we

generate new expressions for the target mesh by either

1. Replacing the expression with that of the source: G(ztargetid , zsrcexpr, z
target
noise )

2. Adding the expression vectors: G(ztargetid , zsrcexpr + ztargetexpr , ztargetnoise )

Results can be seen in Figure 6. In particular, note how adding the latent vectors results in plausible expressions which
preserve the semantics of both sources.

Source Target Replaced Added Target Replaced Added

Figure 6: Example of expression space manipulation. In gray a source mesh and a target mesh. In blue the result of (1)
replacing the expression code of the target with that of the source (replaced), and (2) adding the source and target expression
codes (added).

Qualitative Comparisons
This section provides qualitative examples for the results in Section 5.5, Table 1. Figure 7 shows three random samples

with best and worst specificity values, and Figures 8 and 9 show random samples used for decoupling and diversity evaluation
of identity and expression, respectively.

COMA

MAE

Ours

Best specificity Worst specificity

Figure 7: Random samples which obtained the three best (left) and worst (right) values in the specificity metric.



(a) COMA

(b) MAE

(c) Ours

Figure 8: Example of results used for identity decoupling and diversity evaluation, for the three compared methods. Each
row shows samples with a same identity code, while the expression code is drawn randomly. Note the low variability in the
generated samples for MAE, as also seen in Table 1.



(a) COMA

(b) MAE

(c) Ours

Figure 9: Example of results used for expression decoupling and diversity evaluation, for the three compared methods. Each
row shows samples with a same expression code, while the identity code is drawn randomly.



Reconstruction of Sparse Data
Figure 10a shows qualitative results for the experiment in Table 2. The landmarks used for this evaluation are shown in

Figure 10b.

Input With regularization No regularization

(a) Comparison against MAE and COMA, with and without regularization. From left to right: MAE, COMA, our result.

(b) 85 landmarks used for fitting

Figure 10: Reconstruction of sparse data



Architecture Details
In Figure 11 we show the architecture for the Generator and Discriminator used in this paper (the latter with the classi-

fication branches). Here, did, dexp and dnoise are the dimensions for identity, expression and noise, respectively; nid is the
number of distinct labels for identity, and nexp the number of distinct labels for expression. We use Leaky ReLU with a slope
of 0.2.

Operation Activation Output Shape
z ∼ N (0, I) − did + dexp + dnoise
Linear LReLU 512
Linear − 66387
Reshape − 22129× 3

(a) Generator

Operation Activation Output Shape
Input − 22129× 3
Geometry mapping − 3× 64× 64

Common branch
Conv 3× 3 LReLU 16× 32× 32
Conv 3× 3 LReLU 32× 16× 16

Discriminator branch
Conv 3× 3 LReLU 64× 8× 8
Conv 3× 3 LReLU 128× 4× 4
Reshape − 2048
Linear − 1

Identity branch
Conv 3× 3 LReLU 64× 8× 8
Conv 3× 3 LReLU 128× 4× 4
Reshape − 2048
Linear − nid

Expression branch
Conv 3× 3 LReLU 64× 8× 8
Conv 3× 3 LReLU 128× 4× 4
Reshape − 2048
Linear − nexp

(b) Discriminator and Classifiers.

Figure 11: Generator and Discriminator used for experiments in the paper

Decoupling Evaluation - Implementation Details
We train the embedding networks using a Resnet-18 architecture with input images of size 224×224. The images contain

the orthographic projection of the facial mesh, and the values in the RGB channels encode the normal direction of each
vertex, as we found this to give better results than the UV images. The networks were trained using the datasets described in
Section 5.2 with the provided labels. The threshold is selected such that it maximizes the accuracy on the validation set, while
keeping the False Acceptance Rate (FAR) below 10%. We build the validation set by randomly choosing an equal number of
positive and negative pairs from the testing split. We choose 0.14 as threshold for identity, which achieves 98.66% accuracy
and a FAR of 1.21%. For expression we use 0.226 as threshold, which achieves 84.2% of accuracy and a FAR of 8.03%.


