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Abstract. Dominance, extensions of dominance, decomposition, and in-
dicator functions are well-known approaches used to design MOEAs.
Algorithms based on these approaches have mostly sought to enhance
parent selection and survival selection. In addition, several variation op-
erators have been developed for MOEAs. We focus on the classification
and selection of variables to improve the effectiveness of solution search.
In this work, we propose a method to classify variables that influence
convergence and increase their recombination rate, aiming to improve
convergence of the approximation found by the algorithm. We incor-
porate the proposed method into NSGA-II and study its effectiveness
using three-objective DTLZ and WFG functions, including unimodal,
multimodal, separable, non-separable, unbiased, and biased functions.
We also test the effectiveness of the proposed method on a real-world bi-
objective problem. Simulation results verify that the proposed method
can contribute to achieving faster and better convergence in several kinds
of problems, including the real-world problem.

Keywords: Evolutionary multi-objective optimization · Variables clas-
sification · Variables selection · Recombination operators.

1 Introduction

Multi-objective evolutionary algorithms[4, 2] (MOEAs) have been used to solve
multi-objective optimization problems on all kinds of application domains. Due
to their success, MOEAs are being applied to real-world problems of increased
complexity. Scalability in decision and objective spaces, epistasis, effectiveness
on problems with difficult topologies of the Pareto optimal set, and a limited
budget of evaluations due to computationally expensive fitness functions are
some of the challenges the new generation of MOEAs have to face.

The enhancement of MOEAs performance is an active research subject. Dom-
inance, extensions of dominance, decomposition, and indicator functions are well-
known approaches used to design MOEAs[5], [10], [9], [11], [1]. Algorithms based
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on these approaches have mostly sought to enhance parent selection and survival
selection. In addition, several variation operators have been developed and in-
corporated within MOEAs.

Evolutionary multi-objective algorithms commonly select individuals for vari-
ation based on their fitness. However, the operators of variation are commonly
applied to variables randomly chosen. Typically, an operator rate per variable
controls the expected number of variables that will be subject to variation, but
the decision of what variables will be modified is left to chance. Modifying a
variable of a solution in a multi-objective problem can have one of the following
effects. The modification improves one or several objectives without worsening
others. This would be the case if the solution subject to the modification is sub-
optimal, which is commonly observed in random initial populations and during
early stages of the optimization. The modification improves one or more objec-
tives but worsens others. This will typically be observed if the solution being
modified is Pareto optimal or if it belongs to a local front. Multi-objective evo-
lutionary algorithms aim to find an approximation of the Pareto optimal set,
commonly with good qualities in terms of convergence and diversity in objective
space. If the effects a variable has on convergence and diversity can be learned
or estimated during the optimization[8], the effectiveness of the search could be
enhanced by targeting particular variables for variation to find better approxi-
mations of the Pareto optimal set.

We focus on the classification and selection of variables for variation aiming to
improve the ability of solution search. In this work, we propose a method to iden-
tify variables that influence convergence and increase their selection probabilities,
so that recombination can select them more frequently to improve convergence
of the approximation found by the algorithm. The proposed method selects ran-
domly a solution from the instantaneous Pareto set and creates variations of it
mutating one variable at the time. Variables are classified into influential and
uninfluential based on whether there is a dominance relation or not between
the original solution and the corresponding one-variable mutants. The method
estimates that influential variables affect convergence of solutions in objective
space and increase their recombination rate.

In this paper, we incorporate the proposed method into NSGA-II[5] and study
its effectiveness using three-objective DTLZ[3] and WFG[6] functions, including
unimodal, multimodal, separable, non-separable, unbiased, and biased functions.
We also verify the effectiveness of the proposed method on a real-world bi-
objective problem [7]. Three ways to determine the trial values of variables to
create the mutants are investigated. Simulation results verify that the proposed
method can contribute to achieving faster and better convergence in several
kinds of problems.

2 Method

In this section, we describe the proposed variable selection method, applied every
generation after front sorting before truncation selection. The method first clas-
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1: procedure VariableClassification(F1)
2: L = (L1, L2, · · · , Ln) = (0, 0, · · · , 0)
3: xtrial = (xtrial1 , xtrial2 , · · · , xtrialn ) = ReferenceValues(F1)
4: x = xj ∈ F1, j = rand(1, |F1|)
5: for i = 1 to n do
6: y = (y1, y2, · · · , yn) = x = (x1, x2, · · · , xn)
7: yi = xtriali

8: Evaluate(y)
9: if x � y OR y � x then

10: Li = 1
11: end if
12: end for
13: return L
14: end procedure

Fig. 1. Classification of variables

sifies variables that can influence convergence and then update their probabilities
so that recombination can select them more frequently.

The procedure to classify variables is illustrated in the pseudocode of Figure
1. First, we assign a label 0 to each variable, Li = 0, i = 1, · · · , n. Next, we obtain
trial values for each variable xtrial = (xtrial1 , · · · , xtrialn ) from the non-dominated
solution set F1 in the population Pt at generation t. We randomly select one
solution x = (x1, · · · , xn) from F1. Then, for each variable i, we generate a
solution y duplicate of x and modify the i-th variable with its corresponding
trial value, yi = xtriali . Evaluate y and calculate the dominance relation between
solutions y and x. If either y dominates x or x dominates y, we update the
corresponding label to 1, Li = 1. This procedure returns the vector of labels
L assigned to the variables, where Li = 1 if the change in the i-th variable
induced a dominance relation (�) between the randomly sampled solution and
its one-variable mutant. Li = 0 otherwise.

We explore three procedures called random, far, and near to set trial values
for variables.

random sets xtriali to the value of the i-th variable of a solution randomly
selected from F1. A different solution j is randomly chosen for each variable i,

xtriali = zji | z
j ∈ F1 ∧ j = rand(1, |F1|). (1)

far sets xtriali to the farthest value of xi in F1 . That is,

k = arg max
j=1...|F1|

(|xi − zji |), zj ∈ F1, xi 6= zji

xtriali = zki .

(2)

On the other hand, near sets xtriali to the nearest value of xi in F1. That is,

k = arg min
j=1...|F1|

(|xi − zji |), zj ∈ F1, xi 6= zji

xtriali = zki .

(3)
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In near and far, if all solutions in F1 have the same value in xi, then xtriali =
xi (no change).

After variables have been classified, a recombination rate p′cv,i for each vari-
able i is computed as follows

p′cv,i = pcv, if NL = 0. (4)

p′cv,i =

{
1, if Li = 1

E−NL

n−NL
, otherwise,

, if 0 < NL ≤ E. (5)

p′cv,i =

{
E
NL
, if Li = 1

0, otherwise.
, if NL > E. (6)

where Li ∈ {0, 1} is the label assigned to variables, NL =
∑n

i=1 Li is the number
of variables classified with label Li = 1, E = n× pcv is the expected number of
crossed variables using the default rate. If after exploring n one-variable mutants
no changes in dominance are observed, NL = 0, the recombination rate p′cv,i is
set to the default rate pcv for each variable. If there are changes in dominance and
these are less than the expected number of crossed variables when the default
crossover rate is used, 0 < NL ≤ E, then the recombination rate p′cv,i is set to

1 for variables labeled Li = 1 and to E−NL

n−NL
< pcv for variables labeled Li = 0.

Otherwise, if NL > E, p′cv,i is set to E
NL
≥ pcv for variables labeled Li = 1 and

to 0 for variables labeled Li = 0. Note that the expected number of recombined
variables with pcv and p′cv is the same.

In this work, we use the variable classification procedure to update recombi-
nation probabilities of variables. However, this method can be easily extended
to influence probabilities for mutation or other variation operators.

3 Test Problems

DTLZ [3] and WFG [6] benchmark multi-objective optimization problems are
used to evaluate the proposed method. These problems are scalable in the num-
ber of variables and the number of objective functions. From the DTLZ family
of problems we use DTLZ2 and DTLZ3, whereas from the WFG family we use
WFG1-WFG9. Some properties of these problems are summarized in Table 1.
We include separability, modality and bias. Separable problems are marked with
S and non-separable with NS. Unimodal problems are marked U and multimodal
problems with M.

We also test the effectiveness of the proposed method on a bi-objective real-
world problem [7]. The problem is to design a platform with a motor mounted
on it. The machine setup is simplified as a pin-pin supported beam carrying
a weight (motor). A vibratory disturbance is imparted from the motor onto
the beam, which is of length L, width b, and symmetrical about its mid-plane.
The beam is made of three layers of material. Variables d1 and d2, respectively,
locate the contact of materials 1 and 2, and 2 and 3. Variable d3 locates the
top of the beam. The values of d1, d2, and d3 are measured from the mid-plane
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Table 1. Features of Test Problems. Separability: separable S, non-separable NS.
Modality: unimodal U, multimodal M.

Problem Sep. Modality Bias Other Features

DTLZ2 S U -
DTLZ3 S M -
WFG1 S U Yes Polynomial bias α = 0.02. Bias variables towards 1
WFG2 NS U,M - U:f1, · · · , fM−1, M:fM , fM . Discontinuous front
WFG3 NS U - Degenerancy constants A1 = 1, A2:M−1 = 0,

. front reduces to two dimensions
WFG4 S M -
WFG5 S M -
WFG6 NS U -
WFG7 S U Yes Parameter dependent bias: zi=1:k ← zi+1, . . . , zn
WFG8 NS U Yes Parameter dependent bias: zi=k+1:n ← z1, . . . , zi−1

WFG9 NS M Yes Parameter dependent bias: zi=1:n−1 ← zi+1, . . . , zn

of the beam. Mi refers to the material type for layer i (i = 1, 2, 3). The mass
density (ρ), Young’s modulus of elasticity (E), and cost per unit volume (c)
for each material type is given [7]. The objective functions are the fundamental
frequency, f1, to be maximized and the cost of the set up, f2, to be minimized.
The complete formulation is as follows,

f1(d1, d2, d3, b, L) = (π/2L2)(EI/µ)1/2,

EI = (2b/3)[EM1d
3
1 + EM2(d32 − d31) + EM3(d33 − d32)],

µ = 2b[ρM1d1 + ρM2(d2 − d1) + ρM3(d3 − d2)],

(7)

f2(d1, d2, d3, b) = 2b[cM1
d1 + cM2

(d2 − d1) + cM3
(d3 − d2)], (8)

subject to µL − 2800 < 0, d2 − d1 ≤ 0.01, d3 − d2 ≤ 0.01, 0.35 ≤ b ≤ 0.5,
3 ≤ L ≤ 6, and d1, d2, d3 ∈ [0.01, 0.6].

4 Experimental Setup and Performance Measures

In this paper, we use DTLZ2, DTLZ3, WFG1-WFG9 as benchmark problems,
setting the number of objectives M = 3 and the number of variables n = 12 for
all problems.The number of position variables is M − 1 in DTLZ. Similarly, we
set the number of position variables to k = M −1 in WFG. Thus, the number of
position variables is 2 and the number of distance variables is 10 in all benchmark
problems dealt with in this paper.

We use five algorithms to study and verify the performance of the variable
selection method proposed in this work. The base algorithm is conventional
NSGA-II [5]. NSGA-II randomly selects variables for recombination with the
same probability pcv per variable. In the following, NSGA-II is named org.
We also use three variations of NSGA-II using the proposed variable selection
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method with one of the procedures to set trial variables, as explained in sec-
tion 2. These variations are named random, far, and near. The fifth algorithm,
named ideal, knows in advance the correct classification of distance and position
variables to compute the recombination rate per variable. Thus, org provides a
baseline for performance comparison, whereas ideal provides the performance
reference of an algorithm with a perfect classification of variables.

The algorithms are run for 2000 generations setting the number of individuals
to 100, the recombination rate per individual to 1.0, and the mutation rate to
1/n. The recombination rate per variable is set to pcv = 0.5 in org and to p′

cv in
random, far, near, and ideal, computed with Eq. (4-6) as explained in section
2. The number of runs is 30 in all experiments.

To verify improvements on convergence we use generational distance GD in
the case of DTLZ problems and the value of variable xM in WFG problems. GD
is computed analitycally. The smaller the value of GD, the better the convergence
of the set of obtained nondominated solutions. In WFG distance variables are
finally aggregated into variable xM ∈ [0.0, 1.0]. The smaller the value of xM is,
the closer to the true optimum the solution is. When xM = 0, the obtained
solution is the true optimal solution. We also use the hypervolume metric to
evaluate performance in the real world problem.

5 Simulation Results and Discussion

5.1 Three-objective Benchmark Problems

First, we apply each algorithm to DTLZ2 and DTLZ3 functions. Figure 2 (a)
shows the transition of the average GD value in 30 runs over the number of fitness
evaluations for DTLZ2. Similarly, Figure 2 (b) shows results for DTLZ3. In
this experiment, population size is set to 100 and the number of generations to
2,000. Therefore, the total number of evaluations in org and ideal is 200,000 per
run. In the case of random, far, and near the algorithms evaluate an additional
trial solution per variable. Since the number of variables is 12, random, far, and
near evaluate 112 solutions in each generation and 224,000 evaluations per run.

Comparing GD by the algorithms in Figure 2 (a) and (b), it can be seen
that random, far, and near approach ideal and obtain significantly smaller
GD than org in both separable problems, the unimodal DTLZ2 and in the
multimodal DTLZ3. In DTLZ2, no significant difference is observed among
random, far, and near. In the multimodal DTLZ3, during the latest stages of
the search, far seems to perform better than random and near, in that order.
Note that there is one order of magnitude difference between far and org in
DTLZ2 and two orders of magnitude difference in DTLZ3.

Next, we apply each algorithm to WFG1-WFG9 problems. Figure 3 shows
the transition of the median value of the distance variable xM in the set of non-
dominated solutions over the number of evaluations. Comparing the algorithms,
it can be seen that random, far, and near approach ideal and achieve smaller
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Fig. 2. Transition of the median value of GD over the number of fitness evaluations in
DTLZ2 and DTLZ3 problems
m

xM values than org in WFG1, WFG2, WFG4, WFG5, WFG6, and WFG8, im-
proving significantly convergence. In WFG3, WFG7, and WFG9 xM value is
similar for all algorithms.

Table 2. Rate of absolute classification of all variables.

DTLZ2 DTLZ3 WFG1 WFG2 WFG3 WFG4 WFG5 WFG6 WFG7 WFG8 WFG9

far 99.6 76.6 38.0 99.9 34.6 99.7 99.9 100 4.06 98.1 0.805
near 71.6 43.1 14.9 92.3 34.6 98.3 69.5 99.2 6.41 91.3 0.485
random 86.9 53.6 13.3 86.7 30.8 89.6 83.5 89.6 2.78 86.7 0.240

Table 2 shows the average rate of absolute classification of variables. A clas-
sification is counted as absolute when all position and distance variables are
correctly classified. From Table 2, it can be seen that the rates of absolute clas-
sification are high in problems DTLZ2, WFG2, WFG4-6, and WFG8, where
convergence improves in the algorithms with the proposed method as shown in
Figure 2 and Figure 3. Absolute classification rate is low in problems WFG3,
WFG7, and WFG9, were convergence did not improve. Note that absolute classi-
fication is low in DTLZ3 and WFG1, although the proposed method significantly
improves convergence.

To analyze with more detail the classification of variables and its impact
on performance, Figure 4 shows the classification rate per variables over the
generations for some problems. For each variable, we compute the percentage it
was assigned label 1 in every 100 generations.

In all DTLZ and WFG problems, the classification rates of position variables
x1, x2 and z1, z2 are 0 in nearly all generations. In WFG8, the classification rate
of distance variables x3, . . . , x12 and z3, . . . , z12 are 1 in almost all generations.
A similar situation occurs in problems DTLZ2, WFG2, and WFG4-6 (not shown
here). As shown in Figure 2 and Figure 3, the convergence performance im-
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Fig. 3. Transition of the median value of the distance variable xM over the number of
fitness evaluations in WFG problems

proved in the proposed methods compared with the conventional NSGA-II in
problems where classification rates of the distance variable are high. In these
problems, it is considered that the convergence performance has improved since
the distance variables are estimated correctly and they are searched intensively.

Looking at DTLZ3 and WFG1 in Figure 4, distance variables were correctly
classified in the early generations, but their classification rate decreases in later
generations. This is because, in these problems, the value of distance variable
tends to converge to the same value, i.e. solutions are trapped in local optima.
When this happens, the trial value of the variable in the mutant is the same
as the value of the variable in the original solution and therefore a dominance
relation does to occur between them. From Figure 2 and Figure 3, DTLZ3
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Fig. 4. Classification rate per variables over the generations

and WFG1, in which distance variables were estimated correctly in the early
generations, distance variable converged to values close to optimal in all three
proposed methods, so the convergence performance of the solution improved
compared with the conventional method. Note that in WFG1, with the passing
of generations, the rate of correct classification of distance variables is gradually
higher from z3 to z12. This is because the influence of the distance variables of
WFG1 on the convergence of the solution increases from z3 to z12.

Note from Figure 4 that the classification rate of the distance variables
in WFG3 was low throughout the generations. Something similar happens in
problems WFG7 and WFG9. In these problems, distance variables affect position
variables as indicated in the Other Features column of Table 1. In WFG3,
when the value of a distance variable changes, the value of the position variable
changes as well due to degeneracy after the transition. In the case of WFG7
(zi=1:k ← zi+1, . . . , zn ) and WFG9 (zi=1:n−1 ← zi+1, . . . , zn), a transformation
is applied whereby the value of the distance variable is used to bias the value of
position variables. As shown in Figure 3, the convergence performance of the
proposed method on these problems did not differ from the conventional method
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Fig. 5. Hypervolume

and ideal. In these problems, finally note that the classification rate of distance
variable was higher in near than random and far. This is probably because the
change of the value of the distance variable was small and the values of position
variables did not change greatly.

When distance variables also affect position variables, a dominance relation
between a solution and its one-variable mutant is less likely to occur and therefore
becomes more difficult to classify distance variables in these problems. Note that
linkage can be very large in these problems, where some variables are affected
by almost all other variables, or some variables affect most other variables. It is
worth studying with more detail the effects of linkage on variables identification.

On the other hand, note that variables are correctly classified when position
variables affect distance variables (zi=k+1:n ← z1, . . . , zi−1), and convergence
can be improved as shown by the results on WFG8.

Modality and non-separability of a function seem not to affect the correct
classification of variables. Note that there is a high classification rate for uni-
modal and multi-modal problems, separable and non-separable, when distance
variables do not affect the position of solutions. Also, linkage between distance
variables and linkage from position to distance variables are not an issue for
correct classification.

In this work, the proposed method favors recombination of variables that
can improve convergence. However, in addition to convergence, the aim of a
multi-objective optimizer is to also achieve a set of well-distributed solutions.
To verify whether the proposed method has a negative impact on diversity we
also compute the hypervolume of the solutions found by the algorithms, which
measures both convergence and diversity. Figure 5 shows the hypervolume for
WFG3, WFG5, and WFG8. In general, where there is a clear improvement in
convergence we also observe an improvement in hypervolume, as illustrated in
Figure 3 (h) and Figure 5 (c) for WFG8. In cases where there is no difference
in convergence or is very small, hypervolume is also similar, as shown in Figure
3 (c) and Figure 5 (a) for WFG3 and Figure 3 (e) and Figure 5 (b) for
WFG5. These results suggest that there is not a serious detriment to diversity
of solutions. However, emphasizing variation of variables that improve diversity



Estimating Relevance of Variables for Effective Recombination 11

0.2

0.3

25 50 75 100
Number of Evaluations(e+04)

H
V

org
far_rfe=1/P
far_rfe=0.25
far_rfe=0.5

(a) Hypervolume

fa
r_

rfe
=

1
/P

fa
r_

rfe
=

0
.2

5
fa

r_
rfe

=
0
.5

500 1000 1500 2000

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Generation

p
c
v

d1
d2
d3
b
L

(b) Pcv

190 200 210 220 230 240

90

95

100

105

110

0 100200300400
0

50

100

150

200

f1: fundamental frequency

f 2
: c

os
t

original
far_rfe=1/P

(c) Pareto front

Fig. 6. Results on the vibrating beam problem

would enhance further the performance of the multi-objective algorithm. In the
future, we would like to extend the method to focus on diversity as well.

Summarizing, the convergence performance of the proposed method on bench-
mark problems with random, far, or near procedures to set the trial variables
improves compared to org, because distance variables are correctly estimated
and the frequency of recombining them is increased.

5.2 Vibrating Beam Problem

This bi-objective problem consists of 5 variables and 3 constraints. A random
initialization of the population in this problem leads to all solutions being un-
feasible. Approximately, 3 in every 10.000 randomly created solutions is feasible.
However, a simple constraint handling method allows the algorithm fo find fea-
sible solutions after 5 or 6 generations (500-600 function evaluations) and accu-
mulate them thereafter. Around generation 20 all solutions in the population are
feasible. Figure 6 shows results by NSGA-II with the constraint handling tech-
nique, denoted org, and by the proposed method far applied after 1 solution is
feasible, 25% and 50% of the population is feasible. Note from Figure 6 (a) that
the hypervolume by the proposed method is significantly higher. Also, note from
Figure 6 (b) that variables d1, b and L are consistently classified as influen-
tial for convergence and their probability pcv for recombination is higher. From
Figure 6 (c) note that the proposed method improves convergence towards the
Pareto front.

6 Conclusions

In this work we have proposed a method to classify variables that influence
convergence and increased their selection probabilities to recombine them more
often. The classification procedure is based on whether there is a Pareto domi-
nance relation between one-variable mutants. The proposed method was tested
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on DTLZ and WFG functions, including unimodal, multimodal, separable, non-
separable, unbiased and biased functions. Our experimental results show that the
proposed method can improve significantly the performance of the well known
NSGA-II algorithm in most instances for 3 objective functions. Modality and
non-separability of a function seem not to affect the correct classification of
variables. Also, linkage between distance variables and linkage from position
to distance variables are not an issue for correct classification. However, perfor-
mance could not be improved in problems where linkage from distance to position
variables is very large. We also verified that the proposed method can improve
convergence without affecting diversity on a real world bi-objective problem. In
the future we would like to study with more detail the effect of linkage. Also, we
would like to study the scalability in objective space, particularly since we use
a dominance relation to classify variables. In addition, we would like to study
ways to extend the proposed method for large scale problems.

References

1. Aguirre, H., Oyama, A., Tanaka, K.: Adaptive ε-sampling and ε-hood for evolution-
ary many-objective optimization. In: Evolutionary Multi-Criterion Optimization.
Lecture Notes in Computer Science, vol. 7811, pp. 322–336 (2013)

2. Coello, C.C., Lamont, G., van Veldhuizen, D.: Evolutionary Algorithms for Solv-
ing Multi-Objective Problems. Genetic and Evolutionary Computation, Springer,
Berlin, Heidelberg, 2nd edn. (2002)

3. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimiza-
tion test problems. In: Congress on Evolutionary Computation. pp. 825–830. IEEE
Service Center (2002)

4. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons (2001)

5. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimisation: NSGA-II. In: Proceedings
Parallel Problem Solving from Nature - PPSN VI. vol. 1917, pp. 849–858 (2000)

6. Huband, S., Hingston, P., Barone, L., While, R.: A review of multi-objective test
problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary
Computation 10(5), 477–506 (2007)

7. Narayanan, S., Azarm, S.: On improving multiobjective genetic algorithms for
design optimization. Structural optimization 18(2), 146–155 (Oct 1999)

8. Sagawa, M., Aguirre, H., Daolio, F., Liefooghe, A., Derbel, B., Verel, S., Tanaka,
K.: Learning variable importance to guide recombination. In: IEEE SSCI. pp. 1–7
(2016)

9. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evolutionary Computation 11(6), 712–731 (2007)

10. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evo-
lutionary algorithm for multiobjective optimization. In: Evolutionary Methods for
Design Optimization and Control with Applications to Industrial Problems. pp.
95–100. International Center for Numerical Methods in Engineering (2001)

11. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Par-
allel Problem Solving from Nature - PPSN VIII. pp. 832–842. Springer Berlin
Heidelberg, Berlin, Heidelberg (2004)


