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Direct Localization for Massive MIMO
Nil Garcia, Member, IEEE, Henk Wymeersch, Member, IEEE, Erik G. Larsson, Fellow, IEEE,

Alexander M. Haimovich, Fellow, IEEE, and Martial Coulon

Abstract—Large-scale MIMO systems are well known for their
advantages in communications, but they also have the potential for
providing very accurate localization, thanks to their high angular
resolution. A difficult problem arising indoors and outdoors is
localizing users over multipath channels. Localization based on
angle of arrival (AOA) generally involves a two-step procedure,
where signals are first processed to obtain a user’s AOA at
different base stations, followed by triangulation to determine the
user’s position. In the presence of multipath, the performance of
these methods is greatly degraded due to the inability to correctly
detect and/or estimate the AOA of the line-of-sight (LOS) paths.
To counter the limitations of this two-step procedure which is
inherently suboptimal, we propose a direct localization approach
in which the position of a user is localized by jointly processing the
observations obtained at distributed massive MIMO base stations.
Our approach is based on a novel compressed sensing framework
that exploits channel properties to distinguish LOS from non-LOS
signal paths, and leads to improved performance results compared
to previous existing methods.

Index Terms—MIMO, multipath channels, position measure-
ment, 5G mobile communication, direction-of-arrival estimation,
navigation, antenna arrays, signal processing algorithms, com-
pressed sensing, sparse matrices, parameter estimation, base
stations.

I. INTRODUCTION

M
ASSIVE MIMO, a leading 5G technology [1], relies

on the use of a large number of antennas at the base

station. It has many advantages in cellular communications, in-

cluding increased spectral efficiency, high directivity, and low

complexity [2], [3]. While research on massive MIMO has
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focused mainly on communications, it is also an enabler for

high-accuracy localization [4]. For instance, a finger-printing

localization solution is proposed in [5] for locating multiple

users by means of distributed massive MIMO. A personal mo-

bile radar with millimeter-wave massive arrays is proposed in

[6] and used for simultaneous localization and mapping (SLAM)

in [7].

MIMO localization has received significant treatment in the

technical literature, generally harnessing angle-of-arrival (AOA)

estimation. Typically, a source emits a signal, and then in a

two-step localization approach, the AOAs are measured at all

base stations, and then, the source’s location is found by tri-

angulation. In benign open-air applications, where such meth-

ods are referred to as bearings-only target localization (BOTL)

good performance can be observed [8]–[10]. However, in dense

multipath environments, such as urban areas or inside build-

ings, the AOA estimates are biased in general. For that reason,

pure AOA-based techniques [11] have not been very popular in

harsh multipath environments, due to large localization errors

[5]. Massive arrays offer the possibility of precisely estimat-

ing the AOAs of the individual multipath components thanks to

their high angular resolution [12], [13]. Nonetheless, measuring

multiple AOAs at each base station requires identification of the

AOA of the line-of-sight (LOS) paths. A possible strategy is

to select the strongest arrival as LOS [14]. However, the LOS

path may be damped or obstructed as it is often the case indoors

[15], [16]. Another option is to combine all estimated AOAs

in a fusion center and perform data association [17], but this is

an NP-hard problem for which the optimal solution cannot be

computed efficiently.

An alternative way to tackle localization problems, is to use

a direct localization approach [18]. Contrary to traditional tech-

niques, the location of the source is estimated directly from the

data, without estimating intermediate parameters, such as the

AOAs of the LOS paths. The concept of direct localization was

first introduced in [19], [20], and later applied to AOA-based

localization [21] and, more recently, to hybrid AOA–TOA (time-

of-arrival) localization [18], [22]. However, all these methods

were designed for pure LOS environments. Some direct localiza-

tion techniques [23], [24] targeted to multipath scenarios exist in

the literature, but they are not tailored to AOA information and

massive arrays. A requirement of direct localization is that the

signals, or a function of them, are sent to a fusion center that es-

timates the source’s locations. In general, it is easier to achieve

such a topology indoors as the distances are smaller. In the

case of cellular networks, cloud radio access networks (C-RAN)

[25], [26] may provide the required infrastructure. C-RAN is a



novel architecture for wireless cellular systems whereby the base

stations relay the received signals to a central unit which per-

forms all the baseband processing.

Our main contribution is a novel localization technique, called

Direct Source Localization (DiSouL), that jointly processes

the snapshots of data acquired at each base station in order

to directly estimate the location of the source. Thanks to the

high angular resolution of the massive arrays, the AOAs of

the LOS paths can be used to precisely estimate the location

of the source. DiSouL relies on a new compressive sensing

framework1 which exploits the fact that LOS components must

originate from a common location whereas NLOS components

have arbitrary AOAs. Contrary to previous AOA-based exist-

ing methods which assume that the LOS path is the strongest,

this property enables DiSouL to infer the source position from

the LOS AOAs even when the LOS paths are weaker than the

NLOS paths. In comparison to ranging-based methods, DiSouL

does not require large signal bandwidths in order to position

a source accurately. To improve the signal-to-noise-ratio, DiS-

ouL preprocesses the received signals with a matched filter,

and then, samples at one time instant. We show how to de-

termine such sampling instant at each base station based on a

variation of the threshold matched filter [28]. In addition, two

mechanisms are presented to lower the computational burden

and increase the accuracy. The first variation uses coarse TOA

estimates at each base station to narrow the search area, while

the second mechanism relies on a modified version of the grid

refinement procedure [29]. Finally, to validate the theory, nu-

merous numerical results are provided, showing that DiSouL

can achieve sub-meter accuracy with high probability which is

sufficient for many applications (e.g., positioning of users in cel-

lular networks, personal navigation, etcetera). In summary the

contributions are:
r A novel localization technique for massive MIMO sta-

tions based on AOA information and assisted with TOA

estimates.
r The mathematical formulation of a framework that enables

the detection and estimation of LOS and NLOS paths with-

out formulating a data-association problem.
r A simple generalization of the threshold matched filter for

TOA estimation for arrays of antennas.
r A grid refinement procedure for lowering the computa-

tional complexity of the proposed localization technique.

Notation: ‖ · ‖1 , ‖ · ‖2 and ‖ · ‖2,1 denote the ℓ1-norm, ℓ2-

norm and ℓ2,1-norm, respectively, and ‖ · ‖0 is the pseudo-ℓ0 -

norm which counts the number of non-zero elements.

II. SYSTEM MODEL

We consider a two-dimensional scenario with one user (or

source) and L massive MIMO base stations equipped with ar-

rays of Sl antennas each. The user is located at p = [px , py ]T

in an area R known a priori, the center of gravity of the sta-

tions’ arrays are located at p̃l = [p̃x
l , p̃y

l ]T and assumed to be in

the far field with respect to the source. All arrays are equipped

1Briefly introduced in the conference paper [27] but without mathematical
justification and for the case of TOA-based localization instead.

with fully digital processing, i.e., one radio frequency base-

band chain per antenna [30], [31]. We denote by al (θ) the 
array response vector at base station l for a ray impinging 
with angle θ. The array response implicitly accounts for the 
array configuration and the antenna pattern of each antenna 
element.

The source broadcasts a known signal s(t) with half-power 
bandwidth B, which propagates through the multipath environ-

ment, resulting in a received signal at base station l given by

zl(t) = zLOS
l (t) + zNLOS

l (t) + nl(t) 0 ≤ t < Tobs, (1)

where

zLOS
l (t) = αl al (θl(p)) s(t− τl(p)) (2)

zNLOS
l (t) =

P l∑

m=1

αm
l al(θ

m
l )s(t− τm

l ), (3)

in which Tobs is the observation time, each component of nl(t)
is white Gaussian noise with spectral density N0 , αl is an un-

known complex scalar, θl and τl are the angle of arrival (AOA)

and time of arrival (TOA), all related to the line of sight (LOS)

path, while αm
l , θm

l , and τm
l are the channel gain, AOA, and

TOA of the m-th NLOS component, for the Pl NLOS path.

All these parameters are unknown. The signal is narrowband

with respect to the arrays, i.e., at each array l the ampli-

tudes {αl}, {αm
l } do not change across antennas. The LOS

parameters τl(p) and θl(p) are related to the source position

through

τl(p) = ‖p− p̃l‖/c (4)

θl(p) = arctan

(
py − p̃y

l

px − p̃x
l

)

+ π · 1 (px < p̃x
l ) , (5)

where c is the speed of light, while the range of the arctangent

function is −π/2 ≤ arctan(x) <+π/2, the angle is computed

with respect to the x-axis and anticlockwise, and 1(P) is one

if the logical expression P is true2. Let p̃l,a = [p̃x
l,a , p̃y

l,a ]T be

the position of antenna a at BS l, relative to the array’s cen-

ter of gravity. For arrays without mutual antenna coupling and

isotropic antennas, the array response al(θ) for a given AOA θ
admits the following close-form expression

[al (θ)]a = exp

(
2πi

λ
p̃T

l,a

[
cos(θ)

sin(θ)

])

, (6)

where [·]a denotes the a-th component, i is the imaginary unit

and λ is the wavelength of the carrier. In practice, for non-ideal

arrays with mutual coupling and different antenna gains, al(θ) is

not computed mathematically but is measured during the array

calibration process. The collection of vectors al(θ) for different

directions θ is often referred to as the array manifold.

Define the emitted signal autocorrelation rs(t) =
∫ Tobs

0 s∗(τ − t)s(τ) dτ . We generate a discrete-time obser-

2The summand π · 1 px < p̃x
l

)
is added for resolving the ambiguity caused

by the fact that arctan(y/x) = arctan(−y/−x).



vation, by applying a matched filter (MF)3

zMF
l (t) =

∫ Tobs

0

s∗(τ − t)zl(τ) dτ

= αl rs (t− τl(p)) al (θl(p))

+

P l∑

m=1

αm
l rs (t− τm

l ) al (θ
m
l ) + nMF

l (t), (7)

and sampling at time tl ,

z̄l = zMF
l (tl) = ᾱl al (θl(p)) +

P l∑

m=1

ᾱm
l al (θ

m
l ) + n̄l (8)

where ᾱl = rs(tl − τl(p))αl , ᾱm
l = rs(tl − τm

l )αm
l and n̄l ∼

CN (0, σ2I) where σ2 = N0 because, without loss of gen-

eralization, the pulse energy is normalized to one (rs(0) =
∫
|s(τ)|2dτ = 1). The signals in (8) are the input of the pro-

posed method. Contrary to beamforming applications, and sim-

ilar to direction-of-arrival techniques, the observations across

each array z̄l are not weighted and linearly combined into one

output. Such weights would fix the array beampattern and are

usually designed to make the array point into one or multiple

directions. In our case, since no beamforming is performed, the

arrays do not have a “favored direction”. In regards to the source,

we assume that it has an omnidirectional antenna, in which case

the transmitted energy would be the same towards all BSs.

In order to ensure that ᾱl 6= 0, the signals must be sampled at

a time where the energy of the LOS pulse is not zero (i.e. while

rs(tl − τl(p)) 6= 0). In addition to the sampling times, we will

also compute an upper bound on the TOA of the LOS paths at

each base station that will enhance the proposed method, which

for brevity are simply called TOA estimates. In a nutshell, the

objective of our work is to determine the sampling times and the

TOA estimates from {zMF
l (t)}L

l=1 , and then, determine p from

{z̄l}L
l=1 .

III. PROPOSED METHOD

A. Principle

The proposed method exploits the high angular resolution of

massive arrays, enabling detection and estimation of the AOAs

of the distinct multipath arrivals. The TOA estimates are not

used for precise localization, but rather as constraints, limiting

the source location in a convex set (see Fig. 1 for a visual

example). By processing the snapshots z̄l at all base stations

jointly, we are able to separate the LOS paths from the NLOS

paths. The proposed method exploits the information carried by

the LOS paths in order to position the user with high accuracy.

The implicit assumption here is that, in each BS, the LOS path

is present. A method for coping with scenarios where some BS

are in NLOS is explained in Section IV-C. Roughly speaking,

3Performing the matched filtering requires perfect knowledge of the pulse
shape s(t). In practice, if the antennas and hardware have an entirely all-pass
(frequency-flat) frequency response, or the pulse shape is slightly changed due
to obstacles in the path of the LOS, then the signal-to-noise-ratio will decrease
but the number of multipath components will remain the same.

Fig. 1. Example scenario with four base stations. The white circle around
each base station excludes the near field region. Each TOA leads to a red disc,
the intersection of which is the feasible area. The blue and black lines represent
the true bearing lines of the NLOS and LOS paths, respectively.

the procedure of DiSouL is as follows. Determine a coarse

positively biased estimate of the TOA at each base station, and

use these to narrow the search area to a convex set containing the

source. Then, using the signal model (8), we formulate a convex

optimization problem, directly providing an estimate of p. In

contrast to indirect approaches, where AOAs are estimated first

and the source location is determined afterwards, we do not have

to deal with an NP-hard data-association problem. We bypass

this problem, as only position p is estimated and not AOAs of

the LOS paths. While the TOA estimates need to be an upper

bound on LOS TOAs, i.e. positively biased, the sampling should

happen at an instant where the energy of the LOS arrival is

maximized with respect to the energy from the NLOS arrivals.

Thus, in general the sampling times will be smaller than the

TOA estimates. The proposed technique is designed for a single

user, although it could possibly be extended to multiple users. In

systems operating under an orthogonal multiple access (OMA)

scheme (e.g., TDMA, FDMA, synchronous CDMA), the signals

of each user could be filtered out from the rest and treated

separately.

B. TOA Assistance

A delay estimation technique is described for computing

coarse TOA estimates {τ̂l}L
l=1 , which are then used to reduce

the search area. Nonetheless, other delay estimation techniques

are possible and may lead to better results. We rely on a gener-

alization of the threshold MF [28] for multiple antennas. This

technique has the advantage of being relatively simple, but more

importantly, in the presence of multipath, due to the fact that

multipath components overlap in time, it generates positively

biased TOA estimates as required by our method. Note that the

poor time resolution is not a concern because the goal of the



proposed method is to resolve the LOS from the NLOS compo-

nents in the ‘angular domain’ rather than the time domain. The

threshold MF first applies a matched filter to the received signals

(7), and then seeks the first peak that exceeds a properly chosen

threshold. By ignoring the part of the signals below the thresh-

old, the threshold MF avoids false detections due to the noise,

and by selecting the first peak above the threshold, it obtains

a better estimate of the LOS TOA than, for instance, selecting

the strongest peak. We propose a simple generalization of this

approach from the single-antenna case to the case of arrays with

multiple antennas.

Let zNC
l (τ) be the non-coherent aggregation of the observed

signals at all antennas after matched filtering:

zNC
l (t) =

∥
∥zMF

l (t)
∥
∥

2

2
, (9)

where zMF
l (t) was introduced in (7). The TOAs {τ̂l}L

l=1 are

estimated by selecting the first peak4 that exceeds a certain

threshold:

τ̂l = find-1st-peak
{
zNC
l (t) : zNC

l (t) ≥ η
}

. (10)

In practice, values of zNC
l (t) may only be available at discrete

instants. In such case the location of the peak may be obtained by

parabolic fitting [32]. Following [28], the threshold is selected

so that the probability of early false alarm is very low. An

early false alarm event is defined as detecting a peak due to

noise before the true TOA of the LOS path. Since the threshold

MF ignores second and later peaks (above the threshold), the

following expression on the probability of false alarms only

considers those peaks happening before the LOS TOA. When

the false alarm probability is small, it can be approximated

as [28]

PFA ≈ 1 +
(1− qnoise)

NTOA − 1

NTOA qnoise

, (11)

where NTOA = Tobs/Tcorr and Tcorr is the waveform correlation

time, which for most types of waveforms, is well approximated

by the inverse of the bandwidth Tcorr = 1/B. The term qnoise

is defined as the probability that the noise in absence of signal

exceeds threshold η

qnoise = Prob
(∥
∥nMF

l (t)
∥
∥

2

2
≥ η

)

= 1− F2S l

(
2η

σ2

)

, (12)

where Sl is the number of antennas at BS l, σ2 is the noise

variance at each antenna, and Fk (x) be the cumulative distri-

bution function of the Chi-squared distribution with k degrees

of freedom evaluated at x. The threshold η resulting in the de-

sired PFA can be found by performing a one-dimensional search

of (11).

Assuming all TOA estimates are positively biased, then we

can create a set

F = {π ∈ R
2 : ‖π − pl‖2 ≤ c τ̂l ,∀l} (13)

4A peak is a local maximum of zNC
l (t).

and narrow the search area to R ∩ F instead of R. In the un-
likely event that not all TOA estimates are positively biased, it is
possible that F = ∅. In such a case, we 

v
expand F

=
by increasing 

all TOA estimates by a constant value until F 6 ∅. We have 
chosen v = 1/B, where B is the signal bandwidth, though the

value of v turns out to not be critical for the localization per-

formance. Reducing the search area has two benefits. On one 
hand it lowers the computational complexity of the optimization

problem that is proposed in the next section. On the other hand it
can positively affect the accuracy of the localization procedure.

C. Sampling Times

The outputs of the matched filters (8) at all base stations (8)

are sampled at times {tl}L
l=1 . Contrary to the estimation of the

TOAs {τ̂l}L
l=1 , the goal is to sample {zMF

l (t)}L
l=1 at an instant

where there is as little as possible NLOS interference and as

much as possible energy from the LOS component. One solution

would be to sample at the same time than the TOA estimates,

however, due to their bias, we will rarely sample at the time of

maximum LOS energy, and moreover, the NLOS interference

may be very large as well. We propose an alternative strategy,

which has been verified numerically to lead to better results in

Section VI for the propagation conditions under consideration.

The idea is to use the same threshold matched filter for TOA

estimation, but instead of selecting the time of the first peak, we

select the instant when the received signal crosses the threshold

for the first time, i.e.,

tl = min
{
t : zNC

l (t) ≥ η
}

. (14)

Comparing the expression of the sampling time to that of the

TOA estimate (10), it follows that tl ≤ τ̂l for all l.

D. Localization

To solve the localization problem, we rely on tools from

compressive sensing. Specifically, we propose a grid-based ap-

proximate solution to the problem of localizing a source on a

continuous map which exploits the notion of sparsity and row-

sparsity [33]. To this end, first we introduce a uniform grid of

Q locations

L = {π1 , . . . ,πQ} ⊂ R ∩ F , (15)

and a uniform grid of Ml angles for each base station array

Al = {ϑ1 , . . . , ϑM l
} ⊂ [0, 2π). (16)

The main assumption here is that the source is positioned on

a grid location, and that the AOAs of the NLOS paths are

also in the grid of angles. While beamforming suffers from

the Rayleigh resolution limit [34], which is independent of the

SNR, an advantage of sparsity-based techniques is that they

can resolve multipath components within a Rayleigh cell (i.e.,

achieve super-resolution) [29], [35], [36].

Let X ∈ C
Q×L be a matrix whose entry on row q, column l

is denoted by xq l and represents the complex gain of a LOS path

from grid location πq to base station l. Let yml be the complex

gain of a NLOS path arriving at the l-th base station with angle

ϑm . Then, by definition, only one row in X is different from



zero, and ym l 6= 0 only if ϑm is equal to the AOA of a NLOS path 
at base station l. Thus, if the grids are dense enough, X is row-

sparse and yl is sparse for all l. It is well known in the compres-

sive sensing literature [37], that row sparsity can be induced by

minimizing the ℓ2,1-norm, i.e. ‖X‖2,1 =
∑Q

q=1

√
∑L

l=1 |xq l |2 ,

and that sparsity can be induced by minimizing the ℓ1-norm, i.e.

‖yl‖1 =
∑M l

m=1 |yml | where yl = [y1l , . . . , yM l l ]
T . Thus, with

all this in mind, we propose to solve the following optimization

problem

min
X ,y l

w‖X‖2,1 +
L∑

l=1

‖yl‖1 (17a)

s.t.

L∑

l=1

‖z̄l − ẑl‖2
2 ≤ ǫ (17b)

ẑl =

Q
∑

q=1

xq lal (θl(πq )) +
M∑

m=1

ymlal (ϑm ) ,∀l. (17c)

This is a second-order cone program (SOCP) for which very

efficient solvers exist. The optimization variables are X and

{yl}L
l=1 . The vector ẑl as defined in (17c) is a reconstruction

of z̄l for a given choice of X and {yl}L
l=1 . The parameter ǫ

establishes the maximum allowed mismatch between the obser-

vations and the reconstruction.

Intuitively, problem (17) seeks the sparsest number of source

locations and NLOS paths that can describe the observations

{z̄l}. Precisely, minimizing ‖X‖2,1 , induces a sparse number

of source locations (hopefully a single location), and minimizing
∑L

l=1 ‖yl‖1 , induces a sparse number of NLOS paths. These are

two different types of sparsity, and therefore, in order to combine

them together some kind of balancing coefficient or weight w
needs to be added. Intuitively, the parameter w ensures that not

all signal energy is assigned to only LOS or NLOS components.

In particular, if w = 0, the objective function is not penalized

by filling matrix X with non-zeros, thus, the reconstruction will

always favor a representation based on LOS paths rather than

NLOS paths. On the contrary, if w →∞, then the objective

function will highly penalize any non-zero in matrix X, thus,

the reconstruction will always favor a representation based on

NLOS paths. Thus, it is clear than in our multipath scenario,

consisting of LOS and NLOS paths, if a suitable w exists, it

must be larger than 0 and finite. Below suitable choices for ǫ
and w are proposed.

Remark: While this technique searches a source on a plane,

it can be generalized to a three-dimensional search, at a cost of

computational complexity. It is also possible that the technique

may improve its robustness against multipath because in two

dimensions two distinct NLOS bearing lines always intersect

but in three dimensions they generally do not.

IV. PARAMETER SELECTION

In this section, we motivate the choice for ǫ and w in the opti-

mization problem of Section III-D. The choices do not guarantee

recovery of the correct position and are derived under simplified

assumptions.

A. Setting the Parameter ǫ

The parameter ǫ in (17) defines the allowed mismatch between

the observations and the reconstruction. Typically, ǫ is a bound

on the noise. Since the noise is Gaussian, it is unbounded, and

instead ǫ is chosen so that it is a bound with high probability, i.e.

Prob

(
L∑

l=1

‖n̄l‖2 ≤ ǫ

)

= γ. (18)

where γ is, for example, 0.99. Because n̄l are random white

Gaussian vectors of length Sl , it follows that the error normal-

ized by the noise variance 2σ−2
∑L

l=1 ‖n̄l‖2 is a Chi-squared

random variable with 2
∑L

l=1 Sl degrees of freedom. Let Fk (x)
be the cumulative distribution function of the Chi-squared

distribution with k degrees of freedom evaluated at x and

F−1
k (y) its inverse function evaluated at y. Then, the value of

ǫ can be computed as

ǫ =
σ2

2
F−1

2
∑L

l = 1 S l
(γ) . (19)

In low SNR conditions, it is possible that the aggregated

energy of all snapshots is not larger than ǫ, i.e.

L∑

l=1

‖z̄l‖2
2 ≤ ǫ, (20)

making problem (17) have the trivial all-zeros solution, thus,

failing to estimate the location of the source. In this case we

propose to simply look up the location whose LOS components

correlate the most with the snapshots:

p̂ = arg max
π∈L

L∑

l=1

∣
∣aH

l (θl(π)) z̄l

∣
∣2

‖al (θl(π))‖2
2

. (21)

B. Setting the Parameter w

In order to obtain an expression for w, we will not prove that

the AOAs are correctly recovered by solving (17), but rather

that, under proper selection of w, if the AOAs are correctly

recovered, then they can also be correctly identified as either

LOS or NLOS. The key property that will dictate the value of

w, and in turn estimate the correct source location is based on

the following definition.

Definition 1 (consistent location): A location π is consistent

with L paths, if the AOAs of the direct paths between π and the

base stations are true AOAs, i.e.

θl(π) ∈ Θl for l = 1, . . . , L, (22)

where Θl is the set of true AOAs at base station l

Θl =
{

θl(p), θ1
l , . . . , θP l

l

}

. (23)

By definition, the true source location p is consistent with

the L paths because the LOS components travel in a straight

line. To find a criterion for the weight, we restrict ourselves to

a simplified version of the problem and then later evaluate the

criterion in a more realistic setting. Our analysis on the weight

criterion is limited through the three following assumptions.



A1) Besides the source location p, no other location is con-

sistent with L paths.

A2) The grids L and {Al}L
l=1 are sufficiently dense to con-

tain the source location p and all AOAs, respectively.

A3) Denoting by Θ̂l the estimated AOAs at base station

l, i.e.

Θ̂l = {θl(πq ) : xq l 6= 0} ∪ {ϑml : yml 6= 0} , (24)

then Θ̂l = Θl ,∀l. In other words, the solution of (17)

is able to recover the true AOAs. This assumption is

reasonable in high SNR conditions.

These assumptions are only used for deriving a suitable value

of w. In practice, in realistic multipath environments, some of

these assumptions may break down. Thus, in Section VI, the

proposed method is tested versus a realistic indoor multipath

channel model, and shown to recover the user position with

sub-meter accuracy and high probability.

Lemma 1: Assume A2) and A3). If w >
√

L− 1, then any

estimated location output by problem (17) is consistent with L
paths (in the sense of Definition 1).

Proof: See Appendix A. �

Lemma 2: Assume A2) and A3). If w <
√

L, then problem

(17) outputs at least one location (i.e. X 6= 0).

Proof: See Appendix B. �

The two lemmas lead directly to the following theorem, which

guarantees the correct recovery of the source location.

Theorem 1: If Assumptions A1), A2), and A3) hold, then

a sufficient condition for the correct recovery of the source

location is
√

L− 1 < w <
√

L. (25)

Proof: If w <
√

L, by Lemma 2 al least one estimated lo-

cation is output by problem (17). Moreover, if w >
√

L− 1,

by Lemma 1 any estimated location is consistent with L paths.

However, according to Assumption A1), only the location of

the source is consistent with L paths, thus completing the

proof. �

C. The Case of Non-LOS

In practice, BSs may be in non-line-of-sight (NLOS) because

the LOS paths are blocked or attenuated (making the LOS path

pass undetected). The proposed technique relies on the presence

of the L LOS paths for achieving high precision localization,

and it may break down when the base stations are in NLOS.

If the weight in (17a) is chosen according to Lemma 1, any

location estimate output by problem (17) must be consistent

with L paths. However, if one base station is in NLOS, then the

source will only be consistent with L− 1 paths, and therefore,

the location of the source will not be a solution to (17). Thus,

adjusting the weight requires a priori knowledge of the number

of LOS base stations. We can adjust the weight as follows. Let

L∗ be the number of base stations in LOS with the source, and

let L̂ be an estimate of L∗. Obviously, L∗ ≤ L. Furthermore,

assume no other location besides the location of the source is

consistent with L∗ paths. We start by assuming that all base

stations are in LOS, i.e. L̂ = L, set the weight according to

Algorithm 1: Direct Localization.

1: set L̂ = L and p̂ = ∅
2: set ǫ according to (19)

3: if
∑L

l=1 ‖z̄l‖2
2 > ǫ then

4: while p̂ = ∅ and L̂ > 1 do

5: set w =
√

L̂− 0.5
6: solve (17) to obtain X and yl ,∀l
7: if (X ≡ 0) then

8: L̂← L̂− 1
9: else

10: q̂ = arg maxq ‖Xq ,:‖2

11: p̂ = πq̂

12: end if

13: end while

14: else

15: estimate p̂ by (21)

16: end if

Theorem 1, and solve problem (17). According to Lemma 1, the

location of the source will be estimated only if it is consistent

with L̂ paths. If L∗ < L̂, the solver will return X = 0. When

this event is detected, L̂ can be reduced and (17) solved again.

This procedure can be repeated as shown in Algorithm 1. Note

that if X 6= 0, the location with strongest gains is returned as

the estimate p̂ (see lines 10–11). Theoretically speaking, since

two non-parallel paths always intersect on the plane, to ensure

that we can distinguish LOS from NLOS paths, and in turn,

recover the user position, the number of LOS BSs should be

L∗ ≥ 3. However, when the LOS paths are the strongest, we

have verified numerically, that the user can be recovered with

L∗ = 2 as well.

Based on the choices for ǫ and w, Algorithm 1 summarizes

the proposed solution strategy.

V. GRID REFINEMENT

Dense grids of locations and angles are necessary to achieve

fine resolution, but making the grids too dense results in large

computation time. The computational complexity of solving

(17) scales as O((QL +
∑

l Ml)
3.5) [38], where Q and M are

the number grid locations and angles respectively, and L is

the number of base stations. This motivates an adaptive grid-

refinement strategy originally proposed in [29]. The idea behind

the grid refinement approach is to start with a coarse grid of

locations and angles; subsequently, the grid is refined around

the estimated locations and angles and the optimization problem

(17) is solved again. This procedure can be repeated until a

certain grid resolution has been achieved or a stopping criterion

has been met. Thus, the benefits of grid refinement are two-fold:

lower computational complexity and fine grid resolution.

In comparison to previous grid refinement approaches [29],

[39], ours is more complex due to the two different types of

grids used to describe the observed data. At iteration k of the

grid refinement process, we will denote the position grid byL(k)

and the angle grid (for base station l) byA(k)
l . At iteration k = 0,



the grids are uniform over R ∩ F and [0, 2π), respectively. The 
resolutions in L(0) and Al

(0) 
are set to πres ∈ R+ and ϑres ∈ R+ ,

respectively. Define the following operators:

grid(Π̂, δ) = {π ∈ R
2 : π = π̂ + [i˜j]Tδ,

π̂ ∈ Π̂, i, j ∈ {−2,−1, 0, 1, 2}} (26)

grid(Θ̂l , δ) = {θ ∈ [0, 2π) : θ = θ̂ + iδ,

θ̂ ∈ Θ̂l , i ∈ {−2,−1, 0, 1, 2}}. (27)

We can then set L(k) = grid(Π̂, πres/2k ) and A(k)
l = grid(Θ̂l ,

ϑres/2k ) ∪ {[θl (π)]ϑ res/2k : π ∈ Π̂}, where [x]y rounds x to the

nearest multiple of y. Each successive grid of locations and an-

gles includes the estimated points and their neighboring points.

In this case we have chosen to include twenty-four and four

neighbor points for the position grid and angle grid, respec-

tively, but other choices of neighbors are possible as well. In

addition, the grid of angles also incorporates the angles related

to the estimated locations. It has been empirically verified that

this is necessary for the correct performance of this grid refine-

ment approach.

Because at each step the previously estimated points are in-

cluded in the next grid, the solution at step k is a feasible solution

at step k + 1. This ensures that the optimum value of the op-

timization problem (17) cannot increase as iterations progress.

Since the objective function is bounded from below by zero,

by the monotone convergence theorem [40], the grid refinement

procedure must converge. In practice, the refinement process

is halted when the progress between two consecutive steps is

negligible. Denote as f
(k)
opt the optimum value of problem (17)

at step k, then the grid refinement is stopped at step k if
∣
∣
∣f

(k−1)
opt − f

(k)
opt

∣
∣
∣

f
(k−1)
opt

< β, (28)

where β is a small value, e.g., β = 10−3 .

A. The DiSouL Algorithm

The summary of the DiSouL algorithm is now presented,

comprising the basic Algorithm 1, as well as the TOA assistance

of Section III-B and the grid refinement of Section V.

VI. NUMERICAL RESULTS

In this section, we illustrate the performance of the localiza-

tion method and compare it to other existing techniques. Unless

otherwise stated, all numerical examples are run using the fol-

lowing parameters. The source is positioned randomly within

an area of size 100 × 100 m. Four base stations are positioned

at the corners; if the origin of the coordinate system is taken to

be in the middle of the area, the base stations are at coordinates

[45 m, 45 m], [45 m, −45 m], [−45 m, 45 m] and [−45 m,

−45 m]. The carrier frequency is 7 GHz and the wavelength 43

mm. Every base station is equipped with a 70-antenna uniform

circular array (UCA) [41] with a radius of 24 cm because it

makes the inter antenna spacing equal to half wavelength. We

Fig. 2. The left figure plots the LOS and NLOS paths and the right figure
plots the bearing lines (BLs). The top left corner base station only receives the
LOS path.

opt for UCAs instead of uniform linear arrays (ULAs) because

for the same number of antennas and equal inter antenna spac-

ing, their far field region [42] starts at a much shorter distance

(11 m for a UCA and 51 m for a ULA), and contrary to ULAs,

UCAs have equal angular resolution towards all directions on

the plane. Also, we simulate four base stations because it makes

positioning a bit more robust to multipath than using only three

base stations5 while keeping the number of BSs to a reasonable

number. The initial grid resolutions of DiSouL are πres = 5 m

and ϑres = 5.71◦.

A. Validation of Theorem 1

To illustrate Theorem 1, we synthesize a set of snapshots (8)

according to the scenario plotted in Fig. 2 and ignore any time

delay information. The source is positioned at [18 m,31 m] and a

reflector is positioned at [25 m,−7 m]. As visualized in Fig. 2, all

base stations receive a LOS component, and except for the top

left base station, they also receive a NLOS component bounced

from the reflector. From Fig. 2, it is apparent that the source

location is consistent with 4 paths, the reflector is consistent

with 3 paths, and all other locations in that area are consistent

with 2 paths or less. We hypothesize that for a sufficiently fine

grid, and for a sufficiently high SNR, the probability of recov-

ering the correct source location will be high if the weight is

picked according to Theorem 1. The SNRl for the snapshots (8)

is defined as SNRl = Sl E{|ᾱl |2}/E{‖n̄l‖2
2} = E{|ᾱl |2}/σ2

and is equal for all base stations SNRl = SNR. Every data point

in Fig. 3 is generated by running 100 Monte Carlo runs, where

at each run the signal strengths and phases of all multipath com-

ponents are randomized according to Rayleigh and uniform dis-

tributions, respectively. The location of the source is estimated

by running Algorithm 2, wherein the solution to optimization

problem (17) is obtained by the solver Mosek [43]. Fig. 3 plots

the empirical probability that the localization error is smaller

than 1m as a function of w2 . According to Theorem 1, a suf-

ficient condition for recovering the location of the source

is that the square of the weight satisfies L− 1 ≤ w2 ≤ L. The

figure shows that, in this case, for L = 4, the range of values

5Because on a plane two non-parallel straight lines always intersect, three is
the minimum number of BSs needed in order to discriminate LOS from NLOS
paths.



Fig. 3. Probability of sub-meter accuracy versus the choice of the weight for
the scenario in Fig. 2. Probability estimated by Monte Carlo simulation where
the random parameters are the signal strengths and phases. In grey the area
comprising the tested values of w satisfying Theorem 1.

Algorithm 2: Grid refinement.

1: given a coarse grids of locations L(0) and angles

A(0)
l ,∀l

2: set k = 0
3: while (28) not satisfied do

4: solve (17) with L = L(k) and Al = A(k)
l

5: extract locations Π̂ = {π(k)
q ∈ L(k) : ‖x(k)

q ‖2 6= 0}
6: extract angles Θ̂l = {ϑ(k)

ml ∈ A
(k)
l : y

(k)
ml 6= 0},∀l

7: increase k
8: set L(k) = grid(Π̂, πres/2k )
9: trim grid of locations L(k) through TOA assistance

10: set

A(k)
l = grid(Θ̂l , ϑres/2k ) ∪ {[θl (π)]ϑ res/2k : π ∈ Π̂}

11: end while

Algorithm 3: DiSouL.

1: set η using (11) for the desired PFA (e.g., PFA = 10−2 )

2: estimate TOAs {τ̂l}L
l=1 using (10)

3: create initial grid of locations L(0) and angles A(0)
l ,∀l

4: trim grid of locations through TOA assistance

5: compute sampling times {tl}L
l=1 using (14)

6: obtain the snapshots of data by applying MF and

sampling at instants {tl}L
l=1 as in (8)

7: estimate source location p̂ by Algorithm 1 where line 1

is replaced with Algorithm 2

w2 ∈ [3, 4] yields the correct source location with sub-meter

accuracy with probability 1 for a sufficient high SNR.

B. Localization Performance in Realistic Multipath Channel

In this section, we perform Monte Carlo simulations in which

DiSouL is compared to indirect and direct localization tech-

niques:

1) SR-LS [44], using TOA obtained by the time delay es-

timator of Section III-B. SR-LS takes as inputs a set of

ranges (related to the TOAs by the speed of light) obtained

at distributed BSs and outputs the user position by solving

a least-squares (LS) fit. Because the maximum likelihood

(ML) solution does not lead to a convex optimization

problem, the LS solution is only an approximation.

2) IV [10], using AOA information, obtained by applying

beamforming [45] on the snapshots (8) and selecting the

angle associated with the strongest peak. IV is a closed-

form estimator that uses the AOAs measured at distributed

BSs to triangulate the user position. In pure LOS envi-

ronments, IV is consistent and asymptotically (with the

number of BSs) unbiased.

3) The Stansfield estimator [8], using hybrid TOA-AOA. The

Stansfield estimator is sometimes described as an AOA-

based only estimator. It uses coarse range estimates in

order to approximate the AOA-based ML estimator (in

absence of multipath) by a closed-form solution. Its for-

mula is a refined version of IV.

4) DPD [18], a direct localization hybrid TOA-AOA tech-

nique, operating directly on the received signals (1)–(3).

DPD is essentially the ML estimator for a pure LOS

environment when directly operating on the received sig-

nals. Since the received signals depend on the user position

through their AOAs and TOAs, DPD is the optimal hybrid

technique in absence of multipath. In practice it requires

computing a figure of merit for each grid location on the

map, and the one yielding the largest value is the user’s po-

sition estimate. Due to this two-dimensional search, it is,

in general, more computationally expensive than indirect

techniques.

The AOAs for IV and the Stansfield estimator are estimated by

performing beamforming. More sophisticated AOA estimation

techniques, such as MUSIC [46], are not applicable because

they require multiple snapshots and break down in the presence

of multiple correlated arrivals such as is the case of multipath.

A high precision alternative to beamforming is ℓ1-SVD [29].

However, we have observed in our numerical results that ℓ1-

SVD performs similar to beamforming due to the fact that the

AOA estimation errors are caused by peak ambiguities and not

the lack of angular resolution. Thus, errors happen mostly when

the LOS component is attenuated or blocked by obstacles.

The source emits a Gaussian pulse s(t) at 7 GHz carrier

frequency. We simulate the received signal at each antenna after

down-conversion to baseband and sampling. An oversampling

factor of 3 is used. It is a assumed a half power bandwidth of

B = 30 MHz and 10 log10
E
N0

= 10 dB, where E = E |αl |2 is

the energy of the received LOS component before sampling (2)

(same energy for all l) and N0 is the noise spectral density at

each antenna.

Every data point in the figures is generated by running 1000

Monte Carlo runs. The parameters randomized at each Monte

Carlo run are the multipath channels, the noise and the position

of the user. The parameters of the multipath channel (1) are

generated according to the statistical indoor channel model in

[15], the user position is drawn from the uniform distribution



Fig. 4. Cumulative density function of the localization error for E/N0 =
10 dB and B = 30 MHz.

Fig. 5. Probability of sub-meter precision vs. E/N0 for B = 30 MHz.

over the search area, and the noise is independent and identically

Gaussian distributed. In regards to the indoor multipath channel,

the parameters’ values are those of the Clyde building: cluster

decay rate is 34ns, ray decay rate is 29ns, cluster arrival rate is

1/17ns, ray arrival rate is 1/5ns and angular variance is 26◦. On

the average, at every base station, 99.9% of the energy in the

snapshot (8) is contained in 8 discrete multipath arrivals, which,

in general, have closely spaced AOAs.

Fig. 4 plots the cumulative density function of the localization

error. Clearly, DiSouL achieves high precision accuracy with

high probability, followed by DPD and the two-step approaches.

To gain a more in-depth understanding, we will focus on the

performance of the estimators at sub-meter errors, as a function

of E/N0 , bandwidth, number of antennas, channel properties,

and calibration errors.

In Fig. 5, the probability of sub-meter precision is shown

as a function of E/N0 . Note that DiSouL outperforms all

other techniques for most E/N0 values. The TOA-based SR-

LS performs poorly due to the positive bias of the TOA esti-

mates. The AOA-based estimators can slightly improve on this

performance, but are still worse than both direct localization

approaches. As E/N0 increases, we sample the snapshots at

the time of crossing a threshold rather than at the peak (see

Section III-B), which reduces the amount of NLOS multipath

Fig. 6. Probability of sub-meter precision vs. bandwidth for E/N0 = 10 dB.

Fig. 7. Probability of sub-meter precision vs. number of antennas at each
base station for E/N0 = 10 dB and B = 30 MHz. The diameter of all BSs
UCAs grows linearly with the number of antennas according to the formula
0.5π−1λSl . For 10 antennas the diameter is 7 cm and for 120 antennas is
82 cm.

components that are included into the snapshots, but the re-

sulting ratio between LOS energy and noise is more or less

independent of E/N0 . Thus, the benefit of increased E/N0 is

that we detect the signals sooner, thus diminishing the number of

NLOS components making into the snapshots. In the low SNR

regime (less than−5 dB in the figure), DiSouL is outperformed

by DPD because the threshold matched filter used for sampling

the signals and estimating the TOA may fail to detect any signal.

Fig. 6 plots the probability of sub-meter accuracy versus sig-

nal bandwidth. All techniques benefit from an increase of band-

width. On the one hand, it is well known that a larger bandwidth

results in better TOA estimates. On the other hand, since the

pulse width is inversely proportional to the bandwidth, a larger

bandwidth results in a shorter pulse. Hence, fewer NLOS mul-

tipath components are included into the snapshots (8), thus,

decreasing the risk of errors in the AOA estimation.

Fig. 7 evaluates the probability of sub-meter accuracy versus

the number of antennas in each base station. To keep the sep-

aration between two neighboring antennas in each UCA equal

to λ
2 , the diameter of the array in BS l is increased with the

number of antennas according to the formula λ
2 sin(π/S l )

. For ten



Fig. 8. Probability of sub-meter precision vs. ray mean arrival time for
E/N0 = 10 dB and B = 30 MHz.

or more antennas, the expression of the diameter is well approx-

imated by λS l

2π , meaning that the array size grows proportionally

to the number of antennas Sl , which is directly related to the

angular resolution. This improvement in angular resolution al-

lows DiSouL to resolve more multipath arrivals more precisely,

and consequently, improve its localization accuracy as observed

in Fig. 7. Between 10 and 80 antennas, DiSouL’s probability

of sub-meter accuracy improves linearly with the number of

antennas, and then it saturates. A perfect probability of 1 is

not achieved because the assumptions made by DiSouL (see

Section IV-B) may not always hold true in the simulated mul-

tipath channel. On the contrary, the probability of sub-meter

accuracy for the indirect techniques remains approximately the

same. In particular, because SR-LS is purely TOA-based, the

improvement in angular resolution has no impact. The other

two indirect techniques, IV and Stansfield, improve very little

because most of their errors are due to selection of the wrong

path as LOS.

In Fig. 8, we tune some of the channel parameters controlling

the rate of arrivals. In the statistical multipath channel model of

[15], the times of arrival of the NLOS components are modeled

by two parameters: the cluster arrival rate λ and the ray arrival

rate λ. The measured values for the Clyde building of these

two parameters were 1/λ = 17 ns and 1/λ = 5 ns. In order to

study the localization accuracy as a function of the ray arrival

time, in Fig. 8, 1/λ is varied between 5 ps and 5 µs while

λ = 5
17 λ. As the ray inter-arrival time increases, the multipath

channel becomes less dense. For very high inter-arrival times,

the channel can be considered almost pure LOS, and as expected

all techniques improve their localization accuracy.

In Fig. 9, we study the effect of calibration errors on the arrays,

more specifically, the degradation in localization accuracy due

to mismatches between the true and nominal gains/phases of the

antennas. Based on the model in [47], the true array response ãl

is given by

[ãl (θ)]a = gl,aeiφ l , a [al (θ)]a , (29)

where al is the nominal (i.e., the array response used by DiSouL)

array response (6), and gl,a ≥ 0 and φl,a represent the unknown

gains and phases, respectively, of the antennas. The gains (in

Fig. 9. Contour plot of DiSouL’s probability of sub-meter precision vs. gain
and phase mismatches on the antennas of all BSs. SNR and bandwidth set to
E/N0 = 10 dB and B = 30 MHz, respectively.

TABLE I
AVERAGE EXECUTION TIMES OF THE MULTIPLE LOCALIZATION TECHNIQUES

dB) and phases of all antennas are drawn independently from

Gaussian distributions, i.e. 20 log10 gl,a ∼ N (ḡdB , σ2
dB ) and

φl,a ∼ N (0, σ2
φ), where ḡdB = − ln(10)

40 σ2
dB because it makes

E gl,a = 1. When the nominal array response matches the true

one (i.e., σdB = σφ = 0), the probability of sub-meter accuracy

is approximately 0.8. Obviously, as larger gain and phase errors

occur at all antennas, the performance of DiSouL degrades. The

probability of sub-meter accuracy drops from 0.8 to 0.7 at 38◦

phase standard deviation (in the absence of gain mismatches),

or at 6 dB gain standard deviation (in the absence of phase

mismatches). Thus, DiSouL is remarkably robust to calibration

errors.

Lastly, Table I plots the execution times of all techniques in

a regular 3.6 GHz desktop computer. All stations are equipped

with 70-antenna arrays. Due to the joint processing of the data

at all base stations, the execution times of the direct techniques

are much larger than those of the indirect techniques. In par-

ticular, DiSouL is substantially more computationally intensive

than the other techniques because it needs to solve a relatively

large optimization problem multiple times. Instead of using an

off-the-shelf solver [43], it may be worth developing/using an

algorithm that exploits the sparsity of the signals.

VII. CONCLUSIONS

This paper tackled the problem of narrowband localization

in the presence of multipath, through a direct localization ap-

proach in a massive MIMO setting. We propose an original

compressive sensing approach for the localization of sources

emitting known narrow-band signals. Due to the high angular

resolution of massive arrays, it is possible to estimate the AOAs



of the multipath components. By jointly processing snapshots 
of several widely distributed arrays, we are able to estimate the 
source location precisely without explicitly estimating the LOS 
AOAs, and therefore, avoiding the challenging data associa-

tion problem. The proposed technique, called DiSouL, achieves 
sub-meter localization with high probability in dense multipath 
environments with narrow-band signals. DiSouL requires no 
statistical channel knowledge except for the noise variance and 
therefore it is suitable for any multipath environment. Coarse 
TOA estimates at each array are used to reduce the execution 
time and enhance the localization accuracy. Numerical simu-

lations have revealed that DiSouL is also remarkably robust 
to calibration errors. The large gain in accuracy comes with 
higher computational complexity compared to previous existing 
techniques.

APPENDIX A
PROOF OF LEMMA 1

We aim to prove that under A2) and A3), if w >
√

L− 1,

then any estimated location is consistent with L paths (in the

sense of Definition 1). Here the point is that it is more costly

(in terms of the objective function) to explain an observation as

L NLOS angles, than as one position with L associated LOS

angles, and this is so exactly when w >
√

L− 1.

Let X and {y}L
l=1 be a solution from (17) with cost C1 , and

let π1 be an estimated location (i.e.

√
∑L

l=1 |x1l |2 6= 0). Then

ẑl can be expressed as

ẑl = x1lal (θl(π1)) + y1lal (ϑ1l) + el , l = 1, . . . , L, (30)

where ϑ1l = θl(π1) and el is placeholder of all the terms in the

reconstruction ẑl that are not related to the location π1 or angle

ϑ1l

el =
∑

q>1

xq lal (θl(πq )) +
∑

m>1

ymlal (ϑml) l = 1, . . . , L.

(31)

Now, if ‖x1‖0 = L, then π1 is consistent with L paths in

the sense of Definition 1 due to Assumption A3). Here, x1 =
[x11 · · ·x1L ]T and ‖ · ‖0 is the ℓ0-norm which counts the number

of estimated elements. Hence, we must prove that w >
√

L− 1
implies ‖x1‖0 = L. The proof is by contradiction.

Assume that

‖x1‖0 < L. (32)

This means that the position is consistent with less than L paths.

Now we have another competing reconstruction X′, {y′}L
l=1

and

ẑl = (x1l + y1l)
︸ ︷︷ ︸

.
=y ′1 l

al (ϑ1l) + el for l = 1, . . . , L, (33)

with x′1 = 0 and cost C2 . Since X and {y}L
l=1 are optimal,

C1 ≤ C2 . Consider now the two assignments (30) and (33).

Ignoring any common coefficients, the cost of (30) is

C1 = w

√
√
√
√

L∑

l=1

|x1l |2 +
L∑

l=1

|y1l | (34)

whereas the cost of (33) is

C2 =

L∑

l=1

|y′1l | =
L∑

l=1

|x1l + y1l | ≤
L∑

l=1

|x1l |+
L∑

l=1

|y1l | .

(35)

Since C1 ≤ C2 ,

w

√
√
√
√

L∑

l=1

|x1l |2 ≤
L∑

l=1

|x1l | . (36)

Define the vector function 1x whose l-th entry is 1 if x1l 6= 0,

and 0 otherwise, and denote by x̃ the element-wise absolute

value of x1 , i.e. x̃l = |x1l |. Then, ‖x1‖1 = 1
T
x x̃, so from the

Cauchy-Schwarz inequality, it follows immediately that

‖x1‖1 ≤
√

‖x1‖0‖x1‖2 . (37)

Putting everything together, we find the following contradiction

w‖x1‖2

(36)

≤ ‖x1‖1

(37)

≤
√

‖x1‖0‖x1‖2

(32)

≤
√

L− 1‖x1‖2

(a)
< w‖x1‖2 , (38)

where (a) is due to the fact that w >
√

L− 1. Hence, w >√
L− 1 implies ‖x1‖0 = L.

APPENDIX B

PROOF OF LEMMA 2

If no location were found, for each possible location just

enough “mass” from each NLOS detected observation could

be moved, in a certain way, over to LOS; the new cost cannot

exceed the nominal cost if w <
√

L.

The proof is by contradiction. Assume that w <
√

L and that

there is no estimated location output by problem (17), so that

xq l = 0, ∀q, l. Then,

ẑl =
∑

m

ymlal (ϑml) l = 1, . . . , L. (39)

Assume without loss of generality that ϑ1l = θl(p). By

Assumption A3), θl(p) ∈ Θ̂l , so that y1l 6= 0, which leads to

the following decomposition

ẑl = y1lal (ϑ1l) +
∑

m>1

ymlal (ϑ) l = 1, . . . , L. (40)

We consider a competing decomposition X′, {y′}L
l=1 , for which

x′q l 6= 0 for some q, l. In particular, π1 = p; then

ẑl = x′1lal (θl(π1)) + (y1l − x′1l)
︸ ︷︷ ︸

.
=y ′1 l

al (ϑ1l)

+
∑

m>1

y′mlal (ϑml) l = 1, . . . , L, (41)

where y′ml = yml for all l and m > 1. Ignoring common

terms, we can associate a cost C1 and C2 with (40) and (41),



respectively, where

C1 =

L∑

l=1

|y1l | (42)

C2 = w

√
√
√
√

L∑

l=1

|x′1l |
2 +

L∑

l=1

|y1l − x′1l | . (43)

If we select x′1l such that |x′1l | = minl |y1l | and ∠x′1l = ∠y1l ,

and utilize the fact that C1 ≤ C2 , we have

L∑

l=1

|y1l | ≤ w
√

Lmin
l
|y1l |+

L∑

l=1

|y1l | − Lmin
l
|y1l |, (44)

implying that w
√

L− L ≥ 0, which contradicts w <
√

L.
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