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Abstract

We consider data-driven generative models for the 3D
face, and focus in particular on factorized representations
that can decouple sources of variation, typically identity
and expression with faces. Such models provide semanti-
cally meaningful parameterizations, but existing methods
are still limited in their ability to effectively learn the vari-
ability with respect to natural factors, especially when only
sparse label information is available. In this work we ex-
plore a new direction for this problem by using Generative
Adversarial Networks. We build in particular on auxiliary
classifier GANs to design a model that maps 3D face shapes
into a latent space where identity and expression attributes
are explicitly disentangled. Our experiments demonstrate
that GANs can contribute with better decoupling perfor-
mances while achieving competitive model accuracy.

1. Introduction
Generative models of 3D shapes are widely used for their

ability to provide compact representations that allow syn-
thesizing realistic objects and their variations according to
natural factors. This is particularly true with faces whose
3D shape span low dimensional spaces and for which gener-
ative models often serve as priors to solve under-constrained
problems, such as reconstruction from partial data, recogni-
tion, or identity and expression transfer when these factors
are decoupled by the model. Since the pioneering work of
Blanz and Vetter [3], numerous approaches have been pro-
posed to build data-driven generative models of the 3D face,
e.g. [4, 7, 12]. In this line of work, we take inspiration from
the success of Generative Adversarial Networks (GANs) in
learning to synthesize real images and study how they can
extend and contribute to the generation of 3D face shapes.

Data-driven generative 3D face models were first based
on linear shape statistics, typically PCA [3], later extended
to multi-linear statistics as in [35] to better decouple natural
factors. The latter in particular requires fully labeled data

where all the training samples are labeled according to some
factors of variation, usually identity and expression. With
the aim to relax the linear assumption and to better model
the underlying structure of 3D face spaces, deep generative
models with autoencoder (AE) architectures have recently
been proposed. They demonstrate benefits in modeling ge-
ometric details [2], non-linear deformations present in fa-
cial expressions [28], and increasing robustness to different
types of capture noise [12]. They nevertheless have diffi-
culties to effectively decouple shape variations caused by
natural factors without resorting to strong supervision, as in
e.g. [12] where an initialization with fully labeled data is
required whose size increases exponentially in the number
of factors that are considered.

In this work, we investigate GANs for 3D face model-
ing and provide insights on their ability to learn shape vari-
ations with respect to different factors. In particular, our
comparisons with recent approaches based on AE architec-
tures [12, 28] demonstrate that GANs can better decouple
identity and expression factors, in addition to enable train-
ing with labeled data whose size increases linearly in the
number of factors.

To use GANs for learning generative face models we are
faced with two challenges. First, GANs are known to be
prone to mode collapse that leads to poor generalization.
Second, the training is further complicated as we wish to
decouple shape variations with respect to face factors. To
address these challenges, we propose to split up the latent
space into sub-spaces, where each of these is assigned to
model the variations caused by one factor. We consider aux-
iliary classifiers for training that aim to correctly classify the
label associated with that factor, e.g. identity or expression.
This training per factor builds upon the idea recently pro-
posed in [25] and reduces the risk of mode collapse. Train-
ing the generative model using only the label information
is known to lead to models that do not generalize well. To
address this issue, we propose a scheme that alternates be-
tween labeled samples and unlabeled ones where the factors
in latent space are randomly drawn. To evaluate the classi-
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fication of the unlabeled data we introduce a loss on the
classifier features that leverages pairs of generated samples.

To summarize, our contributions are:

1. The first work to our knowledge that explores genera-
tive adversarial learning for building 3D facial models.

2. A new training scheme that enables to generate expres-
sive faces while decoupling the factors of variation,
improving the state of the art on 3D face models.

2. Related Work
Due to the importance of 3D face modeling for various

virtual reality applications, numerous works have been pro-
posed to learn expressive generative models. We focus here
on data-driven models, often called 3D morphable models
in the literature. Blanz and Vetter [3] use principal compo-
nent analysis (PCA) to learn the distribution of the facial
shape and appearance across different identities scanned
in a neutral expression. Subsequent works include differ-
ent expressions, and model them as decoupled by either
adding linear factors [1] or by extending PCA to a multilin-
ear model [35]. Thanks to their simple structure these mod-
els are still heavily used, and have recently been extended
by training from large datasets and by modeling additional
variations including skeletal rotations [7, 4, 21]. To model
geometric detail, another line of work has proposed local-
ized data-driven models that take advantage of pyramidal,
localized or multi-scale generative models [14, 24, 5, 6].

Autoencoders Recent works leverage deep learning meth-
ods to overcome the limitations of (multi-)linear models.
Ranjan et al. [28] proposed an autoencoder architecture that
learns a single global generative model of 3D faces, and
as such the different factors cannot be decoupled directly.
However, an extension called DeepFLAME is proposed that
combines the AE trained using different expressions with a
recent linear face model of identity [21]. Fernández Abre-
vaya et al. [12] developed a multilinear AE (MAE) in which
the decoder is a multilinear tensor structure. To achieve con-
vergence the tensor needs to be initialized well, which is in
practice achieved using a complete labeled training tensor.
This implies that the size of labeled training data needed
for initialization increases exponentially in the number of
factors considered. We compare our proposed approach to
DeepFLAME and MAE, as they achieve state-of-the-art re-
sults on decoupling identity and expression variations and
on model quality.

Bagautdinov et al. [2] propose a multiscale model of 3D
faces at different levels of geometric detail. They exper-
imentally found that GANs are hard to train for this sce-
nario and resort consequently to variational AEs. Two re-
cent works [34, 33] use AEs to learn a global or corrective
morphable model of 3D faces and their appearance based

on 2D training data. However, none of these methods al-
low to disentangle different factors of variation in the latent
space. Unlike the aforementioned works, we investigate the
use of GANs to learn a generative model of 3D faces.

Generative Adversarial Networks Generative Adversar-
ial Networks [15] are based on a minimax game, in which a
discriminator D and a generator G are optimized for com-
peting goals. The discriminator is tasked with learning the
difference between real and fake samples, whereas the gen-
erator strives to maximize the mistakes of the discriminator.
At convergence, G approximates the real data distribution.
Training involves the optimization of the following:

min
G

max
D
LGAN = Ex∼pdata

[logD(x)]

+ Ez∼pz
[log(1−D(G(z)))], (1)

where pdata denotes the distribution of the training set, and
pz denotes the prior distribution for G, typically N (0, I).
The generated samples, traditionally images, are shown to
be sharper than with models trained using pixel-wise losses.

There have been many improvements in order to increase
training stability and sample diversity. DC-GAN [27] is a
popular and successful network design proposed to stabi-
lize adversarial learning, and we use this architecture in our
work. WGAN [17] tackles mode collapse by minimizing an
approximation of the Earth Mover’s distance, and we adopt
this strategy for adversarial learning.

When labels are available, using them has proven to be
beneficial for GAN performance. CGANs [23] uses label
information to improve sample quality and generate class-
conditioned data. Odena et al. [25] proposed Auxiliary
Classifier GANs (AC-GAN), in which D is augmented so
that it also outputs the probability of an image belonging to
one of a set of pre-defined class labels c ∼ pc. The loss
function for G and D is extended with the terms

Lreal
C = Ex∼pdata,c∼pc

[logP (C = c|x)], (2)

Lfake
C = Ez∼pz,c∼pc

[logP (C = c|G(z, c))]. (3)

Our work extends this idea to learn a decoupling of the
shape variations into factors.

Disentangled representations for GANs In their original
form, GANs are unable to explicitly disentangle latent fac-
tors according to known features or attributes. Many works
have been proposed that decouple by conditioning on an
input image (e.g. [26, 32]), but only a few do it directly
from the latent space. InfoGAN [8] addreses this in an
unsupervised manner by maximizing the mutual informa-
tion between a subset of the latent and the generated data.
Mathieu et al. [22] combine an encoder-decoder generator
and a reconstruction loss to disentangle identity, but only



experimented with very low resolution images. Donahue et
al. [10] decouples by classifying pairs with a common iden-
tity. Neither of these are symmetrical with respect to the two
factors to disentangle as they focus on preserving identity
only. We propose an alternative that succeeds in decoupling
latent codes into a constant number of separate factors.

GANs with 3D faces Two recent methods learn to en-
hance an input 3D face geometry with photometric informa-
tion using a GAN. Given a texture map and a coarse mesh,
Huyng et al. [18] augment the latter with fine scale details,
and given an input image and a base mesh, Yamaguchi et
al. [36] infer detailed geometry and high quality reflectance.
Both works require the conditioning of an input, and unlike
us they do not build a generative 3D face model.

3. Face Representation
Deep learning can efficiently be applied to regularly

sampled signals, such as 2D pixel grids in the image do-
main. While face shapes live in a 3D space they can be
mapped to a 2D domain with limited distortion. We follow
such a strategy that allows us to take advantage of existing
architectures and losses applied with GANs on 2D images.

2D Representation We consider as input a dataset of reg-
istered and rigidly aligned 3D facial meshes, where each
mesh is defined by (V,F), the list of 3D vertices V ∈
Rnv×3 and the list of triangular faces F that connect the
vertices. Since the data is registered, the connectivity graph
F is fixed across the dataset and any uv parametrization of
the graph nodes defines a mapping from 3D to the 2D uv
domain that is consistent across all registered shapes. We
use such a parameterization where each vertex of the mesh
can be mapped to an image pixel using the uv coordinates,
and where the pixel values correspond to the (x, y, z) vertex
coordinates. Continuous image representations for faces are
obtained by interpolating the (x, y, z) values between ver-
tex nodes in the uv image. Borrowing the term from [16],
we call this representation a geometry image (see Fig. 1).
To make the representation translation-invariant, instead of
storing the (x, y, z) coordinates directly we store the dis-
placements with respect to a mean face mesh. Furthermore,
we quantize the pixel values to the [0, 255] interval across
the complete training set, thus obtaining standard 3-channel
2D image arrays.

3D Reconstruction To reconstruct a 3D face mesh from
a given geometry image, we can directly pick the mesh ver-
tex locations from their corresponding pixel values in the
image. However, in practice this sparse strategy tends to
produce artifacts as a result of the interpolation, particularly
around the border, and of the (x, y, z) quantization. We

Figure 1: Two 3D faces and the corresponding geometry
images

use instead a dense approach where each pixel contributes
and where the reconstruction is regularized with Laplacian
shape deformation constraints by solving:

argmin
v

∑
(i,j)∈P

||vi,j − pi,j ||22 + α||Lv̄ − Lv||22. (4)

P is the set of non-zero pixels, L is the cotangent discretiza-
tion of the Laplace operator, v̄ are the vertices of the mean
face, pi,j is the pixel value at location (i, j), vi,j is the
point on the 3D surface associated with pi,j , computed us-
ing barycentric coordinates, and α is a weight controlling
the influence of the regularization. This formulation results
in a sparse linear system that can be solved efficiently, and
has the benefit of producing meshes of higher quality with-
out requiring high-resolution images.

4. Method
Given geometry images of faces, our goal is to build an

expressive model that can decouple the representation based
on known factors of variation. We take a detour from classi-
cal approaches in which a reconstruction error is optimized,
and instead rely on the discriminative power of deep convo-
lutional networks. We propose extensions over the original
AC-GAN formulation with the goal of improving the model
in terms of generalization and decoupling. The training and
model fitting phases are explained below.

4.1. Training

Figure 2 depicts our architecture that is trained by con-
sidering both the adversarial loss for generating realistic
geometry images and auxiliary classifiers for each factor
of variation. To simplify notation, we will consider here
a model that decouples between identity and expression,
however the principle can be easily extended to more fac-
tors. In the following we detail the discriminator and gen-
erator losses used during training.

4.1.1 Discriminator

As seen in Figure 2, the discriminator consists of three
branches: the real/fake classifier, as in a standard GAN,
along with one classifier per factor of variation, identity and
expression in this work. This follows the method of [25],



Figure 2: The generator G and discriminator D of our GAN model. Identity and expression codes zid, zexp are used to control
the generator, and classification losses are added to decouple between the two. Alternate training, illustrated in blue and red
arrows, allows to correctly generate outside labels. A feature loss is introduced to ensure consistency over features with fixed
identities or expressions.

with two major differences. First, we provide classifiers for
each of the factors, as opposed to classifying only one type
of label. This encourages decoupling since the classifica-
tion of one factor is independent of the choice of the labels
for the other factors. Second, we provide distinct convolu-
tional layers for each of these branches. This is motivated
by the observation that the features needed to classify iden-
tities and expressions are not necessarily the same.

The discriminator is trained to maximize:

LD = LGAN + λC(LID + LEXP ). (5)

Here, LGAN denotes the standard adversarial loss (see
Equation 1), and LID,LEXP the classification losses mea-
sured against the labels provided with the dataset and
weighted by scalar λC . The latter are defined similarly to
Equation 2 as:

LID = Ex∼pdata,c∼pid
c
[logP (C = c|x)],

LEXP = Ex∼pdata,c∼pexp
c

[logP (C = c|x)], (6)

where pidc and pexpc denote the distribution of identity and
expression labels, respectively. To account for missing la-
bels with real data samples, we ignore the sample contri-
bution in the classification loss associated to each missing
label. In the remainder of the paper, we refer to the three
branches of D as Creal, Cid, and Cexp, respectively.

4.1.2 Generator

The generator G takes as input a random vector z =
{zid, zexp, znoise}, which is the concatenation of the iden-
tity code zid ∼ pid, the expression code zexp ∼ pexp and
a random noise znoise ∼ pnoise. It produces geometry im-
ages that encodes face shapes as explained in Section 3. G
is trained by minimizing:

LG = λ1LGAN − λ2
(
Lid
CLASS + Lexp

CLASS

)
+λ3

(
Lid
FEAT + Lexp

FEAT

)
+ λ4LTV ,

(7)

where: LGAN is the standard GAN loss (Equation 1);
Lid
CLASS andLexp

CLASS are classification losses; Lid
FEAT and

Lexp
FEAT are features losses that aim to decouple the factors;
LTV is a regularizer; and λ1, λ2, λ3, λ4 are weights for the
different loss terms.

Classification Loss In addition to the adversarial training,
the generator is also trained to classify its samples with the
correct labels by maximizing:

Lid
CLASS = Ez∼pz,c∼pid

c
[logP (C = c|G(z))]

Lexp
CLASS = Ez∼pz,c∼pexp

c
[logP (C = c|G(z))]. (8)

In order to generate data belonging to a specific class, we
sample one identity/expression code zid, zexpr for each la-
bel and fix it throughout the training; this becomes the input
for G each time the classification loss must be evaluated.
We denote the set of fixed codes for identity and expression
as T id and T exp respectively.

Feature Loss The classification loss is limited to codes
in T id/T exp, which have associated labels. In order to
account for the other codes (that is, random z for which
the label is unknown), we propose to generate samples in
pairs which share the same identity or expression vector,
and measure the decoupling error as:

Lid
FEAT =

2

N

∑
zid

(1− cos(f1,zid , f2,zid)) , (9)

Lexp
FEAT =

2

N

∑
zexp

(
1− cos(f1,zexp

, f2,zexp
)
)
, (10)

where N is the batch size, and fi,zid =
f (G(zid, zexp,i, znoise,i)) are feature vectors obtained
by inputting the sample G(zid, zexp,i, znoise,i) through the
classifier Cid and extracting the features from the second to



last layer. That is, given two inputs which were generated
with the same identity vector, Lid

FEAT enforces that their
feature vectors in the identity classifier also agree. The
definition is analogous for fi,zexp

with Cexpr .
The feature loss also allows us to remove the classifi-

cation loss on fake samples while training D (Equation 3),
which classically tends to saturate quickly and to provide
hence poor gradients when training G, therefore decreasing
the quality of decoupling.

Regularization To encourage smoothness, the last compo-
nent of our loss function is a regularization cost applied on
the output geometry images and composed of an anisotropic
Total Variation (TV) term that favors homogeneous regions
in the images:

LTV =
∑
i,j

|pi+1,j − pi,j |+ |pi,j+1 − pi,j |. (11)

4.1.3 Alternate Training

Using auxiliary classifiers has been shown to help stabilize
training and avoid mode collapse, as also confirmed in our
experiments. However, it can lead to the generation of un-
realistic geometry images when sampling away from the
pre-defined labels. To address this, we propose an alternate
scheme for training as follows.

We distinguish here between two types of samples: la-
beled codes, which are drawn from the sets T id or T exp

and have a label associated with them, and unlabeled codes,
which are simply generated from the latent distributions
pid or pexp. We then alternate for each batch iteration be-
tween the sampling of labeled identity codes with unlabeled
expression codes, and the sampling of unlabeled identity
codes with labeled expression codes. This allows to better
cover the identity and expression sub-spaces during train-
ing. The classification is evaluated for the labeled factor
only, while the feature loss is used for unlabeled codes.

4.2. Model fitting

Given a trained GAN and a novel registered face, we now
explain how to obtain the latent code z that best explains the
corresponding input geometry image. Unlike PCA mod-
els for which a closed-form solution exists, or recent deep-
learning based models that use an encoder to obtain the co-
efficients, e.g. [12, 2, 28], we need to find the best code
through an optimization approach. In practice, we optimize
the reconstruction error directly against the input mesh by
sampling the geometry image according to the uv mapping.

Denote by {ṽi(z), i ∈ [1, nv]} the set of vertex coordi-
nates obtained by sampling a geometry image G(z) using
the known uv map and bilinear interpolation. Given the in-

put mesh vertices {vi, i ∈ [1, nv]}, we estimate z as:

argmin
z

nv∑
i=1

||ṽi(z)− vi||2 + λ||z||22, (12)

with λ = 0.0001. We use a gradient descent approach [20]
starting from a randomly sampled z. In case of divergence,
multiple random seeds for z are used; at most two seeds
were required in our experiments.

5. Results
We now provide results using our GAN framework and

demonstrate that our model can achieve better decoupling
than state-of-the-art works. We start by giving implementa-
tion details and the datasets used. In Section 5.3 we describe
the evaluation metrics we propose, which will be used to
show that despite the known difficulties in training GANs
our model achieves competitive results. In Section 5.4 we
perform ablation studies to show that all components are
necessary to effectively train a rich model. In Section 5.5 we
compare to state-of-the-art 3D face models, and show that
we outperform in terms of decoupling while still achieving
competitive results on the remaining metrics. More visual
results can be found in the supplemental material.

5.1. Implementation Details

We set the weights to α = 1.2 (Equation 4), λC = 0.1
(Equation 5), λ1 = λ2 = 1, λ3 = 0.5 and λ4 = 0.0001
(Equation 7). The classification losses are further weighted
to account for unbalanced labels [19]. We use the architec-
ture from DC-GAN [27], with the first two convolutional
blocks shared between Creal, Cid and Cexpr, while the re-
maining are duplicated for each module. The models were
trained for 200 epochs using ADAM optimizer [20] with
β1 = 0.5 and β2 = 0.999, a learning rate of 0.0002 and a
batch size of 64. We train the discriminator for 3 iterations
each time we train the generator. The models take around 2
hours to train on a NVidia GeForce GTX 1080 GPU.

The template mesh used for registration of the training
data contains 22129 vertices, and the 3D mesh along with its
associated uv map was obtained from the BiWi dataset [11].
We generate geometry images of size 64× 64. The dimen-
sions for (zid, zexp, znoise) are set to (65, 15, 5) to facilitate
comparison with [12], and the feature vectors used in Equa-
tions 9 and 10 are of size 2048.

5.2. Datasets

All models were trained using a combination of four
publicly available 3D face datasets. In particular, we use
two datasets containing static 3D scans of multiple subjects:
BU-3DFE [38] and Bosphorus [30], and combine these with
two datasets of 3D motion sequences of multiple subjects:
BP4D-Spontaneous [39] and BU-4DFE [37]. The static



datasets provide variability of identities, while the motion
ones provide variability of expressions. The static data is
registered with a template fitting approach [29] and the mo-
tion data is registered using a spatiotemporal approach [13].

The final dataset contains 30559 registered 3D faces and
was obtained by subsampling the motion sequences. We
provide identity labels for all meshes, while the expression
labels are limited to the seven basic emotional expressions,
labeled in both static datasets. For BU-4DFE, expression la-
bels are assigned to three frames per sequence: the neutral
expression to the first and last frame, and the labeled ex-
pression of the sequence to the peak frame. For BP4D, one
neutral frame is labeled per subject (this is a requirement
for comparison to [28]). Overall, only 7% of the data is
assigned expression labels. As test set, we leave out 2 iden-
tities from BP4D and 7 identities from BU-4DFE which we
further subsample, for a total of 175 registered 3D faces.

5.3. Evaluation Metrics

The evaluation of generative models in the image do-
main is an active research area. To quantitatively analyze
the quality of the model we resort in this work to traditional
metrics used for generative models of 3D shapes. Further-
more, we propose a protocol to measure both decoupling
and diversity which is inspired from those in the GAN liter-
ature. In detail, we use the following metrics.

Model quality Generative models of 3D shapes are com-
monly evaluated by measuring generalization and speci-
ficity [9]. Generalization measures how well the model can
explain unseen faces, by computing the mean vertex dis-
tance obtained after projection into the model. We measure
generalization by optimizing as explained in Section 4.2 on
the testing set. Complementary to this, specificity measures
whether randomly generated samples belong to the mod-
eled shape class, faces in our case. For this, n samples are
randomly drawn from the model and for each the mean ver-
tex distance to each member of the training set is measured,
keeping the minimum value. The metric then reports the
mean of the n values. We set n = 1000. We use generaliza-
tion and specificity to indirectly evaluate whether the GAN
converged to a model that produces realistic shapes.

Decoupling To evaluate decoupling in both identity and
expression spaces we follow the protocol proposed in [10],
which we adapt to our problem. In particular, we first
train two networks (one for identity and one for expres-
sion) that transform an image representation of the mesh
to an n-dimensional vector using triplet loss [31] (we use
n = 128 in this work). The trained networks allow to mea-
sure whether two meshes share the same identity or expres-
sion by checking whether the distance between their em-
beddings is below a threshold τ .

To measure identity decoupling we generate n random
faces xi = G(ziid, z

i
exp, z

i
noise), and for each random face

we fix the identity code and sample m faces Y(xi) =
{G(ziid, zjexp, z

j
noise), j ∈ [1,m]} with fixed identity codes.

We then use the embedding networks to evaluate whether
the original face xi and each of the samples in Y(xi) are
classified as a same identity, and report the percentage of
times the pairs were classified as “same”. We proceed
analogously for expression decoupling. We set n = 100,
m = 100, τ = 0.14 for identity and τ = 0.226 for ex-
pression; more implementation details can be found in the
supplemental material.

Diversity It is known that GANs can exhibit mode collapse,
and thus we consider it important to evaluate the diversity
of the generated meshes, which to the best of our knowl-
edge has not been considered before in the context of 3D
face models. We take inspiration from the metric proposed
in [25], which measures the multi-scale structural similar-
ity (MS-SSIM) score between randomly chosen pairs of
samples, and contrasts the MS-SSIM of the samples to the
MS-SSIM of the training set. Our preliminary experiments
with this score showed that the values saturated above 0.95
and thus provided little information on our specific appli-
cation. Instead, we sample p pairs of randomly generated
meshes and measure diversity as the mean vertex distance
among the pairs. We expect here to see higher values for
more diverse models. We evaluate on three sets of sampled
pairs: (1) among pairs chosen randomly (global diversity),
(2) among pairs that share the same identity code (identity
diversity) and (3) among pairs that share the same expres-
sion code (expression diversity). For all cases we evaluate
on 10000 pairs. For comparison, the training set is also eval-
uated on these three metrics by leveraging the labels.

5.4. Ablation Studies

Training GANs is known to be difficult, and we start
by demonstrating that each of the proposed components is
necessary to obtain state of the art quality of the generated
samples and of decoupling. To this end, we compare our
approach against five alternatives: (1) standard AC-GAN;
(2) our GAN without alternate training (Section 4.1.3); (3)
our GAN without TV regularization (Equation 11); (4) our
GAN without feature loss (Equations 9 and 10); and (5)
our GAN with identity classification only, as approached
by most related works in disentangled representations.

Table 1 gives the evaluation metrics for each of these op-
tions, and Figure 3 provides visual examples for some of
these variants. From the results we observe that: (1) AC-
GAN alone is not sufficient to obtain good quality samples
without conditioning on a label. This is reflected by a very
high specificity value, caused by random samples that are
not always realistic geometry images. The high levels of



(a) Without alternate training

(b) Without TV regularization

(c) Without feature loss

(d) Proposed

Figure 3: Comparison of alternative approaches. From left to right: randomly generated samples (purple), random samples
that share the identity code (grey), random samples that share the expression code (green). For each sample, the geometry
image and its 3D reconstruction are shown.

noise lead to an artificially high diversity value, which is
much larger than the training set. (2) The alternate training
is crucial to generate samples that are realistic facial shapes.
This is reflected by a large value in specificity as well as a
poor decoupling in identity. Note also the high levels of
noise that do not correspond to valid geometry images (see
Figure 3a). (3) The absence of TV regularization results in
generated faces with geometric noise. This effect can be
observed in higher values for generalization and specificity
compared to the proposed approach, and are shown quali-
tatively in Figure 3b. (4) Without feature loss, the model
still achieves good results in terms of model quality and de-
coupling, but the expression classification accuracy is sig-
nificantly lower. This is shown qualitatively on the right
of Figure 3c, where models with the same expression code
lead to faces with different expressions. Note that the ex-
pression space is more challenging than identity space, as
the provided labels are sparse. (5) Using classification only
in identity space results in good identity decoupling, but
the decoupling of expression is poor. The low number in
identity diversity also suggests that the network incurred in
mode collapse for this space, generating minor variations
when the identity code is fixed.

Our proposed approach performs best in generalization,
specificity and expression decoupling, while still achieving
high identity decoupling. This is visually demonstrated in
Figure 3d, where fixing either identity or expression codes
leads to plausible results.

5.5. Comparisons

Finally, we compare our approach against state of the art
generative 3D face models. One of the main features of
our model is its ability to decouple, and we thus focus our
comparison on works that either enforce this explicitly [12],
or combine a model trained on expressions with a linear
space of identities [28]. We train all models using the same
dimensions (65 for identity and 20 for expression).

The model proposed in [12], called MAE in the follow-
ing, was trained with the same dataset as our model and
the same label information for 200 epochs, with default pa-
rameters from the paper. We initialize encoder and decoder
from the publicly available models, and obtain generaliza-
tion numbers by the same optimization approach as in [12].

The model proposed in [28], called COMA in the fol-
lowing, does not explicitly encourage decoupling and thus
we use the DeepFLAME alternative [21], which we train



Dec-Id Dec-Expr Sp. Gen. Div-Global Div-Id Div-Expr
Training data − − − − 4.89± 1.47 3.30± 1.97 5.04± 1.54
AC-GAN 25.8 88.1 5.23 0.77 14.35± 11.27 12.28± 12.02 6.98± 3.85
Proposed w/o alternate training 37.9 88.9 4.69 0.76 9.52± 6.94 7.53± 7.94 6.30± 3.26
Proposed w/o TV loss 97.8 89.4 2.08 0.98 4.52± 1.17 2.10± 0.92 3.86± 1.10
Proposed w/o feature loss 99.7 89.1 1.93 0.78 4.34± 1.22 1.86± 0.77 3.83± 1.13
Proposed w/o expression classif. 100 53.3 1.99 0.82 4.57± 1.26 0.41± 0.08 4.58± 1.27
MAE [12] 99.5 53.3 2 0.31 3.89± 1.05 0.92± 0.35 3.76± 1.02
COMA [28] 97.5 64.1 2.42 0.42 3.34± 0.89 1.65± 0.40 2.91± 0.89
Us 99.1 93.4 1.93 0.74 4.54± 1.28 2.08± 0.97 3.90± 1.15

Table 1: Quantitative evaluation with respect to generalization (Gen., in mm.), specificity (Sp., in mm.), decoupling of identity
and expression (Dec-, percentage) and diversity (Div-, in mm). Higher is better, except for generalization and specificity.

(a) MAE

(b) COMA

(c) Us

Figure 4: Comparison against MAE and COMA. From left
to right : (1) input mesh; (2) reconstruction of each model;
(3) synthetic samples obtained by fixing the expression code
from the reconstruction (in purple).

with the same dataset as our model. This results in a PCA
model built from 299 identities and an autoencoder trained
on 30330 displacements from the corresponding neutral

face. For the identity space we manually selected one neu-
tral frame for each sequence in BP4D-Spontaneous, as this
dataset does not provide labels. The model was trained us-
ing the publicly available code for 150 epochs. We obtain
generalization results by subtracting the ground-truth neu-
tral face.

We show quantitative results with respect to the proposed
metrics in the bottom of Table 1. Note that our approach
significantly outperforms the other two in terms of expres-
sion decoupling, which is more challenging than identity
due to sparse label information provided with the training
data. This is shown qualitatively in Figure 4, where the ex-
pression is preserved well by our model when changing the
other codes. With respect to identity decoupling the three
methods perform similarly well, and while MAE achieves
the best value, we note that this was facilitated by a low
diversity when generating variations of a same subject, as
suggested by the significantly lower value on Div-Id. Our
model also outperforms in terms of specificity, with MAE
performing closely well, suggesting that random samples
from our GAN can correctly represent the human facial
shape, as defined by our training set. The generalization
result, while still being a close fit to the data with a mean
error below 1mm, does not achieve the best value compared
to the related work. This could be explained by the coarser
representation used, and the fact that a reconstruction error
is never optimized during training. Still, we can observe
in Figure 4c that the generated faces closely resemble the
input.

6. Conclusion

In this work we explored the use of GANs as an alterna-
tive for 3D facial modeling, and proposed a training scheme
capable of decoupling the factors of variation present in
the facial shape. The experimental results show that the
model outperforms state of the art with respect to decou-
pling, while achieving competitive results in the rest of the



metrics. We believe this work opens up exciting new direc-
tions for building generative models of the 3D face.
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A Generative 3D Facial Model by Adversarial Training
Supplementary Material

Qualitative Comparisons
We provide qualitative examples for the results in Section 5.5, Table 1. Figure 5 shows three random samples with

best and worst specificity values, and Figure 6 provides reconstructions from the testing set, as used for the evaluation of
generalization. In Figures 7 and 8 we show examples used for decoupling and diversity evaluation of identity and expression,
respectively.

(a) COMA

(b) MAE

(c) Us

Figure 5: Random samples which obtained the three best (left) and worst (right) values in the specificity metric.

Latent Space Manipulation
We show here two sets of examples obtained by manipulating the latent space.
First, given a source mesh obtained withG(zsrcid , zsrcexpr, z

src
noise) and a target mesh obtained withG(ztargetid , ztargetexpr , ztargetnoise )

we generate new expressions for the target mesh by either

1. Replacing the expression with that of the source: G(ztargetid , zsrcexpr, z
target
noise )

2. Adding the expression vectors: G(ztargetid , zsrcexpr + ztargetexpr , ztargetnoise )

Results can be seen in Figure 9.
We also show examples of interpolation in either identity or expression space, which can be seen in Figure 10.

Decoupling Evaluation - Implementation Details
We train the embedding networks using a Resnet-18 architecture with input images of size 224×224. The images contain

the orthographic projection of the facial mesh, and the values in the RGB channels encode the normal direction of each
vertex, as we found this to give better results than the UV images. The networks were trained using the datasets described



Original CoMA MAE Us

Figure 6: Example of model fitting used in generalization evaluation, for the three compared methods.

in Section 5.2 with the provided labels and the same train/test split. The threshold is selected such that it maximizes the
accuracy on the validation set, while keeping the False Acceptance Rate (FAR) below 10%. We build the validation set by
randomly choosing an equal number of positive and negative pairs from the testing split. We choose 0.14 as threshold for
identity, which achieves 98.66% accuracy and a FAR of 1.21%. For expression we use 0.226 as threshold, which achieves
84.2% of accuracy and a FAR of 8.03%.



(a) COMA

(b) MAE

(c) Us

Figure 7: Example of results used for identity decoupling and diversity evaluation, for the three compared methods. Each
row shows samples with a same identity code, while the expression code is drawn randomly.



(a) COMA

(b) MAE

(c) Us

Figure 8: Example of results used for expression decoupling and diversity evaluation, for the three compared methods. Each
row shows samples with a same expression code, while the identity code is drawn randomly.



Source Target Replaced Added Target Replaced Added

Figure 9: Example of expression space manipulation. In gray a source mesh and a target mesh. In purple the result of (1)
replacing the expression code of the target with that of the source (replaced), and (2) adding the source and target expression
codes (added).

(a) Identity

(b) Expression

Figure 10: Interpolation in identity and expression space


