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Abstract. Difficult Pareto set topology refers to multi-objective prob-
lems with geometries of the Pareto set such that neighboring optimal
solutions in objective space differ in several or all variables in decision
space. These problems can present a tough challenge for evolutionary
multi-objective algorithms to find a good approximation of the optimal
Pareto set well-distributed in decision and objective space. One impor-
tant challenge optimizing these problems is to keep or restore diversity in
decision space. In this work, we propose a method that learns a model of
the topology of the solutions in the population by performing parametric
spline interpolations for all variables in decision space. We use Catmull-
Rom parametric curves as they allow us to deal with any dimension in
decision space. The proposed method is appropriated for bi-objective
problems since their optimal set is a one-dimensional curve according to
the Karush-Kuhn-Tucker condition. Here, the proposed method is used
to promote restarts from solutions generated by the model. We study
the effectiveness of the proposed method coupled to NSGA-II and two
variations of MOEA/D on problems with difficult Pareto set topology.
These algorithms approach very differently the Pareto set. We argue and
discuss their behavior and its implications for model building.

Keywords: Evolutionary algorithm · Multi-objective optimization · In-
terpolation · Difficult Pareto set topology.

1 Introduction

Multi-objective Evolutionary Algorithms (MOEA) are metaheuristic methods
based on natural evolution principles that have attracted a lot of attention due
to their good performance to deal with multi-objective optimization problems
(MOP) [3]. Indeed, with the development of different MOEAs, many method-
ologies to improve their performance have been proposed [1, 3–5, 7, 17, 18].
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Despite successful results obtained by MOEAs, studies have shown that their
performance can deteriorate significantly when facing problems with difficult
Pareto set (PS) topology [8]. Okabe et al. [11] observed that the PS topology of
most artificial test problems, such as DTLZ [6], have an oversimplified geometry,
arguing that we should not expect such simplification on real world problems.
Since then, new test problems have been developed with some challenging PS
topologies [7, 11], along with new approaches to solve these problems. Special
sessions and competitions dedicated to solve problems with difficult PS topol-
ogy [16] have served to promote research in this area and to improve some multi-
objective algorithms. Nonetheless, efficiency and scalability remain an open ques-
tion for improved algorithms, such as enhanced versions of decomposition-based
algorithms. For other classes of algorithms, such as those based on Pareto dom-
inance, performance in terms of convergence and diversity in both decision and
objective space is still poor. Overall, besides final results, there is still not a
clear understanding of how various classes of algorithms work on these classes
of difficult PS topology problems.

On the other hand, learning and model assisted optimization is gaining at-
tention to enhance evolutionary search, where models are built to capture prop-
erties of the landscape, learn dependencies between variables, identify variables
for recombination, and so on. The models are in turn used to guide the evo-
lutionary algorithm aiming to improve the overall efficiency and effectiveness
of the search. Some recent works have tried to incorporate learning models for
better solutions [9, 10, 12] when optimizing problems with difficult PS topology.
These models try to learn certain regions in decision space where good solutions
are more likely to be found, restricting and guiding the evolutionary search.

From this standpoint, in this paper we present a method that learns a model
of the topology of the solutions in the population by performing parametric spline
interpolations for all variables in decision space, aiming to assist multi-objective
evolutionary algorithms on bi-objective problems with difficult PS topology. To
build the model, we use Catmull-Rom parametric curves as they allow us to
deal with any dimension in decision space. The proposed method is appropri-
ated for bi-objective problems since their optimal set is a one-dimensional curve
according to the Karush-Kuhn-Tucker condition. The model allows to identify
and query regions in decision space that are under represented in the population
of the evolutionary algorithm. That is, based on these polynomial interpolations,
the model can be used to generate new candidate solutions well distributed in
decision space aiming to guide the search towards approximations of the Pareto
set with better distribution in decision and objective space.

In this work, the proposed method is used to promote restarts from solutions
generated by the model. We study the effectiveness of the proposed method em-
bedded in three algorithms: NSGA-II [5], MOEA/D [7], and MOEA/D-DRA [15].
These algorithms are good representatives of Pareto-dominance and decompo-
sition based approaches to multi-objective optimization. These algorithms also
show quite different behavior approaching the Pareto optimal solutions. While
MOEA/D have a fast approach to the optimal for some of its weights, NSGA-
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II slowly moves a better distributed set of solutions towards the optimal front.
Since models to guide the evolutionary search are mostly built from the solution
in the population, it is important to understand how the behavior of the algo-
rithms affect the quality of the model. We test the performance of the modified
algorithms using problems with difficult PS topology proposed in [16]. Simula-
tion results presented in this work clarifies the correlation between the way an
algorithm approaches the Pareto optimal set and the quality of the model, show-
ing that the proposed method can help evolutionary algorithms to find better
distributed solutions depending on algorithm’s evolutionary behavior.

The rest of the paper is organized as follows. Firstly, Section 2 elucidates the
meaning of a MOP with difficult PS topology. Section 3 describes the learning
model to enhance result of evolutionary algorithms on such problems. In Sec-
tion 4, we present the experimental design of our comparative study, and Sec-
tion 5 presents a discussion on the results obtained. Finally, Section 6 presents
our conclusion and future work.

2 Difficult PS Topology

Solving a MOP consists in maximizing or minimizing simultaneously m objective
functions subject to constrains and bounds of a set of n decision variables. Often,
there is no single solution to these problems, instead a set of optimal solutions
that captures the trade-offs between solutions are demanded. This set is called
Pareto set (PS) in decision space, and Pareto front (PF) in objective space.

Pareto set topology refers to the geometry created by optimal solutions of a
multi-objective problem in the decision space. According to the Karush-Kuhn-
Tucker condition, it can be induced under certain assumptions that the PS
of a continuous MOP defines a piecewise continuous (m-1)-dimensional mani-
fold in the decision space [7]. In such case, the PS would be a piecewise con-
tinuous one-dimensional curve in <n for bi-objective optimization problems, a
two-dimensional curve for three-objective problems, and so on. Considering this
property of continuous MOPs, Okabe et al. [11] observed that PS topologies
were oversimplified for most artificial problems, arguing that we should not ex-
pect such simplification on real-world problems. For example, in DTLZ2 [6] the
optimal solutions lies on the interval between 0 and 1 for the variables related
to diversity, and 0.5 for all other variables related to convergence. Therefore, it
might be simple to find a well-spread set of solutions in objective space on this
problem since after finding one optimal point, changing only one variable would
create another optimal solution. On the other hand, a more difficult case would
demand a change in multiple decision variables. Such curves have received dis-
tinct denominations on different studies such as complicated PS shapes [7] and
difficult PS topology [14]. In this paper, we refer to it as difficult PS topology.

Evolutionary algorithms are a powerful tool to find good solutions in multi-
objective problems, but they lack proper distribution of solutions sometimes,
particularly in problems with difficult topology [7, 8]. Figure 2 illustrates how
MOEAs can guide solutions towards optimum values by mixing them with evo-
lutionary operators, but evolution gets stuck at some point before finding a



4 Y. Marca et al.

 0
 0.5

 1 0

 0.5

 1
 0

 0.5

 1

x3

DTLZ2 PS Topology

x1

x2

x3

-0.5
 0

 0.5
-1

 0

 1
-1

-0.5

 0

 0.5

 1

 1.5

x3

Difficult PS Topology

x1

x2

x3

Fig. 1: DTLZ2 PS topology (left) compared to difficult PS topology (right).
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Fig. 2: Example of solutions found by NSGA-II (in red) and the PS (in black).

good representation of the PS. In this case, the decision maker would have fewer
options to choose from in decision space, and most likely some trade-offs in
objective space will be missing.

3 Interpolation of PS Topology

In this work, we propose a model that builds polynomial interpolations of the
decision variables from the data contained in the population and use these poly-
nomials to generate new candidate solutions to update the population. If the
interpolation is close to the true PS topology, we can distribute solutions across
decision space hoping to produce non-dominated solutions in objective space
and give more options to the decision maker in both spaces. In the following, we
describe the proposed method in detail.

For bi-objective optimization problems, decision space topology is a one-
dimensional curve presented in hyper-dimensional space as illustrated in Figure
2. Thus, we use parametric Catmull-Rom curves [2] to perform the interpolation
of decision space. Catmull-Rom is a family of cubic interpolating splines formu-
lated such that the tangent at each point is calculated using the previous and
next point on the spline. Usually, these curves assume a uniform parameter spac-
ing, but Euclidean distance can also be used as the parametrization space [2].
These curves are smooth polynomial representations passing through all control
points with local support, so that each point only affects a small neighbor-
hood on the curve. Let Pi ∈ <n be the control points of a Catmull-Rom curve,
i = 1, 2, ..., ncp, and ti its associated parametric value. A Catmull-Rom curve is
composed of ncp − 1 polynomial segments between consecutive control points.
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Let Qi,i+1 be the polynomial interpolation between control points Pi and Pi+1,
associated to parameters ti and ti+1. The polynomial segment Qi,i+1 is influ-
enced by both adjacent control points Pi−1 and Pi+2. Note that for extreme
segments Q1,2 and Qncp−1,ncp

, there is no P0 and Pncp+1, so we define them as
P1 − 0.5(P2 −P1) and Pncp

− 0.5(Pncp
−Pncp−1), respectively.

The Qi,i+1 segment is defined by:

Qi,i+1 =
ti+1 − t
ti+1 − ti

L012 +
t− ti

ti+1 − ti
L123 (1)

where:

L012 =
ti+1 − t

ti+1 − ti−1
L01 +

t− ti−1

ti+1 − ti−1
L12 , L123 =

ti+2 − t
ti+2 − ti

L12 +
t− ti

ti+2 − ti
L23 ,

L01 =
ti − t

ti − ti−1
Pi−1 +

t− ti−1

ti − ti−1
Pi , L12 =

ti+1 − t
ti+1 − ti

Pi +
t− ti

ti+1 − ti
Pi+1 ,

L23 =
ti+2 − t

ti+2 − ti+1
Pi+1 +

t− ti+1

ti+2 − ti+1
Pi+2

For Catmull-Rom curves, it is common to define the parametrization from
its geometric embedding in Euclidean space. Therefore, we can define ti+1 as the
Euclidean distance between consecutive control points by:

ti+1 = |Pi+1 −Pi|α + ti (2)

Here, centripetal parametrization (α = 0.5) has been chosen since it guaran-
tees no intersections within curve segments [13].

Figure 3 illustrates the parametrization of decision space, where red dots
are examples of control points. In this case, control points are in fact solutions
found during the evolutionary process. Therefore, it is possible to describe the
PS topology with Catmull-Rom method if solutions are good control points, i.e.
well converged in some regions. However, this method requires a proper ordering
of solutions in decision space.
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The clustering method k-means is used to sample control points from the
population of the evolutionary algorithm. Rather than using all solutions, it is
reasonable to select few of them since it can be redundant to do interpolation
between too close points. By applying k-means in objective space, solutions can
be clustered in groups, from which we can get their centroids as control points
for the interpolation. Figure 4 presents an illustration of solutions being divided
in objective space, and their respective values in decision space.
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Fig. 4: k-means can distinguish solutions in different groups.

There are several ways in which the proposed method can be used within
the evolutionary algorithm. One is to use it as a restart mechanism, where the
solutions generated from the interpolation polynomials replace all solutions in
the population. Another way is to allow competition between solutions in the
population with those generated using the polynomials. To test our proposed
method, in this work we use it to perform restarts during the evolutionary search.

The pseudocode of the proposed method is as follows:

Step 1. Sample and ordering
1.1. Apply k-means to distribute solutions in ncp different clusters in objective

space.
1.2. Order clusters according to one of the objective values. Step 2 will follow

this order to perform interpolation.
1.3. Compute the centroids of the clusters, i.e. the average value of each vari-

able among all solutions in the clusters. These ncp centroids are used as
control points in decision space P1,P2, ...,Pncp

.
Step 2. Interpolation and generation of new solutions

2.1. Create Catmull-Rom spline using the control points and order defined
in step 1. We obtain one polynomial per variable per segment, i.e xk =
Qk
i,i+1(t), k = 1 · · · , n.

2.2. Repeat steps 2.3 to 2.5 for all interpolation segments i = 1,...,(ncp − 1)
2.3. Calculate the fraction di of the Euclidean distance between two consecu-

tive control points (Pi,Pi+1) and the sum of distances of all consecutive
control points.

di =
dist(Pi,Pi+1)∑ncp−1

k=1 dist(Pk,Pk+1)
(3)
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2.4. Define the number of solutions N̄i to be generated in the ith interval as
N̄i = round(di ×N), where N is the population size.

2.5. Generate new solutions based on Catmull-Rom spline. Here, calculate N̄i
values of the parameter t ∈ [ti, ti+1] by

t(j) = ti +
ti+1 − ti
N̄i

j, j = 0, 1, ..., N̄i (4)

and use the corresponding polynomials for all variables to generate N̄i
solutions, one for each value t(j). Thus, solution xj = (x1, · · · , xk, · · · , xn)
is generated from parameter value t(j) estimating the value of variables
by xk = Qk

i,i+1(t(j)), k = 1 · · · , n.

Step 3. Verification
3.1. Discard solutions off boundaries.
3.2. Check if the number of new solutions is equal to population size. If there

are fewer solutions, we randomly include individuals from the current
population. In case we have more solutions, we randomly throw away
individuals so we can have same population size in the restart.

4 Experimental Setup

In total, five bi-objective unimodal CEC09 competition problems [16] were used,
namely UF1, UF2, UF3, UF4, and UF7, setting number of variables n = 30.

To test the proposed method with different evolutionary methodologies fol-
lowing the CEC09 competition parameters setting, we implement our model
in three algorithms: NSGA-II [5], MOEA/D [7], and an improved version of
MOEA/D to solve CEC 2009 competition problems denominated MOEA/D-
DRA [15]. Differential Evolution (DE) crossover operator and polynomial muta-
tion were used, since it produces better results than SBX operator [7]. Crossover
rate is pc = 1.0, and mutation rate per variable is pm = 1/n. DE operator
parameter is set to F = 0.5, and the distribution exponent of polynomial mu-
tation is set to ηm = 20. All algorithms perform a total number of function
evaluations equals to 300000 with population size N = 600. For MOEA/D,
Tchebycheff approach and neighborhood size of T = 60 were used in both ver-
sions. Here, we tested different numbers of control points ncp=150, 300, 500,
and restarts = 2, 5, 10, 20. Restarts are equally spaced in generations. We
run each algorithm 30 times using the same set of seeds. Finally, IGD [3] metric
was used to compare results.

5 Experimental Results and Discussion

To compare the original evolutionary algorithm against the version coupled with
the model, Table 1 presents IGD results for all tested problems. To illustrate,
we present results for the model with 10 restarts and 300 samples of control
points to build the interpolations which overall produce good results. For each
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NSGA-II MOEA/D MOEA/D-DRA
Original Model Original Model Original Model

UF1
Average 0.018806 0.012445 0.001479 0.001171 0.001427 0.001117
SD 0.001136 0.003395 0.025630 0.020608 0.000324 0.000078
p-value 3.561984e-13 0.958135 0.000141

UF2
Average 0.015440 0.009106 0.005799 0.007126 0.003703 0.003718
SD 0.001315 0.001615 0.020539 0.003534 0.001798 0.001606
p-value 4.992806e-25 0.120524 0.601648

UF3
Average 0.145545 0.082388 0.009209 0.007392 0.006490 0.005320
SD 0.011775 0.007450 0.011240 0.006558 0.008079 0.005899
p-value 1.340732e-33 0.215363 0.342249

UF4
Average 0.039056 0.038930 0.064486 0.064192 0.059472 0.060421
SD 0.001765 0.001742 0.000028 0.000015 0.004593 0.004190
p-value 0.548976 7.984198e-36 0.730446

UF7
Average 0.008453 0.007527 0.003074 0.003415 0.001409 0.001250
SD 0.001826 0.002527 0.159385 0.139367 0.000314 0.000165
p-value 0.001213 0.600833 0.019249

Table 1: Results of IGD for 300 control points and 10 restarts.

problem, we present the average and standard deviation values of IGD among
all 30 runs, together with the p-value of t-tests on the IGD sets obtained with
the original algorithm and its improved version. A p-value smaller than 0.05
indicates with 95% confidence that the averages are statistically different. Sta-
tistically better IGD averages are shown in bold, i.e. smaller average IGD value
and p-value smaller than 0.05. According to these results, the proposed method
could find approximations with better IGD for some problems. Besides UF4,
IGD values improved for all problems when using NSGA-II. In case of the de-
composition algorithm, the model could improve IGD results for problem UF4
when using MOEA/D, and problems UF1 and UF7 when using its improved
version MOEA/D-DRA. Note that the model did not deteriorate results in any
case.

Since the proposed model is built based on solutions found by the algorithms,
whether or not the model can improve results by performing interpolation would
depend on the distribution of algorithm’s population. In other words, if the
population is a good representation of the PS topology, the model can be effective
by creating solutions from the interpolation. In this case, a good representation
would include solutions in the inflection points of the curve in decision space,
where the topology changes concavity. Thus, by looking at where solutions are
placed through generations, we can understand whether the interpolation would
properly approximate the PS topology.

Figure 5 and 6 present solutions found by NSGA-II and MOEA/D in distinct
generations, presented in different colors. While NSGA-II’s population steadily
approaches the optimal front with large coverage as the evolution proceeds,
MOEA/D converges solutions very fast in some regions of objective space at
first, and distribute solutions on those regions’ neighborhood. These different
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approaches have an effect on decision space, where the Pareto-dominance based
algorithm seems to produce solutions better suitable to the proposed model.
As NSGA-II’s solutions are placed on the inflection points of the PS topology
since early generations, it offers to the learning model a better representation of
the topology. In contrast, the decomposition algorithm finds at first solutions in
fewer regions far from the inflection points, misleading the learning model. For
example, the interpolation on solutions from generation 50 by MOEA/D would
produce something close to a strait line in decision space.
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Fig. 5: Behavior of solutions found by NSGA-II (without model) on UF1.
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Figure 7 presents IGD values by NSGA-II and MOEA/D-DRA on problem
UF1 with different sampling size and number of restarts. Note that IGD steadily
improves as the number of restarts increases. Also, note that a sample of control
points half of the population size (300) gives overall good results.

Results for NSGA-II have improved significantly according to IGD metric.
Figure 8 and 9 illustrates for UF1 and UF3 problems all non-dominated solutions
found by the original algorithm and the one coupled with the model in their best
IGD run. Both figures show that distribution of solutions have improved in both
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spaces when using the proposed method. Note that for UF3 the improvement
in convergence is more significant. These figures illustrate well the main idea
behind our learning method, where interpolation takes advantage that NSGA-II
can provide a set of control points to build a good interpolation to generate new
candidate solutions and improve quality of results.
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Fig. 8: Solutions found by NSGA-II from the best IGD run on problem UF1.

In contrast to previous problems, Figure 10 shows that restarts could not
improve results for problem UF4. In this case, both NSGA-II and MOEA/D
fail to converge solutions close to the optimal Pareto set, so when our method
tries to perform interpolation based on EA’s population, it fails to represent PS
topology. Therefore, this problem shows that the proposed method with restarts
may not improve algorithm’s performance when the population is far from the
Pareto set.
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Fig. 9: Solutions found by NSGA-II from the best IGD run on problem UF3.
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Fig. 10: Solutions found by MOEA/D-DRA (blue) and NSGA-II (red) on UF4.

6 Conclusion
In this paper, we presented a method that learns a model of the solutions’
topology in the population by performing parametric spline interpolation for all
variables in decision space. Here, Catmull-Rom parametric curves were used to
perform interpolation, which allow us to deal with any dimension in decision
space, but limited to bi-objective problems. We coupled the model with NSGA-
II and two version of MOEA/D to perform restarts from solutions generated by
the model. We showed that the proposed model could improve distribution and
convergence of solutions for most problems in the case of NSGA-II, and for some
problems in the case of MOEA/D-DRA. Also, we showed that the effectiveness
of the interpolation depends on the behavior of the algorithm.

In the future, we would like to study other methods to perform interpolation
to solve problems with more objectives. Also, we want to study other ways to
couple this model with evolutionary algorithms. For instance, allowing compe-
tition of solutions created by the model with the current population, instead of
totally replacing the population. Another aspect that we would like to investigate
is the scalability of the model in decision space.
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