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Abstract

We address the component–based regularisation of a multivariate Generalised
Linear Mixed Model (GLMM) in the framework of grouped data. A set Y of random
responses is modelled with a multivariate GLMM, based on a set X of explanatory
variables, a setA of additional explanatory variables, and random effects to introduce
the within–group dependence of observations. Variables in X are assumed many and
redundant so that regression demands regularisation. This is not the case for A,
which contains few and selected variables. Regularisation is performed building an
appropriate number of orthogonal components that both contribute to model Y and
capture relevant structural information in X. To estimate the model, we propose to
maximise a criterion specific to the Supervised Component–based Generalised Linear
Regression (SCGLR) within an adaptation of Schall’s algorithm. This extension of
SCGLR is tested on both simulated and real grouped data, and compared to ridge and
LASSO regularisations. Supplementary material for this article is available online.

Keywords: generalised linear regression, supervised components, random effects, structural
relevance.

∗IMAG, Univ Montpellier, CNRS, Montpellier, France.
jocelyn.chauvet@umontpellier.fr ; xavier.bry@umontpellier.fr
†Univ Paul–Valéry Montpellier 3, Montpellier, France.

catherine.trottier@univ-montp3.fr

1

mailto:jocelyn.chauvet@umontpellier.fr
mailto:xavier.bry@umontpellier.fr
mailto:catherine.trottier@univ-montp3.fr


1 Introduction

In the framework of regression models on a large number of explanatory variables with

redundancies and collinearities, the search for a reduced number of relevant dimensions to

model responses has been an ongoing research over the last decades. In particular, the case

where the explanatory variables outnumber the observations tends to be a new standard.

Generalised Linear Models (GLMs) are the most widely used regression models, because

they are easy to interpret and address a very large scope of applications with a variety of

response distributions. For instance, Epidemiology, Biology and Social Sciences need to

model binary outcomes, count data and survival times. All these fields often have to deal

with both grouped data and multivariate responses combining variables of different types

(e.g. one binary and another Poisson). In this work, we particularly aim at modelling

abundances of several tree genera on plots of land grouped into forest concessions, using

multiple redundant explanatory variables.

As far as dimension–reduction is concerned, two main approaches have been developed.

The first one is variable–selection, whereas the second one builds components, i.e. lin-

ear combinations of the explanatory variables, which synthesise the useful part of their

information. As far as variable–selection is concerned, the most popular method is cur-

rently the LASSO, introduced by Tibshirani (1996), which combines the likelihood with a

penalty based on the L1–norm of the coefficient vector. LASSO is one of the penalty–based

regularisation methods, as are also ridge (Hoerl and Kennard, 1970) and elastic–net (Zou

and Hastie, 2005). This LASSO selection approach has proved efficient to explain the phe-

nomenon of interest when some of the explanatory variables are the “true” ones, surrounded

by a high number of irrelevant others. Nevertheless, it may be very unstable and helpless

when the true explanatory dimensions are latent and indirectly measured through highly

correlated proxies. This is where the component–based approach turns out to be useful.

Bry et al. (2013) have developed a new methodology named Supervised Component–based

Generalised Linear Regression (SCGLR), later extended and refined in Bry et al. (2014,

2016, 2018). As in any PLS–type method, the construction of components in SCGLR is

guided both by the correlation–structure of variables in the explanatory space and by the
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prediction quality of the responses. Nevertheless, unlike PLS, SCGLR involves a general

and flexible criterion allowing to specify the type of structure components are wanted to

align with in the explanatory space (e.g. variable bundles, principal components, other

subspaces). Moreover, SCGLR searches for explanatory directions common to multiple

responses with probability distributions in the exponential family, each response being en-

titled to their own distribution. The current SCGLR method is implemented in the R pack-

age SCGLR (Cornu et al., 2018) available at https://CRAN.R-project.org/package=SCGLR

and https://github.com/SCnext/SCGLR.

In the present work, we aim at modelling responses with a repeated or grouped design.

For this purpose, the use of mixed models with random effects is widespread. Research on

variance–component estimation in Generalised Linear Mixed Models (GLMMs) has been

very active since the 1980s. For the most general distribution assumptions in such mod-

els, parameter estimation faces the intractability of the likelihood expressed as an integral

with respect to the random effects. Several numerical approximations of the integral have

been proposed: Gaussian quadrature (Anderson and Aitkin, 1985) or adaptive versions of

it (Pinheiro and Bates, 1995), Laplace approximation leading to the definition of the pe-

nalised quasi–likelihood (Breslow and Clayton, 1993) or modified versions of it (Shun and

McCullagh, 1995). An alternative to this type of analytic approximation is a stochastic ap-

proximation of the integral calculation via MCMC techniques. In this approach, Zeger and

Karim (1991) described an approximate Gibbs sampling for GLMMs, which was extended

by Clayton (1996) to more general Metropolis–Hastings algorithms. In parallel, McCul-

loch (1997) developed the Monte Carlo EM algorithm where the expectation is computed

numerically through a Monte Carlo approximation, after generating random effects with a

Metropolis–Hastings sampler. Mention can also be made of the recent work by Knudson

(2016): her strategy is to approximate the entire likelihood function using random effects

simulated from a parametrised importance sampling distribution depending on the data.

Unfortunately, these different approaches are not necessarily suitable for the same types

of random effect designs (one–dimensional random effect, embedded random effects, etc).

In the wake of the first type of approximations, we here adopt the “Joint–Maximisation”

strategy (McCulloch, 1997), as introduced for instance by Schall (1991). The model is
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iteratively linearised conditional on the random effects and variance components are then

estimated using adapted linear mixed models methods. This strategy can be used for any

random effect design and is less computationally intensive than Monte Carlo methods.

Moreover, it provides us with a linear setting more suitable for the computation of compo-

nents. Once the components calculated, model parameters can be estimated using any of

the aforementioned strategies (see Section 7).

Modelling grouped responses through a GLMM with a large number of explanatory vari-

ables is the focus of this paper. The need for dimension–reduction and regularisation has

to accommodate the presence of random effects in the model, but our main purpose still

remains to investigate the explanatory structure and link it to interpretable dimensions.

For Gaussian responses, Eliot et al. (2011) proposed to extend the ridge regression to Linear

Mixed Models (LMMs). Based on a penalised complete log–likelihood, the adaptation of

the Expectation–Maximisation algorithm they suggest includes a new step to find the best

shrinkage parameter using a generalised cross–validation scheme at each iteration. More

recently, Schelldorfer et al. (2014) — and also Groll and Tutz (2014) — proposed an L1–

penalised algorithm for fitting a high–dimensional GLMM, using Laplace approximation

and an efficient coordinate gradient descent. In this work, we combine Schall’s iterative

model linearisation with regularisation at each step. However, we do not use a penalty

on the coefficient vector’s norm — as proposed by Zhang et al. (2017) within the frame-

work of multivariate count data. We rather propose to combine dimension–reduction and

predictor–regularisation using supervised components aligning on the most predictive and

interpretable directions in the explanatory space.

The paper is organised as follows. In Section 2, we formalise the model and set the main

notations used throughout the paper. In Section 3, we present the key features of SCGLR.

Section 4 designs an extension of this methodology to mixed models, and particularly

to grouped data. In Section 5, our extended method “mixed–SCGLR” is evaluated on

simulations and compared to ridge– and LASSO–based regularisations. Finally, in order to

highlight the power of mixed–SCGLR in terms of model interpretation, Section 6 presents

an application to real data in the Poisson case.
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2 Model definition and notations

In the framework of a multivariate GLMM, we consider q response–vectors y1, . . . ,yq

forming matrix Y n×q, to be explained by two categories of explanatory variables. The

first category consists of few weakly correlated variables An×r =
[
a1 | . . . | ar

]
. These

variables are assumed to be interesting per se and their marginal effects need to be pre-

cisely quantified. The second category consists of abundant and highly correlated variables

Xn×p =
[
x1 | . . . | xp

]
considered as proxies to latent dimensions which must be found

and interpreted. Since explanatory variables in A are few, non–redundant and of interest,

they are kept as such in the model. By contrast, X may contain several unknown struc-

turally relevant dimensions K < p important to model and predict Y , how many we do

not know. X is thus to be searched for an appropriate number of orthogonal components

that both capture relevant structural information in X and contribute to model Y .

This work addresses grouped data: the n observations form N groups. Within each

group, observations are not assumed independent. For each response yk, a N–level random

effect ξk is used to model the dependence of observations within each group. Hence, each

yk is modelled with a GLMM assuming a conditional distribution from the exponential

family.

Notations and conventions

I All variables (namely the ai’s, xj ’s and yk’s) will be identified with n–vectors.

I We will use bold lowercase letters for vectors (e.g. u) and bold capital letters for

matrices (e.g. M ).

I M being any matrix, MT denotes the transpose of M .

I In denotes the identity matrix of size n.

I 1m denotes the all–ones vector of size m.

I Let u and v be non–zero vectors in Rd and let M be a symmetric positive definite

matrix of size d× d. Then 〈u |v 〉M = uTMv refers to the Euclidean scalar product

of u and v with respect to metric M . The cosine of the angle between u and v with

respect to M is given by cosM (u,v) =
〈u |v 〉M
‖u‖M ‖v‖M

, where ‖u‖M =
√
〈u |u 〉M .
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I The space spanned by vectors u1, . . . ,uh is denoted by span {u1, . . . ,uh}. U being

any matrix, span {U} refers to the space spanned by the column–vectors of U .

I Let Rn be endowed with metric W and let Z be a matrix of size n × p. Then

ΠWspan{Z} refers to the W –orthogonal projector onto span {Z}. Let b be a vector in

Rn. The cosine of the angle between b and span {Z} with respect to W is defined

by cosW (b, span {Z}) = cosW

(
b, ΠWspan{Z}b

)
.

3 SCGLR with additional explanatory variables

In this section we consider the situation where each yk is modelled with a GLM (without

random effect). For the sake of simplicity, we focus on the single–component SCGLR (K =

1). Section 3.1 briefly recalls some standards for univariate GLMs. Section 3.2 defines the

linear predictors considered in the SCGLR methodology, in a multivariate GLM framework

with additional explanatory variables. Finally, Section 3.3 introduces the criterion SCGLR

maximises to compute the component.

3.1 Notations and main features of univariate GLMs

We refer the reader to McCullagh and Nelder (1989) for a thorough overview of GLMs.

This section is only intended to recall the classical iterative scheme performing maximum

likelihood (ML) estimation. Let X denote the n × p matrix of explanatory variables and

β the p–dimensional parameter vector. At iteration t + 1, the Fisher Scoring Algorithm

(FSA) for ML estimation calculates

β[t+1] =
(
XTW [t]X

)−1
XTW [t]z[t], (1)

where z[t] and W [t] respectively denote the classical working variable and the associated

weight matrix at iteration t. As pointed out by Nelder and Wedderburn (1972), update (1)

may be interpreted as a weighted least squares step in the linearised modelM[t] defined by

M[t] :

∣∣∣∣∣∣
z[t] = Xβ + ζ [t]

with: E
(
ζ [t]
)

= 0 and V
(
ζ [t]
)

= W [t]−1.
(2)
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3.2 Linear predictors for SCGLR with multiple responses

We are now considering a multivariate GLM (Fahrmeir and Tutz, 1994). In this context,

SCGLR searches for a component common to all the yk’s. This component will be denoted

f and its p–dimensional loading–vector will be denoted u, so that f = Xu. The linear

predictor associated with response–vector yk then writes

ηk = (Xu) γk +Aδk, (3)

where γk and δk are the regression parameters associated respectively with component f

and additional explanatory variables A. f being common to all the yk’s, predictors are

collinear in their X–part. For identification purposes, we impose uTM−1u = 1, where

M may so far be any p × p symmetric positive definite matrix. Let us note yk,i the

i–th observation of the k–th response–vector and H = {ηk,i | 1 6 k 6 q, 1 6 i 6 n} the

predictor set. We assume that the q responses are independent conditional on f , and that

the n observations are independent. The log–density then writes

` (Y |H) =
n∑
i=1

q∑
k=1

`k (yk,i|ηk,i) ,

where `k is the log–density of the k–th response, conditional on its linear predictor. As a

result, zk being the working variable associated with yk and W−1
k its variance matrix, the

corresponding linearised model derived from the FSA at iteration t is

M[t]
k :

∣∣∣∣∣∣
z
[t]
k = (Xu) γk +Aδk + ζ

[t]
k

with: E
(
ζ
[t]
k

)
= 0 and V

(
ζ
[t]
k

)
= W

[t]
k

−1
.

(4)

Although linearised models (2) and (4) seem very similar, (4) is no longer linear, owing

to the product uγk. An alternate version of the FSA must therefore be used:

(i) Given current values of all the γk’s and δk’s, a new loading–vector u is obtained by

solving an SCGLR–specific program (see Section 3.3 for details).

(ii) Given a current value of u, each zk is regressed independently on
[
Xu | A

]
with

respect to weight matrix Wk, yielding new regression parameters γk and δk.
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3.3 Calculating the component maximising an SCGLR–specific

criterion

For an easier reading of this part, we omit the [t] index. For each k ∈ {1, . . . , q}, consider

model Mk endowed with weight matrix Wk. As suggested in Bry et al. (2013), the best

loading–vector in the weighted least–squares sense would be the solution of

min
u:uTM−1u=1

q∑
k=1

∥∥∥zk − ΠWk

span{Xu,A}zk

∥∥∥2
Wk

⇐⇒ max
u:uTM−1u=1

q∑
k=1

∥∥∥ΠWk

span{Xu,A}zk

∥∥∥2
Wk

.

The maximisation program also writes max
u:uTM−1u=1

ψA (u), where

ψA (u) =

q∑
k=1

∥∥zk∥∥2Wk
cos2Wk

(
zk, span {Xu,A}

)
=

q∑
k=1

∥∥zk∥∥2Wk
cos2Wk

(
zk, ΠWk

span{Xu,A}zk

)
. (5)

Now, ψA is a mere goodness–of–fit (GoF) measure that does not take into account the

closeness of component f = Xu to interpretable directions in X. The GoF measure, ψA,

must therefore be combined with a measure φ of structural relevance (SR).

Assume matrix X consists of p standardised numeric variables. Consider a weight sys-

tem ω = {ω1, . . . , ωp} — e.g. ωj = 1
p
∀j ∈ {1, . . . , p} — reflecting the a priori relative

importance of variables. Also consider a weight matrix P — e.g. P = 1
n
In — reflecting

the a priori relative importance of observations. We define the most structurally relevant

loading–vector as the solution of

max
u:uTM−1u=1

φ (u) ,

where

φ (u) =

[
p∑
j=1

ωj
(
〈Xu |xj 〉2P

)l] 1
l

=

[
p∑
j=1

ωj

(
uTXTPxjx

T

jPX u
)l] 1

l

, l > 1, (6)

for the scalar product is commutative. Formula (6) is in fact a particular case of the

SR criterion proposed by Bry and Verron (2015); Bry et al. (2016). It can be viewed

as a generalised average version of the usual dual PCA criterion:
∑p

j=1 cos2P (Xu,xj) =
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∑p
j=1 〈Xu |xj 〉

2
P . For M = (XTPX)−1, (6) is called “Variable–Powered Inertia” (VPI).

It should be stressed that for XTPX to be invertible, X must be a column full rank

matrix. In case of strict collinearities within X, as it always happens in high–dimensional

settings, we replace X with the matrix C of its principal components associated with non–

zero eigenvalues. The component is then sought as f = Cu. We have C = XV , where

V is the matrix of corresponding unit-eigenvectors. Then, f = Cu = Xũ with ũ = V u.

Bry et al. (2018) show that among all loading–vectors t such that Xt = f , ũ is that which

has the minimum L2–norm.

Tuning parameter l allows to draw component towards more (greater l) or less (smaller

l) local bundles of correlated variables, as depicted on Figure 1 in the particular instance

of four coplanar variables. Informally, a bundle is a set of variables correlated “enough” to

be viewed as proxies to the same latent dimension. The notion of bundle is flexible, and

parameter l tunes the level of within–bundle correlation to be considered: the higher the

correlation, the more local the bundle. Overall, taking l = 1 draws the components towards

global structural directions (namely the principal components) while taking l higher leads

to more local ones (ultimately, the variables themselves). The goal is to focus on the most

interpretable directions.

Finally, let s ∈ [0, 1] be a parameter tuning the importance of the SR relative to the

GoF. SCGLR attempts a trade–off between (5) and (6) by solving

max
u:uTM−1u=1

[φ (u)]s [ψA (u)]1−s

or equivalently

max
u:uTM−1u=1

s log [φ (u)] + (1− s) log [ψA (u)] . (7)

More detail can be found in Bry et al. (2018).

4 Extension to mixed models

We now propose to extend SCGLR to mixed models. This extension will be called “mixed–

SCGLR”. A particular focus is placed on grouped data, for which the independence as-
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Figure 1: Polar representation of the VPI according to the value of l in the elementary case

of four coplanar variables, x1,x2,x3,x4, with ωj = 1
4
∀j ∈ {1, 2, 3, 4}. Loading–vector u

is identified with complex number eiθ, where θ ∈ [0, 2π). Curves zl (θ) :=
[
φ
(
eiθ
)]l

eiθ are

graphed for l ∈ {1, 2, 4, 10, 50}. The intersection of curve zl with f = Xu has a radius

equal to
[
φ
(
eiθ
)]l

. The red line is the direction of maximum for l = 1, which is in fact the

first principal component. These four variables are then regarded as a unique bundle. By

contrast, the blue lines represent the two directions of maximum for l = 4. The variables

are then seen as two bundles containing two variables each. Finally, when l = 50, each

variable is considered a bundle in itself.

sumption of observations is no longer valid. The within–group dependence of each response

is modelled with a random group–effect. Consequently, each yk is modelled with a GLMM.

As in SCGLR, the responses are assumed to be independent conditional on the compo-

nents. Section 4.1 presents the single–component mixed–SCGLR method. The underlying

algorithm is given in Section 4.2. Considering only one component is generally not enough

to explain the responses making it necessary to search for K explanatory components, with

1 6 K 6 rank (X). The way in which we extract higher rank components is explained in

Section 4.3.
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4.1 First component

The random group–effect is assumed different across responses. This leads to q random–

effect vectors ξ1, . . . , ξq, which are assumed independent and normally distributed:

∀k ∈ {1, . . . , q} , ξk
ind.∼ NN (0,Dk) ,

where N denotes the number of groups. In this paper, variance components models will be

considered. We assume Dk = σ2
k IN , where σ2

k is the group variance component associated

with response yk. Linear predictors involved in mixed–SCGLR are expressed as

∀k ∈ {1, . . . , q} , ηξk = (Xu)γk +Aδk +Uξk, (8)

where U is the known random effects’ design matrix. Predictor ηξk epitomises the way

we capture the dependence between outcomes. Indeed, as component f = Xu does not

depend on k, it captures a structural dependence between the various yk’s. By contrast,

the random effect ξk models the within–group stochastic dependence of outcomes forming

response–vector yk.

Recall that the distribution of the data conditional on the random effects is supposed to

belong to the exponential family. The FSA was adapted by Schall (1991) to the GLMM

dependence structure. The key idea is to extend Schall’s algorithm to the component–based

predictors in (8).

4.1.1 Linearisation step

Let gk denote the link function for response yk, g′k its first derivative and µξk the conditional

expectation (i.e. µξk := E (yk | ξk)). The working variable associated with yk,i is calculated

through

zξk,i = gk

(
µξk,i

)
+
(
yk,i − µξk,i

)
g′k

(
µξk,i

)
= ηξk,i + ek,i, where ek,i =

(
yk,i − µξk,i

)
g′k

(
µξk,i

)
.

In view of the conditional independence assumption, the conditional variance matrix for

zξk is

Var
(
zξk | ξk

)
= W ξ

k

−1
= Diag

([
g′k

(
µξk,i

)]2
ak,i(φk) vk

(
µξk,i

))
i=1,...,n

,
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where ak,i and vk are known functions, and φk is the dispersion parameter related to yk.

At iteration t, the conditional linearised model for working vector zξk is then defined by

Mξ
k

[t]
:

∣∣∣∣∣∣∣
zξk

[t]
= (Xu) γk +Aδk +Uξk + e

[t]
k

with: E
(
e
[t]
k | ξk

)
= 0 and V

(
e
[t]
k | ξk

)
= W ξ

k

−1[t]
.

(9)

Besides the variance component estimation, an alternated estimation step has to be devel-

oped (as aforementioned in Section 3.2) to deal with the non–linearity of (9).

4.1.2 Estimation step

Calculating the component: Given current values of all the γk’s, δk’s, ξk’s and σ2
k’s, a

new component f = Xu is calculated by solving a (7)–type program. However, (5) has to

be adapted to conditional linearised models Mξ
k’s, involving weight matrices W ξ

k ’s. The

appropriate goodness–of–fit measure is

ψA (u) =

q∑
k=1

∥∥∥zξk∥∥∥2
W
ξ
k

cos2
W
ξ
k

(
zξk, span {Xu,A}

)
. (10)

Estimating the regression parameters and variance–components: Given a cur-

rent value of component f , we apply Schall’s method with the linear predictors given in

(8). New values of parameters γk and δk as well as new prediction ξk are obtained by

solving the following Henderson system (Henderson, 1975):
fTW ξ

k f fTW ξ
k A fTW ξ

k U

ATW ξ
k f ATW ξ

k A ATW ξ
k U

UTW ξ
k f UTW ξ

k A UTW ξ
k U +D−1k



γk

δk

ξk

 =


fTW ξ

k z
ξ
k

ATW ξ
k z

ξ
k

UTW ξ
k z

ξ
k

 .

Finally, as mentioned by Schall (1991), given prediction ξ̂k for ξk, the update of the ML

estimation of variance component σ2
k is

σ2
k ←−

ξ̂k
T

ξ̂k

N − 1
σ2
k

Trace

[(
UTW ξ

k U +D−1k

)−1] .
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4.2 The algorithm

The conditional linearised models considered at iteration t are given by (9). Algorithm 1

describes the (t + 1)–th iteration of the single–component mixed–SCGLR. It is repeated

until stability of parameters is reached.

Step 1: Computing the component. Set

u[t+1] = arg max
u:uTM−1u=1

[φ (u)]s
[
ψ
[t]
A (u)

]1−s
, where ψA (u) is given by (10) and φ (u) by (6)

f [t+1] = Xu[t+1]

Step 2: Henderson systems. For each k ∈ {1, . . . , q}, solve the system
f [t+1]TW ξ

k

[t]
f [t+1] f [t+1]TW ξ

k

[t]
A f [t+1]TW ξ

k

[t]
U

ATW ξ
k

[t]
f [t] ATW ξ

k

[t]
A ATW ξ

k

[t]
U

UTW ξ
k

[t]
f [t] UTW ξ

k

[t]
A UTW ξ

k

[t]
U +D

[t]
k

−1



γk

δk

ξk

 =


f [t+1]TW ξ

k

[t]
zξk

[t]

ATW ξ
k

[t]
zξk

[t]

UTW ξ
k

[t]
zξk

[t]


Call γ

[t+1]
k , δ

[t+1]
k and ξ

[t+1]
k the solutions.

Step 3: Updating variance–component estimates. For each k ∈ {1, . . . , q}, compute

σ2k
[t+1]

=
ξ
[t+1]
k

T

ξ
[t+1]
k

N − 1

σ2
k
[t] Trace

[(
UTW ξ

k

[t]
U +D

[t]
k

−1
)−1] and D

[t+1]
k = σ2k

[t+1]
IN

Step 4: Updating working variables and weighting matrices.

For each k ∈ {1, . . . , q}, compute

ηξk
[t+1]

= f [t+1]γ
[t+1]
k +Aδ

[t+1]
k +Uξ

[t+1]
k

µξk,i
[t+1]

= g−1k

(
ηξk,i

[t+1]
)
, i = 1, . . . , n

zξk,i
[t+1]

= ηξk,i
[t+1]

+

(
yki − µ

ξ
k,i

[t+1]
)
g′k

(
µξk,i

[t+1]
)
, i = 1, . . . , n

W ξ
k

[t+1]
= Diag

{[g′k (µξk,i[t+1]
)]2

ak,i(φk) vk

(
µξk,i

[t+1]
)}−1

i=1,...,n
Incrementing: t←− t+ 1

Algorithm 1: Iteration of the single–component mixed–SCGLR
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4.3 Extracting higher rank components

Let Fh =
[
f1 | . . . | fh

]
be the matrix of the first h components, where h < K. An extra

component fh+1 must best complement the existing ones plus A, i.e. Ah =
[
Fh | A

]
. So

fh+1 must be calculated using Ah as additional explanatory variables. Moreover, we must

impose that fh+1 be orthogonal to Fh, i.e. F T

hPfh+1 = 0. Component fh+1 = Xuh+1 is

thus obtained by solvingmax s log [φ (u)] + (1− s) log [ψAh (u)]

subject to: uTM−1u = 1 and DT

hu = 0,
(11)

where ψAh (u) =

q∑
k=1

∥∥∥zξk∥∥∥2
W
ξ
k

cos2
W
ξ
k

(
zξk, span {Xu,Ah}

)
and Dh = XTPFh.

In the online Supplementary Material, we give a simple tool to maximise, at least lo-

cally, any criterion on the unit sphere: the Projected Iterated Normed Gradient (PING)

algorithm. In particular, PING solves (11)–type programs, which give all components of

rank h > 1. The rank–one component is computed using the same program with A0 = A

and D0 = 0.

5 Comparative results on simulated data

Five simulation studies have been implemented to assess our method. The first one

(discussed in Sections 5.1 – 5.4) focuses on LMMs. It compares the performances of

mixed–SCGLR, LMM–ridge (Eliot et al., 2011) and GLMM–LASSO (Groll and Tutz,

2014; Schelldorfer et al., 2014). The second simulation (Section 5.5) extends the first

one to binary and Poisson outcomes. All simulation studies have been performed using

R (R Core Team, 2017). To compute LASSO regressions, we have used the R pack-

age glmmLasso (Groll, 2017). The extension of SCGLR to mixed models is available at

https://github.com/SCnext/mixedSCGLR. Three additional simulations are presented in

the online Supplementary Material. The first one reproduces the simulation scheme of

Section 5.5 with binomial and Poisson outcomes. The second one assesses the performance

of mixed–SCGLR on a different bundle structure and presents results concerning variance

component estimates. The third one deals with high dimensional data.
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5.1 Data generation

To generate grouped data, we consider N = 10 groups and R = 10 observations per

group (i.e. a total of n = 100 observations). The random effects’ design matrix is then

U = IN ⊗ 1R. Explanatory variables X consist of three independent bundles: X0 (15

variables), X1 (10 variables) and X2 (5 variables). Each explanatory variable is normally

simulated with mean 0 and variance 1. Parameter τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} tunes the level

of redundancy within each bundle: the correlation matrix of bundle Xj is

cor (Xj) = τ1pj1
T

pj
+ (1− τ)Ipj ,

where pj is the number of variables in Xj . In order to enable comparison with LASSO and

ridge and to focus on regularisation, our simulations do not involve additional explanatory

variables (A = 0). Two random responses Y =
[
y1 | y2

]
are generated asy1 = Xβ1 +Uξ1 + ε1

y2 = Xβ2 +Uξ2 + ε2,
(12)

such that y1 is predicted only by bundle X1, y2 only by bundle X2, and bundle X0 plays

no explanatory role. Our choice for the fixed–effect parameters is

β1 = ( 0, . . . . . . . . . . . . . . . . . . , 0︸ ︷︷ ︸
15 times

, 0.3, .., 0.3︸ ︷︷ ︸
3 times

, 0.4, . . . , 0.4︸ ︷︷ ︸
4 times

, 0.5, .., 0.5︸ ︷︷ ︸
3 times

, 0, . . . , 0︸ ︷︷ ︸
5 times

)T,

β2 = ( 0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 0︸ ︷︷ ︸
25 times

, 0.3, 0.3, 0.4, 0.5, 0.5 )T.

Finally, for each k ∈ {1, 2}, random effect and noise vectors are simulated respectively from

ξk∼NN
(
0, σ2

k IN
)

and εk∼Nn
(
0, ω2

k In
)
,

where σ2
k = ω2

k = 1. For each value of τ , B = 100 samples are generated according to

Model (12).

5.2 Parameter calibration

In order to compare mixed–SCGLR with the ridge and LASSO regressions, we recall the

regularisation parameters required by each method. For both LMM–ridge and GLMM–

LASSO methods, a unique shrinkage parameter has to be calibrated: λridge and λLASSO re-

spectively. For mixed–SCGLR, three tuning parameters need to be calibrated: the number
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of components K and the trade–off parameter s, which are both regularisation parameters,

and the bundle–locality parameter l. For greater clarity, the simulation focuses on the

behaviour of K and s. As recommended by Bry et al. (2013), we set l = 4. In case–studies,

l has to be tuned to maximise the interpretability of components.

For both mixed–SCGLR and GLMM–LASSO, optimal regularisation parameters are

obtained through a 5–fold cross–validation, withdrawing 2 observations from each group

every time. This could be termed “leave–two–observations–out per group.” The data are

thus divided into five parts P1, . . . ,P5, each Pj containing 20 observations, 2 for each of the

10 groups. Let y
(b)
k,i be the i–th observation of the k–th response vector in the b–th sample.

Let also ŷ
(b)
k,i(−j) be the fit for y

(b)
k,i with part Pj removed. The cross–validation error in the

b–th sample, E(b), is defined as

E(b) =
1

2

2∑
k=1

E
(b)
k , (13)

where

E
(b)
k =

1

5

5∑
j=1

√√√√ 1

20

∑
i∈Pj

(
y
(b)
k,i − ŷ

(b)
k,i(−j)

)2

.

In the b–th sample, the optimal number of components K?(b), the trade–off parameter

s?(b), and the shrinkage parameter λ?
(b)

LASSO are selected to minimise the cross–validation

error (13). We then define

s? =
1

B

B∑
b=1

s?(b), K? = mode
({
K?(1), . . . , K?(B)

})
and λ?LASSO =

1

B

B∑
b=1

λ?
(b)

LASSO.

By contrast, Eliot et al. (2011) suggest to calibrate the ridge parameter at each step of

their EM implementation, using the generalised cross–validation. We thus define

λ?ridge =
1

B

B∑
b=1

λ?
(b)

ridge,

where λ?
(b)

ridge denotes the average of the ridge parameter values obtained over all the itera-

tions of the EM algorithm in the b–th sample.

Table 1 summarises the optimal regularisation parameters selected through cross–

validation. In both ridge and LASSO, the shrinkage parameter value increases with the
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level of redundancy τ . Whereas for mixed-SCGLR, when τ increases, K? decreases to-

wards the true number of predictive variable–bundles: the greater the value of τ , the

better mixed–SCGLR focuses on the structures in X that contribute to model Y . More-

over, when τ increases, the trade–off parameter s? increases, meaning that regularisation

requires a greater importance of the structural relevance relative to the goodness–of–fit.

Table 1: Optimal regularisation parameter values obtained through cross–validation over

100 simulations.

GLMM–LASSO LMM–ridge mixed–SCGLR

shrinkage

parameter λ?LASSO

shrinkage

parameter λ?ridge

number of

components K?

trade–off

parameter s?

τ = 0.1 65 24 15 0.50

τ = 0.3 92 54 5 0.58

τ = 0.5 124 73 3 0.70

τ = 0.7 163 78 3 0.73

τ = 0.9 175 85 2 0.80

5.3 Comparison of the estimate accuracies

Once tuning parameters are obtained, we focus on the fixed–effect estimates’ accuracy.

Since the response–vectors y1 and y2 are normally distributed and have comparable orders

of magnitude, the fixed–effect relative errors are on the same scale. Then we consider a

risk–averse comparison criterion called “Mean Upper Relative Squared Error” (MURSE)

defined as

MURSE (β1,β2) =
1

B

B∑
b=1

max


∥∥∥β̂(b)

1 − β1

∥∥∥2
‖β1‖2

,

∥∥∥β̂(b)

2 − β2

∥∥∥2
‖β2‖2

 ,

where β̂
(b)

k is the estimate of βk associated with sample b. The MURSE values for mixed–

SCGLR, LMM–ridge and GLMM–LASSO are presented in Table 2. The LMM results

obtained without regularisation are also presented. They were computed using the R
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package lme4 (Bates et al., 2015). In the latter case, relative errors increase dramatically

with τ . Those of ridge and LASSO increase less drastically (but increase anyway) because

these methods suffer from the high correlations among the explanatory variables. Except

for τ = 0.1, mixed–SCGLR provides the most accurate fixed effect estimates. Indeed, if

there are no real bundles in X (τ ' 0), searching for structures in X may lead mixed–

SCGLR to be slightly less accurate. Conversely, mixed–SCGLR takes advantage of the

high correlations among the explanatory variables: the stronger the structures (high τ),

the more efficient the method.

Table 2: Mean Upper Relative Squared Error (MURSE) values associated with the optimal

parameter values.

LMM
GLMM–LASSO LMM–ridge mixed–SCGLR

(no regularisation)

τ = 0.1 0.12 0.05 0.08 0.12

τ = 0.3 0.33 0.12 0.13 0.10

τ = 0.5 0.61 0.20 0.16 0.07

τ = 0.7 1.32 0.25 0.20 0.06

τ = 0.9 4.62 0.26 0.31 0.05

5.4 Model interpretation

This section aims at highlighting the power of mixed–SCGLR for model interpretation.

Figure 2 presents an example of the first component planes obtained for τ = 0.5, with

associated optimal parameter values s? = 0.7 and K? = 3. We still impose l = 4. The first

two components obtained are the ones which explain the responses. It clearly appears that

y1 is explained by bundle X1 and y2 by X2. Interestingly, although bundle X0 is the one

with maximum inertia (26.83%), it appears only along the third component, for having no

explanatory part.
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Figure 2: Component planes (1, 2) and (1, 3) given by mixed–SCGLR on simulated data.

The black arrows represent the explanatory variables. The red ones represent the projection

of the X–part of the linear predictors associated with y1 and y2. The percentage of inertia

captured by each component is given in parentheses.

5.5 Additional simulations involving non–Gaussian outcomes

This section aims at assessing our method in the case of Bernoulli (B) and Poisson (P)

distributions of responses. We still consider N = 10 groups and R = 10 observations per

group. We keep design matrices X and U defined in Section 5.1, as well as the values of

β1, β2, σ2
1 and σ2

2. The group variance components are given by ς21 = 0.1σ2
1 and ς22 = σ2

2

so that for each k ∈ {1, 2}, ξ̃k ∼ NN (0, ς2k IN). Then given ξ̃1 and ξ̃2, we simulate

Y =
[
y1 | y2

]
as 

y1∼ B
(
p = logit−1

[
Xθ1 +Uξ̃1

])
y2∼P

(
λ = exp

[
Xθ2 +Uξ̃2

])
,

(14)

where θ1 = 0.1β1 and θ2 = β2. Again, for each value of τ , B = 100 samples are generated

according to Model (14). As in Section 5.2, tuning parameters are calibrated so as to

minimise the cross–validation error (13). However, since y1 and y2 do not have the same

range of values, the prediction errors have to be standardised. The cross–validation error
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for response yk in the b–th sample is now given by

E
(b)
k =

1

5

5∑
j=1

√√√√√√√√ 1

20

∑
i∈Pj

(
y
(b)
k,i − ŷ

(b)
k,i(−j)

)2

v̂ar

(
ŷ
(b)
k,i(−j)

) .

Unlike in Section 5.3, the response–vectors do not come from the same distribution

and have different orders of magnitude. The fixed–effect relative errors are thus not com-

parable. To compare mixed–SCGLR with GLMM–LASSO and classical GLMM (without

regularisation), we thus use the Mean Relative Squared Error (MRSE) defined as

MRSE (θk) =
1

B

B∑
b=1

∥∥∥θ̂(b)k − θk∥∥∥2
‖θk‖2

, k ∈ {1, 2} ,

where θ̂
(b)

k is the estimate of θk from the b–th sample. MRSE values for the GLMM,

mixed–SCGLR and GLMM–LASSO are presented in Table 3. For all methods, estimating

a Bernoulli model is obviously a more challenging task than estimating a Poisson model.

Regardless of the level of redundancy τ , both mixed–SCGLR and GLMM–LASSO out-

perform classical GLMM estimation. Compared with the Gaussian case (Section 5.3), the

results deteriorate but (overall) the same behaviours are observed.

I For τ = 0.1, fixed–effect estimates provided by mixed–SCGLR are less accurate than

those provided by GLMM–LASSO. In this case, GLMM–LASSO has indeed a double

advantage. First, many θk,j’s are true zeros. Unlike mixed–SCGLR, GLMM–LASSO

often shrinks their estimates to exactly zero. Second, since the level of redundancy is

low, GLMM–LASSO also provides accurate coefficient estimates of active variables.

I By contrast, for τ > 0.3, mixed–SCGLR takes advantage of redundancies within

the explanatory variables. Thus, mixed-SCGLR outperforms GLMM–LASSO in this

case, despite the sparse structure of the θk’s.

Even if the response variables are not Gaussian, the power of mixed–SCGLR for model

interpretation is preserved. Graphical diagnoses similar to those provided in Section 5.4

are available in the Supplementary Material.
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Table 3: Mean Relative Squared Error (MRSE) values obtained with Bernoulli and Poisson

responses.

GLMM
GLMM–LASSO mixed–SCGLR

(no regularisation)

Bernoulli Poisson Bernoulli Poisson Bernoulli Poisson

τ = 0.1 316.48 0.54 8.61 0.30 14.71 0.46

τ = 0.3 398.78 0.64 9.23 0.36 7.21 0.21

τ = 0.5 576.68 0.87 14.48 0.44 2.01 0.09

τ = 0.7 886.04 1.28 17.37 0.47 1.50 0.07

τ = 0.9 2840.10 3.72 17.24 0.59 1.31 0.05

6 An application to forest ecology data

6.1 Data description

The present study is based on the Genus dataset of the CoForChange project (see http:

//www.coforchange.eu). The subsample we consider gives the abundance of 8 common

tree genera on 2615 Congo Basin land plots. These plots are grouped into 22 forest con-

cessions. To predict abundances, we have 56 environmental variables, plus 2 explanatory

variables which code geology and anthropogenic interference. X consists of all environ-

mental variables which are:

I 29 physical factors linked to topography, rainfall or soil moisture,

I 25 photosynthesis activity indicators (the Enhanced Vegetation Indices, EVI, the

Near–InfraRed indices, NIR, and the Mid–InfraRed indices, MIR),

I 2 indicators which describe the tree height.

Physical factors are many and redundant: monthly rainfalls are highly correlated, and so are

photosynthesis activity indicators. By contrast, geology and anthropogenic interference are

weakly correlated and interesting per se. These variables are then considered as additional

explanatory variables and included in matrix A.
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6.2 Model and parameter calibration

Abundances of species given in Genus are count data. For each k ∈ {1, . . . , 8}, we consider

a Poisson regression with log link

yk∼P

(
λ = exp

[
K∑
j=1

(Xuj) γk,j +Aδk +Uξk

])
,

where ξk is the 22–level random–effect vector used to model the dependence between the

observations of yk within concessions. The first cross–validations we performed — with

different fixed values of parameters s and l — indicated that four components were sufficient

to capture most of the information in X needed to model and predict responses. We

therefore keep K? = 4. The optimal values of trade–off and locality parameter s? and

l? are then determined through another cross–validation. Using the same procedure and

notations as in Section 5.2, the data are divided into five parts P1, . . . ,P5. Let nj be the

size of Pj.

E =
1

8

8∑
k=1

Ek,

where

Ek =
1

5

5∑
j=1

√√√√ 1

nj

∑
i∈Pj

(
yk,i − ŷk,i(−j)

)2
v̂ar
(
ŷk,i(−j)

) . (15)

On Figure 3, we plot the errors E for parameter pairs (s, l) ∈ Es × El, where

Es = {0.025, 0.1, 0.2, . . . , 1}

El = {1, 2, . . . , 10, 12, 14, . . . , 30, 35, 40, 45, 50} .

Parameter grid Es × El therefore contains 264 pair values. Selecting the best parameter

pair from Es × El through a 5–fold cross–validation requires a computation time of about

65 minutes (parallel computing on 6 CPU cores, Intel Core i7–6700HQ, 2.6GHz). It should

be noted that there is a risk of non–convergence when the trade–off parameter s is too

close to 0. Indeed, if we consider no structural information (s exactly equal to 0) in X,

mixed–SCGLR merely performs classical GLMM estimation and does not converge with

this data. When s = 0.025, our algorithm converges but leads to fairly unstable estimates

and high cross–validation errors because regularisation is then very weak. By contrast,
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the components calculated with s ∈ {0.5, 0.6, . . . , 1} are close to principal components.

The associated errors are therefore stable in most cases, but rather high. Finally, s ∈

{0.1, . . . , 0.4} leads to the lowest cross–validation errors, but only for l 6 10. Indeed,

when s is not too high, mixed–SCGLR may focus on the most predictive structures of

X. However, parameter l must not exceed a certain value, in order to avoid being drawn

towards too local variable–bundles. As can be seen, choosing (s?, l?) = (0.1, 10) minimises

the cross–validation error.
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Figure 3: Behaviour of the cross–validation error E for trade–off parameter s ∈

{0.025, 0.1, 0.2, . . . , 1}, as a function of locality parameter l ∈ [1, 50].

6.3 Prediction quality and interpretation results

This part evaluates the benefits obtained by taking within–group dependence into account.

The predictions we get with mixed–SCGLR and with initial version of SCGLR are compared

with respect to the cross–validation criterion given by (15). Table 4 summarises the Ek’s for

both SCGLR and mixed–SCGLR methods. Optimal parameter value triplet (K?, s?, l?) =
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(4, 0.1, 10) is selected for both methods. For each k ∈ {1, . . . , 8}, mixed–SCGLR gives a

lower cross–validation error than SCGLR: taking into account the within–group dependence

has clearly improved prediction performances.

Table 4: Cross–validation errors for each response variable.

E1
cv E2

cv E3
cv E4

cv E5
cv E6

cv E7
cv E8

cv

SCGLR 1.32 2.46 3.27 1.43 2.56 1.28 1.54 3.44

mixed–SCGLR 1.24 1.95 2.92 1.32 2.27 1.15 1.31 3.01

Moreover, mixed–SCGLR enables to correctly reconstitute observed abundance maps, as

illustrated on Figure 4.
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Figure 4: Abundance maps issued from mixed–SCGLR. The plots respectively show real

abundance (left) and associated conditional predictions (right) of the tree species number 8.

Each point represents a land plot (2615 in total).

As has been seen in Section 5.4, mixed–SCGLR allows an easy interpretation of the

model through the decomposition of linear predictors on interpretable components. Fig-

ure 5 shows the first two component planes resulting from mixed–SCGLR on real data

Genus. Component plane (1, 2) reveals two patterns. The first one is a global rain–wind
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pattern driven by the pluvio’s and wd ’s variables which explain the abundances of Species

1, 2, 5, 6. The second is a rather local pattern driven by variables altitude, wetness and

annual pluviometry (pluvio an) which prove important to model and predict responses y3

and y7. Lastly, Component 3 reveals a photosynthesis pattern driven by a part of the

Evi ’s, which seems useful to predict y4 and y8.
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Figure 5: Component planes (1, 2) and (1, 3) output by mixed–SCGLR on dataset Genus,

with optimal parameter triplet (K?, s?, l?) = (4, 0.1, 10). The left–hand side plot displays

only variables having cosine greater than 0.7 with component plane (1, 2). The right–hand

side plots variables having cosine greater than 0.75 with component plane (1, 3).

The decomposition of linear predictors on interpretable components allows to detect

the species that tend to share common explanatory dimensions and those which are more

idiosyncratic. We can then identify the variable–bundles these dimensions are related

to. The underlying goal is a better understanding of the bio– and ecosystem diversity

with a view to preserve them. Species 1, 2, 5 and 6 are sensitive to the same rain–wind

regime, and Species 4 and 8 are explained by the same photosynthetic pattern. On the

contrary, Species 3 and 7 are clearly separated. Species 7 grows at high altitudes where the

atmosphere is rather dry while the abundance of Species 3 is favoured by regular rainfall

and high humidity.
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7 Discussion and Conclusions

Like Sufficient Dimension Reduction (SDR) methods, mixed–SCGLR is based on the con-

struction of a reduction function of dimension less than p which tries to capture all the

relevant information thatX contains about Y . However, the two approaches do not exactly

pursue the same objectives. Indeed, SDR methods look for the “central subspace” con-

taining the predictive information irrespective of the structures within X (e.g. dimensions

capturing a large part of X’s variance, or bundles of correlated variables). Mixed–SCGLR

rather aims at basing the explanatory subspace on such structural dimensions so as to both

gain interpretability and stabilise prediction. We think that extracting a hierarchy of strong

and interpretable dimensions, and decomposing the linear predictor on them, is an essential

asset in model–building. The difference in goals entails a difference in means: SDR is based

on the sufficiency principle, which is enough to identify a subspace but not to track strong

predictive dimensions in it. By contrast, in the wake of PLS regression, mixed–SCGLR

uses a criterion combining goodness–of–fit and structural relevance of components.

The supervised–component paradigm has proved effective in situations where regulari-

sation is necessary but where variable selection is inappropriate — for instance when the

true explanatory dimensions are latent and indirectly measured through highly correlated

proxies.

I When l = 1, trade–off parameter s allows to continuously tune the attraction of

components towards the principal components of explanatory variables. This results

in a continuum between classical GLMM estimation (s = 0 is associated with no

regularisation) and principal component generalised linear mixed regression (with

s = 1).

I When l > 1, we take better advantage of local predictive structures in X. The

components we build are then usually closer to local gatherings of variables, thus

easier to interpret.

Mixed–SCGLR is able to identify more or less local predictive structures common to all

the yk’s and performs well on grouped data with Gaussian, Bernoulli, binomial and Poisson
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outcomes. Compared to penalty–based approaches as ridge or LASSO, the orthogonal

components built by mixed–SCGLR reveal the multidimensional explanatory and predictive

dimensions, and greatly facilitate the interpretation of the model.

However, a natural question arises as to the accuracy of our methodology under sig-

nificant deviations from normality. With binary data for instance, variance component

estimates are prone to some bias towards zero (McCulloch, 1997). That is why other esti-

mation strategies might be considered, especially Monte Carlo integration methods which

have the advantage of being based on direct approximations of the likelihood. Some exam-

ples are the MCMC methods developed by Hadfield (2010) in the GLMM framework, and

the Monte Carlo Likelihood Approximation (MCLA) proposed by Knudson (2016). Indi-

rect maximisations of the likelihood are also available such as Monte Carlo Expectation–

Maximisation (MCEM) and Monte Carlo Newton–Raphson (McCulloch, 1997). We think

that these methodologies and Schall’s could be combined sequentially. Indeed we could first

take advantage of the linear approximation of the model in order to build the components,

and then use MC–based methods to estimate both fixed–effect parameters and variance

components. This would lead to replacing the current iteration of mixed–SCGLR given by

Algorithm 1 with the following steps (to keep things simple, we take the canonical link):

1. Compute components F =
[
f1 | . . . | fK

]
via the PING algorithm on Schall’s

linearised models.

2. For each k ∈ {1, . . . , q}, consider the hierarchy

fyk|ξk,γk,δk (yk|ξk,γk, δk) = exp
{
yT

kη
ξ
k − 1Tc

(
ηξk

)
+ 1Td (yk)

}
ξk|Dk ∼ N (0,Dk) ,

where ηξk = Fγk+Aδk+Uξk, and c, d are the functions associated with the natural

parametrisation of the GLM. For example, for the Bernoulli–logistic regression, we

have: c(x) = log(1 + ex) and d(x) = 0.

3. Apply MC–based methods such as MCMC, MCLA, MCEM or MCNR to update γk,

δk, ξk and Dk, k ∈ {1, . . . , q}.

4. Update working variables and weight matrices to define the new Schall’s linearised

models.
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Even though such MC–based methods are computationally much more intensive than the

“Joint–Maximisation” and have intrinsic disadvantages (particularly in the assessment of

convergence and in the choice of prior distributions), they could give better results in case

of binary data.
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SUPPLEMENTARY MATERIAL

Additional simulations: The first simulation reproduces that of Section 5.5 in the case

of binomial and Poisson outcomes. The second simulation explores a different struc-

ture of variable–bundles, considers Gaussian, binomial and Poisson outcomes, and

presents results concerning variance component estimates. The third one involves

high dimensional data. (pdf file)

Projected Iterated Normed Gradient (PING) algorithm: We give some technical

details about the PING algorithm, which maximises, at least locally, any criterion on

the unit sphere. (pdf file)

R package mixedSCGLR: We provide an R package to perform mixed–SCGLR, also avail-

able at https://github.com/SCnext/mixedSCGLR. It contains the dataset Genus

used in Section 6. The package also provides demo codes, in particular for visualising

the component planes (mixedSCGLR.tar.gz).

Code for running simulations: We also provide the R codes required to reproduce most

of the simulation results (R and Rdata files).
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The Projected Iterated Normed Gradient (PING) is a basic extension of the iterated

power algorithm, for solving any program of the formmax Jh (u) ,

subject to: uTM−1u = 1 and ∆T

hu = 0.
(16)

Note that putting v = M−1/2u, Gh (v) = Jh
(
M 1/2v

)
and Bh = M 1/2∆h, Program (16)

is strictly equivalent to Program (17):max Gh (v) ,

subject to: vTv = 1 and BT

hv = 0.
(17)

Denoting

Πspan{Bh}⊥ = I −Bh (BT

hBh)−1BT

h and

Γh (v) = ∇
v
Gh (v) ,

a Lagrange multiplier-based reasoning gives the basic iteration of the PING algorithm:

v[t+1] =
Πspan{Bh}⊥ Γh

(
v[t]
)∥∥∥Πspan{Bh}⊥ Γh (v[t])
∥∥∥ . (18)
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Although Iteration (18) follows a direction of ascent, it does not guarantee that Gh actually

increases on every step. We therefore propose a generic iteration of PING (Algorithm 2)

and an alternative one (Algorithm 3), which both ensure that the criterion increases.

while convergence of v non reached do

κ[t] =
Πspan{Bh}⊥ Γh

(
v[t]
)∥∥∥Πspan{Bh}⊥ Γh (v[t])
∥∥∥

A unidimensional Newton–Raphson maximisation procedure is used to find

the maximum of Gh (v) on the arc
(
v[t],κ[t]

)
and take it as v[t+1].

t←− t+ 1

end

Algorithm 2: Generic iteration of the PING algorithm

while convergence of v non reached do

m←−
Πspan{Bh}⊥ Γh

(
v[t]
)∥∥∥Πspan{Bh}⊥ Γh (v[t])
∥∥∥

while Gh (m) < Gh
(
v[t]
)

do

m←− v[t] +m

‖v[t] +m‖
end

v[t+1] = m

t←− t+ 1

end

Algorithm 3: Alternative generic iteration of the PING algorithm
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First rank component. Component f1 = Xu1 is obtained by solvingmax s log [φ (u)] + (1− s) log [ψA (u)]

subject to: uTM−1u = 1.

This corresponds to Program (16) with h = 0, where

I J0 (u) = s log [φ (u)] + (1− s) log [ψA0 (u)],

I A0 = A (the matrix of additional explanatory variables), and

I ∆0 = 0.

In this particular case, we have B0 = M 1/2∆0 = 0, and so:

Πspan{B0}⊥ = I.

Higher rank components. Let Fh =
[
f1 | . . . | fh

]
be the matrix of the first h

components and Ah =
[
Fh | A

]
. Let P denote the weight matrix reflecting the a priori

relative importance of observations (P = 1
n
In if all observations are of equal importance).

Component fh+1 = Xuh+1 is obtained by solvingmax s log [φ (u)] + (1− s) log [ψAh (u)]

subject to: uTM−1u = 1 and F T

hPXu = 0.

This corresponds to Program (16), where

I Jh (u) = s log [φ (u)] + (1− s) log [ψAh (u)],

I Ah =
[
Fh | A

]
, and

I ∆h = XTPFh.

Initialisation. To quickly find f1, algorithm PING is initialised with the first PLS com-

ponent of the responses on X. In like manner, for h > 2, PING is initialised with the first

PLS component of the responses on X deflated on components Fh−1 =
[
f1 | . . . | fh−1

]
.
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8 Comparative results with binomial and Poisson out-

comes

In this section, we simply extend the simulation scheme presented in Section 5.5 to binomial

and Poisson outcomes. We maintain design matrices X and U as defined in Section 5.1.

Fixed–effect parameters θk’s and random–effect vectors ξ̃k’s are defined in Section 5.5.

Given ξ̃1 and ξ̃2, we then simulate Y =
[
y1 | y2

]
as

y1∼ Bin
(
trials = 50 1n, p = logit−1

[
Xθ1 +Uξ̃1

])
y2∼P

(
λ = exp

[
Xθ2 +Uξ̃2

])
.

Table 5 gives the Mean Relative Squared Error (MRSE) values for θ1 and θ2 obtained on

100 samples for each value of τ .

For the Poisson distribution, the results in Table 5 are essentially identical to those in the

article: mixed–SCGLR outperforms GLMM–LASSO (Groll, 2017, R package glmmLasso)

except for τ = 0.1. As for the binomial distribution, the regularisation provided by mixed–

SCGLR improves the results obtained without regularisation (Bates et al., 2015, R package

lme4), regardless of the level of redundancy within the explanatory variables. Unsurpris-

ingly, the errors are much smaller than in the binary case.
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Table 5: Mean Relative Squared Error (MRSE) values obtained with binomial and Poisson

distributions. The R package glmmLasso does not handle binomial outcomes but only

Bernoulli ones, which precludes comparison in this case.

GLMM
GLMM–LASSO mixed–SCGLR

(no regularisation)

Binomial Poisson Poisson Binomial Poisson

τ = 0.1 2.31 0.50 0.31 0.51 0.45

τ = 0.3 3.07 0.60 0.33 0.28 0.18

τ = 0.5 3.93 0.75 0.39 0.15 0.09

τ = 0.7 6.50 1.07 0.40 0.10 0.07

τ = 0.9 19.29 2.71 0.42 0.07 0.05

The power of mixed–SCGLR in terms of model interpretation remains the same for

non–Gaussian outcomes. Figure 6 (respectively Figure 7) presents an example of the

first component planes output by mixed–SCGLR in the binomial/Poisson (respectively

Bernoulli/Poisson) case. As for Gaussian outcomes, the component planes reveal that y1

is explained by bundle X1 and y2 by X2. In the binomial/Poisson case with τ = 0.3

(Figure 6), predictive bundles X1 and X2 are captured respectively by the first and the

second components. The third component aligns on nuisance bundle X0, despite its high

inertia. Figure 7 illustrates what may happen when the level of redundancy is very high

(τ = 0.7 here). Since the explanatory variables are highly correlated, mixed–SCGLR regu-

larisation requires that the structural relevance be given a heavy weight with respect to the

goodness–of–fit, which leads to a trade–off parameter s close to 1 (s = 0.9 here). Having

the greatest structural strength, the nuisance bundle is captured by the second component

despite its lack of explanatory power. This is sometimes the price to be paid for the trade–

off. In our example, the second explanatory bundle is captured by the third component,

so that the predictive dimensions are accurately represented in component plane (1, 3).
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Figure 6: Example of component planes given by mixed–SCGLR in the binomial/Poisson

case for τ = 0.3, with parameter triplet (K, s, l) = (3, 0.5, 2).
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Figure 7: Example of component planes given by mixed–SCGLR in the Bernoulli/Poisson

case for τ = 0.7, with parameter triplet (K, s, l) = (3, 0.9, 4).
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9 A new structure for the bundles — Gaussian, Pois-

son and binomial distributions

This simulation study tests mixed-SCGLR on a slightly more complex bundle structure.

Results concerning variance component estimates are also presented.

We consider a fixed–effect design matrix Xn×p partitioned into 3 blocks G1, G2 and

G3. Block G1 contains 10 predictive explanatory variables structured about a latent

variable ϕ1 ∼ Nn (0, σ2
LVIn). Thus for each j ∈ {1, . . . , 10}, xj = ϕ1 + εj , where

εj ∼ Nn (0, σ2
noiseIn) such that σ2

LV + σ2
noise = 1. The correlation within G1 is tuned

by signal to noise (StN) ratio σ2
LV/σ

2
noise (chosen in

{
1
3
, 1, 3

}
in practice). G2 contains a

single predictive variable ϕ2 = x11∼Nn (0, In). G3 contains 20 unstructured noise vari-

ables: for each j ∈ {12, . . . , 31}, xj ∼ Nn (0, In). For each k ∈ {1, 2, 3}, random–effect

vectors are simulated as ξk
ind.∼ NN (0, σ2

k IN). Given ξ1, ξ2, ξ3, we simulate 3 responses

having different distributions, Y =
[
y1 | y2 | y3

]
, as

y1∼Nn
(
µ = α1ϕ1 +Uξ1, Σ = In

)
y2∼P

(
λ = exp

[
α2ϕ2 +Uξ2

])
y3∼ Bin

(
trials = 25 1n, p = logit−1

[
α3 (ϕ1 +ϕ2) +Uξ3

])
.

In our simulations, we set α1 = σ2
1 = 2, α2 = σ2

2 = 1 and α3 = σ2
3 = 0.5.

We consider in turn N = 10 and N = 50 groups, and R = 10 observations per group

(n = 100 and n = 500 observations in total). B = 100 samples are generated for each pair

of values (N, StN). The main goal of the study is to assess the ability of mixed–SCGLR to

track down both latent variable ϕ1 and predictive variable ϕ2. For j = 1 and 2, we then

define

corj =
1

B

B∑
b=1

∣∣∣cor
(
ϕj ,f

(b)
j

)∣∣∣ ,
where f

(b)
j is the component most correlated with ϕj issued from mixed–SCGLR in the

b–th sample. Consistency of fixed–effect estimates is assessed through criteria err1, err2
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and err3 defined by

errj =
1

B

B∑
b=1

∥∥∥αjϕj −Xβ̂(b)

j

∥∥∥2
‖αjϕj‖2

, j ∈ {1, 2}

err3 =
1

B

B∑
b=1

∥∥∥α3 (ϕ1 +ϕ2)−Xβ̂
(b)

3

∥∥∥2
‖α3 (ϕ1 +ϕ2)‖2

,

where β̂
(b)

j is the fixed–effect estimate related to response yj associated with sample b.

Table 6 summarises the values of the afore–defined criteria and presents biases and

standard errors of variance components estimates. For a given value of N , cor1 increases

towards 1 with ratio σ2
LV/σ

2
noise: the tighter the block G1 is structured about its latent

variable, the better mixed–SCGLR can reconstruct it. The associated criterion err1 then

naturally decreases towards 0. On the other hand, cor2 and err2 are very stable, which

proves that mixed–SCGLR is able to detect an isolated predictive variable among a large

number of irrelevant others. As err3 depends on how accurately mixed–SCGLR recovers

ϕ1 and ϕ2, it slightly decreases when the StN ratio increases. Both variance component

biases and standard errors seem rather stable regardless of the value of StN. Finally, when

N increases, all the corj’s increase towards 1 and all the errj’s decrease towards 0. As far

as variance component estimates are concerned, the biases are getting slightly closer to 0

and the standard errors decrease significantly.

Model interpretation is revealed by Figure 8 in the case of N = 10 groups and R = 10

observations per group. The first component aligns with block G1 which alone explains

response y1. The second aligns with G2 (containing single explanatory variable x11) which

alone explains y2. Finally, note that the projection of the X–part of the linear predictor

related to y3 is well represented on component plane (1, 2). This indicates that y3 is

explained jointly by G1 and G2.
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Table 6: Summary of corj and errj values, and presentation of biases and standard errors

of estimated variance components.

N = 10, R = 10 (n = 100) N = 50, R = 10 (n = 500)

σ2
LV/σ

2
noise

1
3

1 3 1
3

1 3

cor1 0.71 0.91 0.96 0.75 0.92 0.96

cor2 0.93 0.94 0.94 0.97 0.98 0.98

err1 0.47 0.15 0.06 0.38 0.13 0.05

err2 0.12 0.12 0.12 0.05 0.04 0.04

err3 0.19 0.14 0.11 0.11 0.07 0.04

bias
(
σ̂2
1

)
−0.02 −0.01 0.00 0.02 0.00 −0.02

sd
(
σ̂2
1

)
1.04 1.05 1.06 0.41 0.40 0.39

bias
(
σ̂2
2

)
−0.11 −0.08 −0.06 −0.06 −0.06 −0.06

sd
(
σ̂2
2

)
0.50 0.51 0.52 0.21 0.21 0.21

bias
(
σ̂2
3

)
−0.03 −0.04 −0.04 −0.02 −0.02 −0.02

sd
(
σ̂2
3

)
0.22 0.21 0.21 0.11 0.11 0.11
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Figure 8: Examples of the first two–component planes given by mixed–SCGLR when

σ2
LV/σ

2
noise = 1/3 (top left), σ2

LV/σ
2
noise = 1 (top right), and σ2

LV/σ
2
noise = 3 (bottom). When

StN ratio = 1/3 (resp. StN ratio ∈ {1, 3}), only the variables having cosine greater than

0.4 (resp. 0.5) with component plane (1, 2) are represented.
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10 High dimensional data

10.1 Key idea

To cope with high dimensional data, the key idea is to replace the fixed–effect design matrix,

X, with the matrix C of its principal components associated with non–zero eigenvalues.

More precisely, λj being the eigenvalue associated with the j–th eigenvector vj , the last

eigenvector we consider, vr, is such that

λr∑r
j=1 λj

>
1

p
,

where p is the number of columns of matrix X. The matrix of the corresponding unit-

eigenvectors is denoted V =
[
v1 | . . . | vr

]
, and C = XV . The component f is then

sought as a combination of the principal components: f = Cu = Xũ, where ũ = V u.

Mixed–SCGLR then solvesmax s log [φ (u)] + (1− s) log [ψA (u)]

subject to uTCTPCu = 1,

where the goodness–of–fit measure, ψA, is given by

ψA (u) =

q∑
k=1

∥∥zk∥∥2W ξ
k

cos2
W
ξ
k

(
zk, span {Cu,A}

)
=

q∑
k=1

∥∥zk∥∥2W ξ
k

cos2
W
ξ
k

(
zk, Π

W
ξ
k

span{Cu,A}zk

)
,

and the structural relevance by

φ (u) =

[
p∑
j=1

ωj

(〈
Cu

∣∣xj 〉2
P

)l] 1
l

=

[
p∑
j=1

ωj

(
uTCTPxjx

T

jPC u
)l] 1

l

.

This idea is tested on simulated data where the number of explanatory variables p exceeds

the number of observations n.

10.2 Data generation

To generate grouped data, we consider N = 10 groups and R = 10 observations per group

(i.e. a total of n = 100 observations). The random effects’ design matrix is then U =
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IN ⊗ 1R. Explanatory variables consist of four independent bundles Xj , j ∈ {1, 2, 3, 4},

such as X =
[
X0 |X1 |X2 |X3

]
. Each explanatory variable is normally simulated with

mean 0 and variance 1. Parameter τ ∈ {0.3, 0.5, 0.7} tunes the level of redundancy within

each bundle: the correlation matrix of bundle Xj is

cor (Xj) = τ1pj1
T

pj
+ (1− τ)Ipj ,

where pj is the number of variables in Xj . For each k ∈ {1, 2, 3, 4}, random–effect vectors

are simulated as ξk
ind.∼NN (0, σ2

k IN). Given ξ1, ξ2, ξ3, ξ4, we simulate 4 responses having

different distributions, Y =
[
y1 | y2 | y3 | y4

]
, as

y1∼Nn
(
µ = Xβ1 +Uξ1, Σ = In

)
y3∼ B

(
p = logit−1

[
Xβ2 +Uξ2

])
y3∼ Bin

(
trials = 30 1n, p = logit−1

[
Xβ3 +Uξ3

])
y4∼P

(
λ = exp

[
Xβ4 +Uξ4

])
.

(19)

Response y1 is predicted only by bundle X1, y2 only by bundle X2, y3 only by bundle

X3, y4 by both bundles X2 and X3, and bundle X0 plays no explanatory role. Our choice

for the fixed–effect parameters is

β1 = ( 0, . . . . . . . . . . . . . . . . . . , 0︸ ︷︷ ︸
p0 times

, 0.1, . . . . . . . . . . . . 0.1︸ ︷︷ ︸
p1 times

, 0, . . . . . . . . . . . . , 0︸ ︷︷ ︸
p2 times

, 0, . . . . . . . . . , 0︸ ︷︷ ︸
p3 times

)T,

β2 = ( 0, . . . . . . . . . . . . . . . . . . , 0︸ ︷︷ ︸
p0 times

, 0, . . . . . . . . . . . . . . . 0︸ ︷︷ ︸
p1 times

, 0.1, . . . . . . . . . , 0.1︸ ︷︷ ︸
p2 times

, 0, . . . . . . . . . , 0︸ ︷︷ ︸
p3 times

)T,

β3 = ( 0, . . . . . . . . . . . . . . . . . . , 0︸ ︷︷ ︸
p0 times

, 0, . . . . . . . . . . . . . . . 0︸ ︷︷ ︸
p1 times

, 0, . . . . . . . . . . . . , 0︸ ︷︷ ︸
p2 times

, 0.05, . . . .., 0.05︸ ︷︷ ︸
p3 times

)T,

β4 = ( 0, . . . . . . . . . . . . . . . . . . , 0︸ ︷︷ ︸
p0 times

, 0.025, . . . . . . .. 0.025︸ ︷︷ ︸
p1 times

, 0.025, . . . .., 0.025︸ ︷︷ ︸
p2 times

, 0, . . . . . . . . . , 0︸ ︷︷ ︸
p3 times

)T

We consider in turn p = 150 (p0 = 60, p1 = 45, p2 = 30, p3 = 15) and p = 200 (p0 = 80,

p1 = 60, p2 = 40, p3 = 20) explanatory variables. Variance components are set to σ2
1 =

σ2
2 = σ2

3 = 0.1, and σ2
4 = 0.05. For each value of p and for each value of τ , B = 20 samples

are generated according to Model (19).
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10.3 Results

Table 7 and Table 8 present the results for respectively 150 and 200 explanatory variables.

They give the Mean Relative Squared Error (MRSE) values for βk, k ∈ {1, . . . , 4}, as well

as biases and standard errors of estimated variance components, obtained on 20 samples

for each value of τ .

Table 7: Mean Relative Squared Error (MRSE) values for fixed–effect estimates, and biases

and standard errors for estimated variance components, obtained with 100 observations and

150 explanatory variables.

β1 β2 β3 β4 σ2
1 σ2

2 σ2
3 σ2

4

τ = 0.3 0.06 0.26 0.19 0.13
−0.01 −0.03 −0.02 0.02

0.09 0.09 0.03 0.06

τ = 0.5 0.03 0.20 0.10 0.07
0.01 −0.03 0.00 0.01

0.11 0.08 0.07 0.07

τ = 0.7 0.01 0.10 0.05 0.04
0.01 −0.05 0.01 0.02

0.07 0.09 0.10 0.07

Table 8: Mean Relative Squared Error (MRSE) values for fixed–effect estimates, and biases

and standard errors for estimated variance components, obtained with 100 observations and

200 explanatory variables.

β1 β2 β3 β4 σ2
1 σ2

2 σ2
3 σ2

4

τ = 0.3 0.06 0.15 0.18 0.10
−0.04 −0.05 0.01 −0.02

0.04 0.09 0.05 0.05

τ = 0.5 0.03 0.17 0.09 0.05
−0.05 0.00 −0.02 −0.01

0.06 0.19 0.04 0.04

τ = 0.7 0.01 0.15 0.04 0.03
0.03 0.00 −0.01 −0.02

0.08 0.14 0.05 0.05

Some component planes are given on Figure 9 (150 explanatory variables) and Figure 10

(200 explanatory variables).
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Figure 9: Component planes (1, 2), (1, 3) and (1, 4) given by mixed–SCGLR for 100

observations, 150 explanatory variables and τ = 0.3. The tuning parameter triplet (K, s, l)

is set to (4, 0.5, 4).
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Figure 10: Component planes (1, 2), (1, 3) and (1, 4) given by mixed–SCGLR for 100

observations, 200 explanatory variables, and τ = 0.9. The tuning parameter triplet (K, s, l)

is set to (4, 0.9, 4).
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