
HAL Id: hal-02064624
https://hal.science/hal-02064624v1

Submitted on 12 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional ASP with Intensional Sets: Application to
Gelfond-Zhang Aggregates

Pedro Calabar, Jorge Fandinno, Luis Fariñas del Cerro, David Pearce

To cite this version:
Pedro Calabar, Jorge Fandinno, Luis Fariñas del Cerro, David Pearce. Functional ASP with In-
tensional Sets: Application to Gelfond-Zhang Aggregates. Theory and Practice of Logic Program-
ming, 2018, 34th International Conference on Logic Programming, 18 (Special issue 3-4), pp.390-405.
�10.1017/S1471068418000169�. �hal-02064624�

https://hal.science/hal-02064624v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22725

To cite this version: Calabar, Pedro and Fandinno, Jorge and
Fariñas del Cerro, Luis and Pearce, David Functional ASP with
Intensional Sets: Application to Gelfond-Zhang Aggregates. (2018)
Theory and Practice of Logic Programming, 18 (3-4special). 390-405.
ISSN 1471-0684

Official URL

DOI : https://doi.org/10.1017/S1471068418000169

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

 doi:10.1017/S1471068418000169

Functional ASP with Intensional Sets:

Application to Gelfond-Zhang Aggregates∗

PEDRO CABALAR

Department of Computer Science, University of Corunna, Corunna, Spain
(e-mail: cabalar@udc.es)

JORGE FANDINNO and LUIS FARI ÑAS DEL CERRO
IRIT, Université de Toulouse, CNRS, Toulouse, France

(e-mails: {jorge.fandinno, luis}@irit.fr)

DAVID PEARCE

Universidad Politécnica de Madrid, Madrid, Spain

(e-mail: david.pearce@upm.es)

Abstract

In this paper, we propose a variant of Answer Set Programming (ASP) with evaluable functions
that extends their application to sets of objects, something that allows a fully logical treatment
of aggregates. Formally, we start from the syntax of First Order Logic with equality and the
semantics of Quantified Equilibrium Logic with evaluable functions (QEL=

F
). Then, we proceed

to incorporate a new kind of logical term, intensional set (a construct commonly used to denote
the set of objects characterised by a given formula), and to extend QEL=

F
semantics for this

new type of expression. In our extended approach, intensional sets can be arbitrarily used as
predicate or function arguments or even nested inside other intensional sets, just as regular
first-order logical terms. As a result, aggregates can be naturally formed by the application of
some evaluable function (count, sum, maximum, etc) to a set of objects expressed as an intensional
set. This approach has several advantages. First, while other semantics for aggregates depend
on some syntactic transformation (either via a reduct or a formula translation), the QEL=

F

interpretation treats them as regular evaluable functions, providing a compositional semantics
and avoiding any kind of syntactic restriction. Second, aggregates can be explicitly defined now
within the logical language by the simple addition of formulas that fix their meaning in terms
of multiple applications of some (commutative and associative) binary operation. For instance,
we can use recursive rules to define sum in terms of integer addition. Last, but not least, we
prove that the semantics we obtain for aggregates coincides with the one defined by Gelfond
and Zhang for the Alog language, when we restrict to that syntactic fragment.

KEYWORDS: Answer Set Programming, Equilibrium Logic, Partial Functions, Aggregates

∗ Partially supported by MINECO, Spain, grant TIC2017-84453-P, Xunta de Galicia, Spain (GPC
ED431B 2016/035 and 2016-2019 ED431G/01, CITIC). The second author is funded by the Centre
International de Mathématiques et d’Informatique de Toulouse (CIMI) through contract ANR-11-
LABEX-0040-CIMI within the program ANR-11-IDEX-0002-02. The fourth author is supported by
UPM project RP151046021.

1 Introduction

Due to its extensive use for practical Knowledge Representation and Reasoning (KRR),

the paradigm of Answer Set Programming (ASP; Baral 2003) has been continuously

subject to multiple extensions of its input language and, frequently, its formal semantics.

One of those possible extensions is the addition of evaluable functions (see Cabalar

2013 for a survey). This extension allows us, for instance, to replace the conjunction

mother(cain,X) ∧ mother(abel,X) by the equality mother(cain) = mother(abel) so

that (i) mother can be better captured as a function (a person has a unique mother)

and (ii) it is not treated as a Herbrand function, since syntactically different terms may

refer to the same object. Although several prototypes for functional ASP have been

developed (Lin and Wang 2008; Cabalar 2011; Balduccini 2013; Bartholomew and Lee

2014), the use of evaluable functions has not been commonly adopted in the mainstream

ASP solvers yet. Still, their logical definition can also be useful for other common ASP

extensions, as happened with their application to constraint ASP (Cabalar et al. 2016).

Another ASP extension that can be examined under the functional viewpoint is the use

of aggregates. An aggregate is the result of an operation on a set of values, such as their

cardinality, their sum, their maximum/minimum value, etc. ASP introduces this feature

via so-called aggregate atoms, that allow comparing the result of an aggregate with some

fixed value. To put an example, suppose p(X) means that Agatha Christie wrote book

X. Then, adding the aggregate atom count{X : p(X)} ≥ n in a rule body checks that

she wrote at least n books. Defining the semantics for these atoms may become tricky,

since it is easy to build self-referential rules like:

p(a) ← count{X : p(X)} ≥ n. (1)

to express that Mrs. Christie also writes an autobiography a if she writes at least n

books. Different alternative semantics have been proposed for ASP aggregates (Simons

et al. 2002; Pelov et al. 2007; Son and Pontelli 2007; Ferraris 2011; Faber et al. 2011;

Gelfond and Zhang 2014) but all of them have treated each aggregate atom as a whole,

without providing a semantics for its individual components. A different, and perhaps

more natural possibility, is to consider inequality as a standard predicate and interpret

count(S) as an evaluable function, whose argument S happens to be a set.

In this paper, we propose an extension of ASP with evaluable functions that allows

their application to sets of objects and the treatment of aggregates as functions. To this

aim, we start from the first-order logic characterisation of ASP, Quantified Equilibrium

Logic (QEL; Pearce and Valverde 2004) plus its extension to evaluable functions (QEL=
F ;

Cabalar 2011). Then, we proceed to include a new type of logical term, intensional

set, with the form {~τ(~x) : ϕ(~x)} and the expected meaning, that is, the set of tuples

~τ(~c) for which the formula ϕ(~c) holds (having ~c and ~x the same arity). Intensional sets

constitute a quite common mathematical notation and, in fact, have been already studied

in the context of Prolog (Dovier et al. 1991) and Constraint Logic Programming (Dovier

et al. 2003). In our case, we will treat them as regular, first-order logical terms, with-

out syntactic restrictions, so they can be arbitrarily nested in other expressions. One

interesting feature inherited from QEL=
F is that functions can be partial, so we can use

them to represent that, say, mother(adam), mother(eve) or division(3, 0) are undefined,

but also that the maximum value of an empty set max(∅) is undefined too. The new

extension allows now to define new aggregates within the logical language. It suffices to

add formulas to fix their meaning in terms of multiple applications of some (commutative

and associative) binary operation. For instance, we show how to define the sum aggregate

using recursive rules in terms of integer addition. Finally, we are also able to prove that,

when restricted to the the Alog language (Gelfond and Zhang 2014), there is a semantic,

one-to-one correspondence.

The rest of the paper is organised as follows. In Section 2 we recall the basic definitions

of Functional ASP under the QEL=
F interpretation. Section 3 introduces intensional sets

while Section 4 studies their use for aggregates. Section 5 focuses on the correspondence

to (Gelfond and Zhang 2014) aggregates. Finally, Section 6 concludes the paper.

2 Background: Quantified Equilibrium Logic with Evaluable Functions

The definition of propositional Equilibrium Logic (Pearce 1996) relied on a selection

criterion on models of the intermediate logic of Here-and-There (HT; Heyting 1930).

The first order case (Pearce and Valverde 2004) followed similar steps, introducing a

quantified version of HT, called SQHT= that stands for Quantified HT with static

domains1 and equality. In this section we describe the syntax and semantics of a variant

of the latter, called SQHT=
F (Cabalar 2011), for dealing with evaluable functions.

We begin by defining a first-order language by its signature, a tuple Σ = 〈C,F ,P〉

of disjoint sets where C and F are sets of function names and P a set of predicate

names. We assume that each function (resp. predicate) name has the form f/n where f

is the function (resp. predicate) symbol, and n ≥ 0 is an integer denoting the number of

arguments (or arity). Elements in C will be called Herbrand functions (or constructors),

whereas elements in F will receive the name of evaluable functions (or operations). The

sets C0 (Herbrand constants) and F0 (evaluable constants) respectively represent the

elements of C and F with arity 0. We assume C0 contains at least one element.

First-order formulas follow the syntax of classical predicate calculus with equality “=”.

We assume that default negation ¬ϕ is defined as ϕ → ⊥. We use letters x, y, z and

their capital versions to denote variables, τ to denote terms, and letters c, d, e to denote

ground terms. Tuples of variables, terms and ground terms are respectively represented

by ~x, ~τ ,~c. By abuse of notation, when a tuple contains a single element, we write just τ

instead of 〈τ〉. When writing formulas, we assume that all free variables are implicitly

universally quantified. An atom like τ = τ ′ is called an equality atom, whereas an atom

like p(τ1, . . . , τn) for any predicate p/n different from equality receives the name of

predicate atom. Given any set of functions S we write TermsF (S) to stand for the set

of ground terms built from functions (and constants) in S. In particular, the set of all

possible ground terms for the signature Σ = 〈C,F ,P〉 would be TermsF (C ∪ F) whereas

the subset TermsF (C) will be called the Herbrand Universe of the language LF (Σ).

The Herbrand Base HBF (C,P) is the set containing all atoms that can be formed with

predicates in P and terms in the Herbrand Universe, TermsF (C).

Definition 1 (SQHT=
F -assignment). An SQHT=

F -assignment σ for a signature 〈C,F ,P〉

is a function σ : TermsF (C ∪ F) → TermsF (C) ∪ {u} that maps any ground term in the

1 The term static domain means that the universe is shared among all worlds in the Kripke frame.

language to some ground term in the Herbrand Universe or the special value u 6∈ TermsF
(C ∪ F) (standing for undefined). The function σ must satisfy:

(i) σ(c) def= c for all c ∈ TermsF (C).

(ii) σ(f(τ1, . . . , τn)) def=

{

u if σ(τi) = u for some i = 1 . . . n

σ(f(σ(τ1), . . . , σ(τn))) otherwise ¤

As we can see, the value of any functional term is an element from the Herbrand

Universe TermsF (C), excluding the cases in which operations are left undefined (i.e., they

are partial functions) – if so, they are assigned the special element u (outside the universe)

instead. Condition (i) asserts, as expected, that any term c from the Herbrand Universe

has the fixed valuation σ(c) = c. Condition (ii) asserts that a functional term with an

undefined argument becomes undefined in its turn (functions like these are called strict).

Otherwise, if all arguments are defined, then functions preserve their interpretation

through subterms – for instance, if we have σ(f(a)) = c we expect that σ(g(f(a)))

and σ(g(c)) coincide. It is easy to see that (ii) implies that σ is completely determined by

the mappings f(~c) = d where f is any operation, ~c a tuple of elements from TermsF (C),

and d an element in the latter. We call these expressions ground functional facts.

Definition 2 (Ordering ¹ among assignments). Given two assignments σ, σ′ we define

σ ¹ σ′ as the condition: σ(τ) = σ′(τ) or σ(τ) = u, for all terms τ ∈ TermsF (C ∪F). ¤

As usual, we write σ ≺ σ′ when σ ¹ σ′ and σ 6= σ′. The intuitive meaning of σ ¹ σ′ is

that both contain compatible information, but the former contains less information than

the latter: any defined function in σ must preserve the same value in σ′.

Definition 3 (SQHT=
F -interpretation). An SQHT=

F -interpretation I for a signature

Σ = 〈C,F ,P〉 is a quadruple 〈σh, σt, Ih, It〉 where Ih ⊆ It ⊆ HBF are two sets of ground

atoms and σh and σt are two assigments satisfying σh ¹ σt. ¤

The superindices h, t represent two intuitionistic Kripke worlds (respectively standing

for here and there) with a reflexive ordering relation satisfying h ≤ t. Accordingly, world

h contains less information than t, as we can see in the conditions Ih ⊆ It and σh ¹ σt.

We say that the interpretation I is total2 when both worlds contain the same information,

that is, Ih = It and σh = σt, and we abbreviate it as the pair 〈σt, It〉. Moreover, given

I = 〈σh, σt, Ih, It〉 we define its corresponding total interpretation It as 〈σt, It〉 that is,

the one in which all the uncertainty in world h is “filled” with the information in t.

An interpretation I = 〈σh, σt, Ih, It〉 satisfies a formula ϕ at some world w ∈ {h, t},

written I, w |=F ϕ, when any of the following conditions are satisfied:

i) I, w |=F p(τ1, . . . , τn) if p(σw(τ1), . . . , σ
w(τn)) ∈ Iw for any predicate p/n ∈ P;

ii) I, w |=F τ1 = τ2 if σw(τ1) = σw(τ2) 6= u;

iii) I, w 6|=F ⊥; I, w |=F ⊤;

iv) I, w |=F α ∧ β if I, w |=F α and I, w |=F β;

v) I, w |=F α ∨ β if I, w |=F α or I, w |=F β;

vi) I, w |=F α → β if for all w′ ≥ w: I, w′ 6|=F α or I, w′ |=F β;

2 Note that by total we do not mean that functions cannot be left undefined. We may still have some
term d for which σh(d) = σt(d) = u.

vii) I, w |=F ∀x α(x) if for each c ∈ TermsF (C): I, w |=F α(c);

viii) I, w |=F ∃x α(x) if for some c ∈ TermsF (C): I, w |=F α(c).

The first condition above implies that an atom with an undefined argument will always

be evaluated as false since, by definition, u never occurs in ground atoms of Ih or It.

Something similar happens with equality: τ1 = τ2 will be false if any of the two operands,

or even both, are undefined. As usual, I is called a model of a theory Γ, written I |=F Γ,

when I, h |=F ϕ for all ϕ ∈ Γ.

Proposition 1 (From Cabalar 2011). I, h |=F ¬ϕ ⇔ I, t |=F ¬ϕ ⇔ I, t 6|=F ϕ. ¤

We define next a particular ordering among SQHT=
F -interpretations. We say that I1 =

〈σh
1 , σ

t
1, I

h
1 , I

t
1〉 is smaller than I2 = 〈σh

2 , σ
t
2, I

h
2 , I

t
2〉, also written I1 ¹ I2 by abuse of

notation, when It1 = It2, σ
t
1 = σt

2, I
h
1 ⊆ Ih2 and σh

1 ¹ σh
2 . That is, they have the same

information at world t, but I1 can have less information than I2 at world h. Again, we

write I1 ≺ I2 when I1 ¹ I2 and I1 6= I2. Nonmonotonicity is obtained by the next

definition, which introduces the idea of equilibrium models for SQHT=
F .

Definition 4 (Equilibrium model). A total model I = 〈σ, I〉 of a theory Γ is an

equilibrium model if there is no strictly smaller interpretation I ′ ≺ I that is also a

model of Γ. A set of atoms I is a stable model3 of Γ iff 〈σ, I〉 is an equilibrium model

for some σ. ¤

3 QEL with Evaluable Functions and Intensional Sets

In this section, we define SQHT=
S : a logic that extends SQHT=

F with intensional sets.

Intensional sets are terms of the form {~x : ~τ(~x) : ϕ(~x)} where ~x is a tuple of variables

and ~τ(~x) and ϕ(~x) are respectively a tuple of terms and a formula with free variables ~x.

Note that, as opposed to terms in SQHT=
F (and also in first order logic), intensional

sets are terms whose structure not only depends on other terms, but also on formulas.

Hence, we define terms and formulas recursively such that the definition of i-terms will

depend on the definition of (i−1)-formulas while the definition of i-formulas will depend

on the definition of i-terms. We depart from a similar first-order signature Σ = 〈C,F ,P〉

as in SQHT=
F , but we build the terms as follows. For any i ≥ 0, we define an i-term as

any of the following cases:

i) every constant c ∈ C0 ∪ F0.

ii) every variable x.

iii) f(τ1, . . . , τn), where f/n ∈ (C ∪ F) and τ1, . . . , τn are i-terms, in their turn.

iv) the construct {~τ1, . . . , ~τm} (called extensional set), where m ≥ 0 and ~τ1, . . . , ~τm are

n-tuples (of the same arity n ≥ 1) of i-terms . If m = 0 we write ∅ instead of {}.

v) the construct {~τ :ϕ} (called intensional set) if i > 0, ϕ is an (i− 1)-formula and ~τ is

a tuple of i-terms.

Now, for any i ≥ 0, i-atoms and i-formulas are defined over i-terms as follows:

vi) if τ1, . . . , τn are i-terms and p/n ∈ P, then p(τ1, . . . , τn) is an i-atom,

3 Apart from atoms, we could additionally include ground functional facts f(~c) = d. However, we only
consider atoms here, for better comparison to other (non-functional) semantics of aggregates.

vii) if τ1 and τ2 are i-terms, then τ1 = τ2 is an i-atom

viii) every i-atom is an i-formula,

ix) ⊥ and ⊤ are 0-formulas,

x) if ϕ1 and ϕ2 are i-formulas, then ϕ1 ⊗ ϕ2 is an i-formula with ⊗ ∈ {∧,∨,→}.

xi) if ϕ is an i-formula and x is a variable, then ∀xϕ and ∃xϕ are i-formulas.

A formula (resp. term) is any i-formula (resp. i-term) for any i ≥ 0. Note that v) is

the only case in the term definition that refers to a formula, but this formula has less

rank than the term, so the definition is well-founded. Termsi(C ∪ F) denotes all the

ground i-terms while Termsi(C) denotes all ground i-terms without evaluable functions.

Terms(C ∪F) =
⋃

0≤i Termsi(C ∪F) and Terms(C) =
⋃

0≤i Termsi(C) denote the set of

all ground terms and ground terms without evaluable functions. In particular, Terms0(C)

corresponds to the Herbrand Universe that includes not only TermsF (C) we had before,

but also all possible formations of extensional sets, that act as a new constructor. For

instance, if we have the singleton C = {c}, then TermsF (C) = {c} is finite but D

additionally contains an infinite number of (finite) extensional sets including, among

others, the sets of tuples ∅, {c}4, {〈c, c〉}, {〈c, c, c〉}, . . . , or combinations of nested sets

such as {{c}} or {{c}, {〈c, c〉}}, etc. We also define SB def= Terms(C) \ TermsF (C), that

is, the subset of the Herbrand universe consisting of extensional sets. In the previous

example SB = Terms(C) \ {c}. By HB we denote the Herbrand Base, that is, the set of

all ground atoms of the form p(c1, . . . , cn) with p/n ∈ P and {c1, . . . , cn} ⊆ Terms(C).

If we consider terms also formed with evaluable functions, we have thatTermsF (C ∪

F) ⊆ Terms0(C ∪ F) again, and so, every SQHT=
F formula is also a SQHT=

S formula

– obviously the converse does not hold, as the latter may contain set constructors

such as p({c}). Still, we could take each possible extensional set in SB as a kind of

Herbrand constant like those in C. Doing so, TermsF (C ∪ SB ∪ F) = D and, thus, every

0-formula over a signature Σ = 〈C,F ,P〉 is also a SQHT=
F formula over the signature

Σ′ = 〈C ∪ SB,F ,P〉. Note, however, that intensional sets are syntactically different from

any SQHT=
F term, so there are SQHT=

S terms (resp. formulas) that are not SQHT=
F

terms (resp. formulas) over any signature.

For any expression α (term or formula), we define next when an occurrence of a variable

is either free or bound to some quantifier/intensional set:

i) all free occurrences of x in ψ are bound in ∃xψ to its prefix quantifier ∃x

ii) all free occurrences of x in ψ are bound in ∀xψ to its prefix quantifier ∀x

iii) if x occurs in ~x, then all free occurrences of x in ψ and ~τ are bound in {~x :~τ :ψ} to

the outermost intensional set.

iv) In the remaining cases, an occurrence of x is bound (to some connective) in a formula

iff it is so in some subformula; otherwise, it is free.

As in the case of SQHT=
F , when we write standalone formulas, we assume that all

free variables are implicitly universally quantified. Similarly, we write {~τ :ψ} instead of

{~x :~τ :ψ} when ~x contains exactly all free variables in ~τ . Note that intensional sets play

a role similar to quantifiers. As an example, suppose we want to obtain the maximum

number of times that the character Poirot is mentioned in an Agatha Christie book b,

and assume that predicate word(b, i, w) tells us that the i-th word of book b is w. We

4 Recall that, here, c stands for the unary tuple 〈c〉.

assume by now that we have functions count and max on sets: their meaning will be fixed

later on. The set {i : word(b, i, Poirot)} collects all occurrences of word Poirot in book

b. Since i is the only free variable to the left of ‘:’, the intensional set is an abbreviation

of {i : i : word(b, i, Poirot)} revealing that i is being varied. On the contrary, variable b

is left free. Now, take the expression

max{count{i : word(b, i, Poirot)} : author(Agatha, b)} (2)

The left term count{i : word(b, i, Poirot)} contains a free occurrence of b while i is

bound to the inner intensional set. Therefore, (2) actually stands for:

max{b : count{i : i : word(b, i, Poirot)} : author(Agatha, b)}

that is obviously less readable than (2). However, in the general case, we may need to make

use of the explicit list of quantified variables. For instance, if we want to parameterise

the expression above for some author x and character y whose values are determined

outside the term (as part of a formula), then we would necessarily write:

max{b : count{i : word(b, i, y)} : author(x, b)} (3)

because the free occurrence of y in count{i : word(b, i, y)} could make us incorrectly

assume that it is being varied in the set, as happened with b.

3.1 Semantics

First, we need to define the domain in which terms are going to be interpreted. Given a

set S, let us define the set of all possible n-tuples of elements from S, for any n ≥ 1, as

Tup(S) def=
⋃

n≥1

{ ~e
∣

∣ ~e ∈ Sn }

Our domain D is inductively constructed as follows:

D0 def= TermsF (C) Di+1 def= Di ∪ 2Tup(Di)

so that D def=
⋃

0≤i D
i. We also define the subset of D consisting of sets as S def= D\D0.

Definitions of assignments and interpretations are then straightforward: we just extend

the domain of σ from TermsF (C∪F) to Terms(C∪F) and replace the Herbrand Universe

TermsF (C) by its corresponding D.

Definition 5 (Assignment). An assignment σ for a signature Σ = 〈C,F ,P〉 is a function

σ : Terms(C ∪ F) → D ∪ {u} that maps some ground term in the Herbrand Universe or

the special value u 6∈ Terms(C ∪ F) (standing for undefined) to any ground term in the

language. Function σ must satisfy:

(i) σ(c) def= c for all c ∈ D.

(ii) σ(f(τ1, . . . , τn)) def=

{

u if σ(τi) = u for some i = 1 . . . n

σ(f(σ(τ1), . . . , σ(τn))) otherwise

(iii) σ({~τ1, . . . , ~τn})
def=

{

u if σ(~τi) = u for some i = 1 . . . n

{σ(~τ1), . . . , σ(~τn) } otherwise
where

σ(〈τ1, . . . , τm〉) def=

{

u if σ(τj) = u for some j = 1 . . .m

〈σ(τ1), . . . , σ(τm) 〉 otherwise ¤

Note that we added a third case (iii) for extensional sets, but there is no restriction on

the values of intensional sets: their meaning will be fixed later, once we describe the

satisfaction of formulas.

Definition 6 (Ordering ¹ among assignments). Given two assignments σ, σ′ we define

σ ¹ σ′, as the condition: σ(τ) = σ′(τ) or σ(τ) = u for all terms τ ∈ Terms(C ∪ F). ¤

Interpretations I = 〈σh, σt, Ih, It〉 have the same form as before, with Ih ⊆ It ⊆ HB

and σh ¹ σt, but under the extended definition of assignment and Herbrand Base.

Definition 7 (S-satisfaction). Given an interpretation I = 〈σh, σt, Ih, It〉, we define

when I S-satisfies a formula ϕ at some world w ∈ {h, t}, written I, w |=S ϕ as follows:

i) I, w |=S p(τ1, . . . , τn) if p(σw(τ1), . . . , σ
w(τn)) ∈ Iw for any predicate p/n ∈ P;

ii) I, w |=S τ1 = τ2 if σw(τ1) = σw(τ2) 6= u;

iii) I, w 6|=S ⊥; I, w |=S ⊤;

iv) I, w |=S α ∧ β if I, w |=S α and I, w |=S β;

v) I, w |=S α ∨ β if I, w |=S α or I, w |=S β;

vi) I, w |=S α → β if for all w′ ≥ w: I, w′ 6|=S α or I, w′ |=S β;

vii) I, w |=S ∀x α(x) if for each c ∈ D: I, w |=S α(c);

viii) I, w |=S ∃x α(x) if for some c ∈ D: I, w |=S α(c).

As usual, we write I |=S ϕ, when I, h |=S ϕ. ¤

It is easy to see that rules i)-vi) for |=S are the exactly the same as for |=F . Rules vii)

and viii) are just the result of replacing TermsF (C) by D. From this observation, we

can immediately establish a correspondence between |=S and |=F as follows. Given any

interpretation I = 〈σh, σt, Ih, It〉 for a signature Σ = 〈C,F ,P〉, by Î = 〈σ̂h, σ̂t, Ih, It〉 we

denote a SQHT=
F -interpretation for the signature Σ = 〈C ∪ S,F ,P〉, for each w ∈ {h, t},

where the assignment σ̂w is the restriction of σw to Terms0(C ∪ F) = TermsF (C ∪ S ∪ F).

Proposition 2. Any interpretation I and 0-formula ϕ satisfy: I,w |=S ϕ iff Î,w |=F ϕ. ¤

As, in general, not all SQHT=
S formulas are SQHT=

F formulas, we cannot directly extend

this result beyond 0-formulas. However, we may still expect that what can be proved to

be a tautology using the SQHT=
F rules, still holds for SQHT=

S formulas. For instance,

the SQHT=
S formula f = {~τ : ϕ} → f = {~τ : ϕ} is an obvious tautology which is not a

SQHT=
F formula. However, we may replace every occurrence of the intensional set {~τ : ϕ}

by a fresh evaluable constant c and observe that f = c → f = c is an SQHT=
F tautology,

using this to conclude that it is an SQHT=
S tautology too. To formalise this intuition,

let Fϕ be a set disjoint from C ∪ F ∪ P containing a fresh constant per each different

intensional set occurring in ϕ and let κ be a bijection mapping each intensional set in ϕ

to its corresponding constant in Fϕ. Let us also denote by κ(ϕ) the result of replacing

in ϕ each intensional set by its κ image. By Ĩ = 〈σ̃h, σ̃t, Ih, It〉, we denote the SQHT=
F -

interpretation for the signature Σ′ = 〈C ∪ S,F ∪ Fϕ,P〉 where, for each w ∈ {h, t}, we

have σ̃w(τ) = σw(κ−1(τ)) if τ ∈ Fϕ and σ̃w(τ) = σw(τ) otherwise.

Proposition 3. For any interpretation I and formula ϕ: I,w |=S ϕ iff Ĩ,w |=F κ(ϕ). ¤

Note that, as illustrated by Proposition 3, intensional sets act just as new fresh

evaluable constants with respect to S-satisfaction. To fix the expected meaning of each

intensional set {~τ(~x) :ϕ(~x)} we still have to relate its value in σw to the satisfaction of

formula ϕ(~x) in I. Given τ = {~x : ~τ(~x) :ϕ(~x)}, let us define its extension at I, w as:

ext0(I, w, τ) def= { σw(~τ(~c)) | I, w |=S ϕ(~c) for some ~c∈D|~x| }

ext(I, w, τ) def=

{

u if u ∈ ext0(I, w, τ)

ext0(I, w, τ) otherwise

To put an example, if τ1 = {X ∗ n/X : p(X)} and I1 contains It1 = {p(0), p(1), p(2)}

then the set of tuples would be {0∗n/0, 1∗n/1, 2∗n/2}. Since the obtained set is finite,

its evaluation coincides with the case of extensional sets in Def. 5, item (iii).

In the example, if we have, for instance, σt(n) = 10, then ext(I1, t, τ1) = σt({0 ∗

10/0, 1 ∗ 10/1, 2 ∗ 10/2}) = {u, 10, 10} = u. On the other hand, if It1 consists of

the sequence p(0), p(s(0)), p(s(s(0))), . . . , we similarly obtain the set {0 ∗ n/0, s(0) ∗

n/s(0), s(s(0)) ∗n/s(s(0)), . . . } which, being infinite, is not covered by Def. 5. With the

definition of extension, for σt(n) = 10, we get ext(I1, t, τ1) = {σt(0 ∗ 10/0), σt(s(0) ∗

10/s(0)), σt(s(s(0)) ∗ 10/s(s(0))), . . . }) = {u, 10, 10, . . . } = u.

Now, given any interpretation I = 〈σh, σt, Ih, It〉, we define the assignments σw
I for

w ∈ {h, t} as follows. If τ ∈Terms0(C∪F) (i.e. not an intensional set) we can drop the I

subindex, that is σw
I (τ) def= σw(τ). If τ is an intensional set

σt
I(τ) def= ext(I, t, τ)

σh
I(τ) def=

{

ext(I, h, τ) if ext(I, h, τ) = ext(I, t, τ)

u otherwise

As we can see, we have two potential sources of undefinedness. One may appear because

some element in ext(I1, t, τ) cannot be evaluated, as we had before with 0 ∗ n/0. But a

second one may occur if the extension at h is different from the one at t. For instance,

for the same example, the extension of τ2 = {X : p(X)} at t is σt(ext(I, t, τ2)) =

{0, 1, 2}. If we had Ih1 = {p(0), p(2)}, then the extension at h would be ext(I, h, τ2) =

{0, 2} 6= ext(I, t, τ2) = {0, 1, 2} and so σh
I(τ2) = u. We also define the interpretation

Coh(I) def= 〈σh
I , σ

t
I , I

h, It〉. Note that Coh(I) is determined by the interpretation of

predicates and terms in Terms0(C∪F). In this sense, given a SQHT=
F -interpretation I for

the signature Σ′ = 〈C ∪ S,F ,P〉, by Coh(I), we also denote the interpretation Coh(J)

for any interpretation J over the signature Σ′ = 〈C,F ,P〉 such that J = Î.

Definition 8 (Coherent interpretation). An interpretation I = 〈σh, σt, Ih, It〉 is said to

be coherent (w.r.t. intensional sets) iff I = Coh(I). ¤

Definition 9 (Satisfaction). We say that an interpretation I satisfies (w.r.t. intensional

sets) a formula ϕ at w ∈ {h, t}, in symbols I, w |= ϕ, if both I is coherent and I, w |=S ϕ.

We also write I |= ϕ when I, h |= ϕ. Given a theory Γ, we write I |= Γ if I is coherent

and I |= ϕ for all formulas ϕ ∈ Γ. We say that a formula ϕ is a tautology if every

coherent interpretation I satisfies I |= ϕ. ¤

Proposition 4. For any SQHT=
F -interp. I and 0-formula ϕ: I |=F ϕ iff Coh(I) |= ϕ. ¤

Proposition 5. Any coherent interpretation I satisfies:

i) I, w |= ϕ implies I, t |= ϕ,

ii) I, w |= ¬ϕ iff I, t 6|= ϕ, ¤

Proposition 6. Given a formula ϕ, the following statements hold:

i) if κ(ϕ) is an SQHT=
F tautology, then ϕ is an SQHT=

S tautology,

ii) if ϕ is a 0-formula, then ϕ is an SQHT=
S tautology iff it is a SQHT=

F tautology. ¤

Nonmonotonicity is obtained with by the definition of equilibrium models for SQHT=
S .

Definition 10 (Equilibrium model). A total (coherent) model I = 〈σ, I〉 of a theory Γ

is an equilibrium model if there is no interpretation I ′ ≺ I which is also model of Γ. A

set of atoms I is a stable model of Γ iff 〈σ, I〉 is an equilibrium model of Γ for some σ. ¤

Proposition 7. Let Γ be a theory just containing 0-formulas over a signature Σ =

〈C,F ,P〉 and let I be a set of ground atoms. Then, I is a stable model of Γ according to

Definition 10 iff I is a stable model of Γ according to Definition 4 with signature Σ′ =

〈C ∪ S,F ,P〉. ¤

Proposition 7 shows that our semantics is a conservative extension of (Cabalar 2011).

Furthermore, as we will see later, our approach coincides with (Gelfond and Zhang 2014)

and rejects vicious circles as shown by the following example from (Dovier et al. 2003).

Example 1. Consider the following logic program P1:

r(1).

r(2).

q(1).

q(2) ←Z = {X : r(X)} ∧ p(Z).

p(Y)←Y = {X : q(X)}

¤

P1 has a unique equilibrium model 〈σ1, I1〉 with I1 = {q(1), p({1}), r(1), r(2)} and

σ1({X : r(X)}) = {1, 2} σ1({X : q(X)}) = {1}

Under (Dovier et al. 2003) semantics, there exists a second stable model I2 = {q(1), q(2),

p({1, 2}), r(1), r(2)} not corresponding to any equilibrium model. To see why, consider

the coherent interpretation I ′
2 = 〈σh

2 , σ2, I
h
2 , I2〉 with Ih2 = I2\{q(2), p({1, 2})} and:

σ2({X : r(X)}) = {1, 2} σ2({X : q(X)}) = {1, 2}

σh
2 ({X : r(X)}) = {1, 2} σh

2 ({X : q(X)}) = u

Note also that any total, coherent interpretation that agrees with I2 on the true atoms

must be of the form I2 = 〈σ2, I2〉 and that I ′
2 ≺ I2. Hence, I2 is not an equilibrium

model. Finally, note that I2 violates the Vicious-Circle Principle (Gelfond and Zhang

2014) because the truth of q(2) depends on p({1, 2}) which, in its turn, depends on the

fact that {X : q(X)} contains element 2. This last fact only holds if q(2) holds. ¤

4 Aggregates based on evaluable functions and intensional sets

From now on, we assume that F contains a subset A of function names of arity 1 used

to denote aggregate names and that each aggregate name f/1 ∈ A has an associated

predefined function f̂ : S −→ C ∪ {u} that computes its value as expected (maximum,

count, sum, etc). Now we further restrict Definition 8 to fix the meaning of aggregates:

Definition 11. An interpretation I = 〈σh, σt, Ih, It〉 is said to be coherent (w.r.t.

aggregates) if it is coherent w.r.t. intensional sets and, in addition, it satisfies:

i) for f/n ∈ A, σw(f(τ)) = f̂(σw(τ)) if σw(τ) ∈ S; σt(f(τ)) = u otherwise.

We say that an interpretation I is a model (w.r.t. aggregates) of a formula ϕ, in symbols

I |= ϕ, if both I is coherent and I |=S ϕ. Given a theory Γ, we write I |= Γ if I is coherent

and I |=S ϕ for all formulas ϕ ∈ Γ. ¤

For the rest of the paper, we assume that the terms ‘coherent’ and ‘model’ are under-

stood w.r.t. aggregates (Definition 11). In particular, we assume that A contains at least

the aggregate names count and sum with the following semantics

1. 1count(S) = d if d the number of elements in S,

2. bsum(S) = d if S is a set of tuples, each of which has as an integer number as first

component, and d is the sum of all first components of all tuples in S,

f̂(S) = u with f ∈ {count, sum} otherwise. We also assume that P and F respectively

contain predicates ≤,≥, <,>, 6= and evaluable functions +,−,×, / for the arithmetic

relations and functions with the standard meanings. Similarly, P and F also contain the

predicate ∈ and the evaluable functions ∪,∩ and \ with the standard meanings in set

theory. As usual, we use infix notation for arithmetic and set predicates and functions.

We also omit the parentheses around intensional sets, so we write count{X : p(X)}

instead of count({X : p(X)}).

Example 2. Let P2 be a theory over a signature with set of constants C = {a, b} that

contains the rule (1) with n = 1 plus the fact p(b). ¤

The theory in Example 2 has no stable model. On the one hand, it is clear that

every stable model I must satisfy p(b) ∈ I. Furthermore, {p(b)} is not a stable model

because, every coherent total interpretation 〈σ, {p(b)}〉 must satisfy σ({X : p(X)}) = {b}

and σ(count{X : p(X)}) = 1. Hence, 〈σ, ∅〉 does not satisfy (1). On the other hand,

the only other alternative is {p(a), p(b)} and we have that I = 〈σ, {p(a), p(b)}〉, with

σ({X : p(X)}) = {a, b} and σ(count{X : p(X)}) = 2, satisfies (1). To show that I is not

an equilibrium model, let us define I ′ = 〈σ′, σ, I ′, I〉 with I ′ = {p(b)}. It is easy to see

that I ′ |= p(b). Furthermore, we have that:

ext(I ′, t, {X : p(X)}) = {a, b} 6= {b} = ext(I ′, h, {X : p(X)}) (4)

Since these two extensions are different, it follows that σ′({X : p(X)}) = u and, conse-

quently, that I ′ 6|= count{X : p(X)} ≥ 1. In its turn, this implies that I ′ is also a model

of rule (1) with n = 1 and a model of P2. Finally, it easy to check that I ′ < I and,

therefore, I is not an equilibrium model. As we will see in Section 5, this behaviour

agrees with Alog (Gelfond and Zhang 2014), but differs from other approaches like (Son

and Pontelli 2007) and (Ferraris 2011) in which {p(a), p(b)} is a stable model of P2.

Interestingly, the use of evaluable functions allows defining aggregates within the logical

language. First, let us recall the notion of (directional) assignment from (Cabalar 2011).

By f(~τ) := τ ′ we denote the implication5 (τ ′ = τ ′) → f(~τ) = τ ′. Then, rather than

providing predefined bmax and bmin functions, we can specify their meaning as aggregates

5 Note that τ ′ = τ ′ can be read as “τ ′ is defined.”

max and min by including, instead, the formulas:

max(S) := X ← X ∈ S ∧ ¬∃Y (Y ∈ S ∧ Y > X)

min(S) := X ← X ∈ S ∧ ¬∃Y (Y ∈ S ∧ Y < X)

Clearly, max(∅) and min(∅) are always left undefined, because no rule body can satisfy

X ∈ ∅. Similarly, count can be inductively defined in terms of addition as follows:

count(∅) := 0 (5)

count(S) := 1 + count(S\{Y }) ← Y ∈ S (6)

That is, the cardinality of the empty set is 0, and the cardinality of any other set is 1

plus the cardinality of any set obtained by removing one of its elements.6 In general, we

can easily define aggregate functions based on any associative and commutative binary

function. For instance, to define the sum aggregate in terms of addition, we can just use:

sum(∅) := 0 (7)

sum(S) := sum(S\{Y }) + Y ← Y ∈ S (8)

If we now consider a program P3 containing these two rules, facts p(2) and p(3) plus

q(Y) ← sum{X : p(X)} = Y (9)

we can check that it has a unique stable model I = {p(2), p(3), q(5)}. The stable

model I corresponds to the equilibrium model 〈σ, I〉 which satisfies the assignments:

σ(sum({2})) = 2, σ(sum({3})) = 3 and σ(sum({2, 3})) = 5.

5 Relation to GZ-aggregates for propositional formulas and Alog

A term τ is said to be arithmetic if it only contains variables, numbers and arithmetic

functions +, −, ×, etc. A (GZ-)set name is an intensional set of the form {~x : ϕ} where

~x is a tuple of variables and ϕ is a 0-formula. A (GZ-)set atom is an expression of the

form f(τ) E τ ′ with f ∈ A an aggregate function, τ a set name, τ ′ an arithmetic term

and E ∈ {=,≤,≥, <,>, 6=} an arithmetic relation. A GZ-predicate atom is an expression

of the form p(τ1, . . . , τn) with p/n ∈ P a predicate name and τ1, . . . , τn ∈ D. A GZ-atom

is either a GZ-predicate atom or a set atom. GZ-formulas are the universal closure of

formulas built over GZ-atoms using the connectives ∨, ∧ and → as usual. A GZ-theory is

a set of GZ-formulas. We say that a GZ-formula ϕ is ground when there are no quantifiers

and all arithmetic terms have been evaluated, that is, the only variables occurring in ϕ

are bound to some set name and the only arithmetic terms are numbers. A GZ-theory is

said to be ground when all its formulas are ground. The following definitions extend the

semantics of Alog (Gelfond and Zhang 2014) to arbitrary propositional formulas (Cabalar

et al. 2017):

Definition 12. A set of atoms T satisfies a ground GZ-formula ϕ, denoted by T |=cl ϕ, iff

i) T 6|=cl ⊥

6 For count and sum, we are assuming that set S is finite. Otherwise, we would need additional
formalisation to deal with infinite sets and cardinalities.

ii) T |=cl p(~c) iff p(~c) ∈ T for any ground atom p(~c)

iii) T |=cl f{~x :ϕ(~x)}E n if f̂
(

{ ~c ∈ D|~x|
∣

∣ T |=cl ϕ(~c) }
)

has some value k ∈ Z and

k E n holds for the usual meaning of arithmetic relation E

iv) T |=cl ϕ ∧ ψ iff T |=cl ϕ and T |=cl ψ

v) T |=cl ϕ ∨ ψ iff T |=cl ϕ or T |=cl ψ

vi) T |=cl ϕ → ψ iff T 6|=cl ϕ or T |=cl ψ.

We say that T is a model of a ground GZ-theory Γ if T |=cl ϕ for all ϕ ∈ Γ. ¤

Given a formula ϕ(~x) with free variables ~x, by Gr(ϕ(~x)) def= { ϕ(~c)
∣

∣ ~c ∈ D|~x| } we

denote the set of its ground instances. By Gr(Γ) def=
⋃

{ Gr(ϕ(~x))
∣

∣ ∀~xϕ(~x) ∈ Γ } we also

denote the grounding of a theory Γ. Furthermore, given some set of atoms T , we divide

any theory Γ into the two disjoint subsets: Γ+
T

def= {ϕ ∈ Γ | T |=cl ϕ} and Γ−
T

def= Γ \Γ+
T ,

that is, the formulas in Γ satisfied by T and not satisfied by T , respectively. When set

Γ is parametrized, say Γ(z), we write Γ+
T (z) and Γ−

T (z) instead of Γ(z)+T and Γ(z)−T . We

also omit the set brackets when the theory is a singleton. For instance, Gr+
T (ϕ) collects

the formulas from Gr({ϕ}) satisfied by T .

Definition 13. The reduct of a ground GZ-formula ϕ w.r.t. a set of atoms T written

ϕT , is defined as ⊥ if T 6|=cl ϕ, otherwise:

ϕT def=

a if ϕ is some atom a ∈ I
(
∧

Gr
+
T (ψ(~x))

)T
if T |=cl ϕ with ϕ = f{~x :ψ(~x)}E n

ϕT
1 ⊗ ϕT

2 if T |=cl ϕ and ϕ = (ϕ1 ⊗ ϕ2) for some ⊗ ∈ {∧,∨,→}

T is a stable model of a GZ-theory Γ iff T is the ⊆-minimal model of Gr(Γ)T . ¤

Theorem 1. For any GZ-theory Γ, a set of atoms T is a stable model of Γ according to

Definition 13 iff T is a stable model of Γ according to Definition 10. ¤

Let us return to Example 2 and recall we have shown that program P2 has no stable

model according to Definition 10. To illustrate the behaviour of this program with respect

to Alog (Definition 13), note first that the only possible candidate for being a stable

model is the set I = {p(a), p(b)}; otherwise, the rules would not be satisfied according to

Definition 12. Then, we have that P I
2 corresponds to the normal program

p(a)← p(a) ∧ p(b)

p(b)

whose unique ⊆-minimal model is {p(b)}. Hence, I is not a stable model of P2. Intuitively,

this is explained by the fact that our belief in p(a) depends on the extension of intensional

set {X : p(X)} which, in its turn, depends on our belief in p(a), forming what Gelfond

and Zhang (2014) call a “vicious circle.” According to the vicious circle principle, set I

should be rejected as a stable model. In our approach, the “vicious circle” can be easily

spotted by observing that evaluation of the set in world h is left undefined because its

extension is different from the one at world t, as shown in (4).

As an example of non-vicious definition, consider the following variation.

Example 3. Let P4 be the following program:

p(a) ← count{X : p(X) ∧X 6= a} ≥ 1 (10)

p(b) ¤

Again, the only candidate interpretation that satisfies all rules is I = {p(a), p(b)}, but

the reduct corresponds now to:

p(a)← p(b)

p(b)

whose unique minimal model is I, becoming a stable model under Definition 13. There-

fore, the same will happen under Definition 10. Let us put τ = {X : p(X) ∧ X 6= a}.

It is easy to see that I = 〈σ, I〉, with σ(τ) = {b} and σ(count(τ)) = 1, satisfies (10)

and obviously p(b) as well. Now take the smaller interpretation I ′ = 〈σ′, σ, I ′, I〉 with

I ′ = {p(b)}. Then, we have:

ext(I ′, t, τ) = {b} = ext(I ′, h, τ)

so σ′(τ) = {b} and, consequently, I ′ |= count(τ) ≥ 1. In its turn, this implies that I ′

does not satisfy (10) and so is not a model of P4. It is easy to see that there is no other

smaller interpretation I ′′ < I that satisfies p(b), and so I is an equilibrium model.

An interesting property of Alog is that

it is always possible to introduce auxiliary variables for the aggregate value. For

instance, we can always replace (1) by:

p(a) ← count{X : p(X)} = Y ∧ Y ≥ n (11)

=
S

=
S

This transformation is not safe in other semantics such as (Son and Pontelli 2007; Faber

et al. 2011; Ferraris 2011). In particular, under these semantics, if we take n = 0, a
program consisting of (1) has a unique stable model {p(a)} while a program consisting

of (11) has no stable model. These two programs are equivalent in Alog and have no

stable model. We can generalize the safety of this transformation to any context, using
SQHT :

Proposition 8 (Existential variable introduction). Let p(τ1, . . . , τi, . . . , τn) be an atom.
Then, p(τ1, . . . , τi, . . . , τn) is equivalent in SQHT to ∃x[x = τi ∧ p(τ1, . . . , x, . . . , τn)]. ¤

From Proposition 8, it immediately follows that rule (1) is equivalent to (11) with an
existential quantifier ∃Y in the body that can be trivially removed.

6 Conclusions and Related Work

We have extended Quantified Equilibrium Logic with evaluable, partial functions by
introducing intensional sets, that is, terms that allow defining elements in a set that
satisfy some function or condition. By providing a logical interpretation, we define the
semantics of these new expressions without any kind of syntactic restriction, so they

can be arbitrarily nested within standard logical terms and formulas. The new extension

yields a natural interpretation of an aggregate as an evaluable function applied to a
set term. As a result, the semantics of an aggregate can be fixed within the logical
language, by the addition of formulas fixing its meaning, rather than relying on an
external, predefined function (although we assume that some elementary set predicates

are available). This may become a powerful theoretical tool to analyse the fundamental
properties of aggregate functions. We have also proved that, when restricted to the

syntactic fragment of language Alog , our semantics coincides with that of (Gelfond and

Zhang 2014).

Extensions in Logic Programming with sets can be traced back to (Kuper 1990)

and (Beeri et al. 1991). The approach of (Dovier et al. 2003) is based on the stable model

semantics with a reduct definition, but does not include evaluable functions or allow

complex terms (beyond simple variables) to appear as the definition of intensional sets.

Still, an important difference for the common syntactic fragment is that (Dovier et al.

2003) does not satisfy the vicious-circle free principle as defined in (Gelfond and Zhang

2014) “no object or property can be introduced by the definition referring to the totality

of objects satisfying this property” (see Example 1). The approaches (Lee and Meng

2009; Ferraris and Lifschitz 2010) or (Harrison et al. 2017) do not satisfy this principle

either, but still share our orientation of defining the semantics of individual components

of an aggregate. An important difference, however, is that these formalisations do not

deal with general evaluable (i.e. non-Herbrand) functions, while we use them as a starting

point and then understand aggregates just as one more case whose arguments happen to

be sets. This allows us a completely arbitrary use of aggregates as terms and of terms

inside aggregates, leading to expressive constructions such as (5)-(6).

Our future work will include the study of non-strict functions and their relation to (Son

and Pontelli 2007; Ferraris 2011). We will also study the possible formalisation under Free

Logics as in (Cabalar et al. 2014) or the kind of properties that allow functions to be

recursively defined as in (5)-(6), and their application to (Gelfond and Zhang 2014).

Supplementary Material

To view supplementary material for this article, please visit http://dx.doi.org/

10.1017/S1471068418000169.

References

Balduccini, M. 2013. ASP with non-herbrand partial functions: a language and system for
practical use. TPLP 13, 4-5, 547–561.

Baral, C. 2003. Knowledge representation, reasoning and declarative problem solving.
Cambridge university press.

Bartholomew, M. and Lee, J. 2014. Stable models of multi-valued formulas: Partial versus
total functions. In Principles of Knowledge Representation and Reasoning: Proceedings of the
Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-24, 2014, C. Baral,
G. D. Giacomo, and T. Eiter, Eds. AAAI Press.

Beeri, C., Naqvi, S. A., Shmueli, O., and Tsur, S. 1991. Set constructors in a logic database
language. J. Log. Program. 10, 3&4, 181–232.

Cabalar, P. 2011. Functional answer set programming. Theory and Practice of Logic
Programming 11, 2-3, 203–233.

Cabalar, P. 2013. Setting the stage for ASP functions. ALP Newsletter .

Cabalar, P., Fandinno, J., Schaub, T., and Schellhorn, S. 2017. Gelfond-Zhang
aggregates as propositional formulas. In Logic Programming and Nonmonotonic Reasoning
- 14th International Conference, LPNMR 2017, Espoo, Finland, July 3-6, 2017, Proceedings,
M. Balduccini and T. Janhunen, Eds. LNCS, vol. 10377. Springer, 117–131.

Cabalar, P., Fariñas del Cerro, L., Pearce, D., and Valverde, A. 2014. A free logic for
stable models with partial intensional functions. In Proc. of the 14th European Conference on

Logics in Artificial Intelligence (JELIA’14). Lecture Notes in Artificial Intelligence, vol. 8761.
340–354.

Cabalar, P., Kaminski, R., Ostrowski, M., and Schaub, T. 2016. An ASP semantics for
default reasoning with constraints. In Proc. of the 25th Intl. Joint Conference on Artificial
Intelligence (IJCAI’16), New York, USA, July 9-15th, 2016, S. Kambhampati, Ed. 1015–1021.

Dovier, A., Omodeo, E. G., Pontelli, E., and Rossi, G. 1991. {log}: A logic programming
language with finite sets. In Logic Programming, Proceedings of the Eigth International
Conference, Paris, France, June 24-28, 1991, K. Furukawa, Ed. MIT Press, 111–124.

Dovier, A., Pontelli, E., and Rossi, G. 2003. Intensional sets in CLP. In Logic Programming,
19th International Conference, ICLP 2003, Mumbai, India, December 9-13, 2003, Proceedings,
C. Palamidessi, Ed. Lecture Notes in Computer Science, vol. 2916. Springer, 284–299.

Faber, W., Pfeifer, G., and Leone, N. 2011. Semantics and complexity of recursive
aggregates in answer set programming. Artificial Intelligence 175, 1, 278–298.

Ferraris, P. 2011. Logic programs with propositional connectives and aggregates. ACM
Transactions on Computational Logic 12, 4, 25.

Ferraris, P. and Lifschitz, V. 2010. On the stable model semantics of first-order formulas
with aggregates. In Proceedings of the 2010 Workshop on Nonmonotonic Reasoning.

Gelfond, M. and Zhang, Y. 2014. Vicious circle principle and logic programs with aggregates.
Theory and Practice of Logic Programming 14, 4-5, 587–601.

Harrison, A., Lifschitz, V., and Raju, D. 2017. Program completion in the input language
of GRINGO. TPLP 17, 5-6, 855–871.

Heyting, A. 1930. Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 42–56.

Kuper, G. M. 1990. Logic programming with sets. J. Comput. Syst. Sci. 41, 1, 44–64.

Lee, J. and Meng, Y. 2009. On reductive semantics of aggregates in answer set programming.
In Logic Programming and Nonmonotonic Reasoning, E. Erdem, F. Lin, and T. Schaub, Eds.
Springer Berlin Heidelberg, Berlin, Heidelberg, 182–195.

Lin, F. and Wang, Y. 2008. Answer set programming with functions. In Proc. of the 11th Intl.
Conf. on Principles of Knowledge Representation and Reasoning (KR’08).

Pearce, D. 1996. A new logical characterisation of stable models and answer sets. In Non
monotonic extensions of logic programming. Proc. NMELP’96. (LNAI 1216). Springer-Verlag.

Pearce, D. and Valverde, A. 2004. Towards a first order equilibrium logic for nonmonotonic
reasoning. In Logics in Artificial Intelligence, 9th European Conference, JELIA 2004, Lisbon,
Portugal, September 27-30, 2004, Proceedings, J. J. Alferes and J. A. Leite, Eds. Lecture Notes
in Computer Science, vol. 3229. Springer, 147–160.

Pelov, N., Denecker, M., and Bruynooghe, M. 2007. Well-founded and stable semantics
of logic programs with aggregates. Theory and Practice of Logic Programming 7, 3, 301–353.

Simons, P., Niemelä, I., and Soininen, T. 2002. Extending and implementing the stable
model semantics. Artificial Intelligence 138, 1-2, 181–234.

Son, T. C. and Pontelli, E. 2007. A constructive semantic characterization of aggregates in
answer set programming. Theory and Practice of Logic Programming 7, 3, 355–375.

