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An unstructured-PEEC method for modelling electromagnetic thin region is proposed. Two coupled circuits representations are used for solving both electric and/or magnetic effects in thin regions discretized by a finite element surface mesh. Dynamic effects across the sheet are modeled by equivalent complex conductivity and reluctivity. Non simply connected regions are treated with fundamental branch independent loop matrixes coming from the circuit representation. The formulation enables the computation of eddy current losses and can be coupled with external circuits, PEEC-1D cables or coil thanks to the circuit representation.

I. INTRODUCTION

major interest of using the Volume Integral Method for 3D magnetic and electric fields analysis is that the air region does not need to be meshed. Moreover, solving Maxwell's equations by Green's function integral methods has known a renewed interest in recent years with the development of efficient matrix compression algorithms (FMM, ACA), which greatly improve memory storage and resolution time of fully dense matrix systems. In this work, we propose a new formulation dedicated to thin electromagnetic regions. It is an extension of a previous volume integral approach based on 3D facet interpolations of the current density and of the magnetic flux density [START_REF] Meunier | A magnetic flux-electric current volume integral formulation based on facet elements for solving electromagnetic problems[END_REF].

II. FORMULATION

A. Volume Integral Method

Volume Integral Method (VIM) is based on the integral solution of Maxwell Equations. Electric field E and magnetic field H are expressed with integrals depending on Green's functions, and current density J and magnetization M over both conductive and magnetic media ΩJ and ΩM (ΩJ and ΩM can be totally or partially the same region). In the frequency domain, by neglecting propagation effects, and thanks to Lorentz gauge, we have:
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In these expressions r is the distance between observation point P and integration point in media. Volume Integral Equations are then obtained by matching expression of E and H with constitutive relationships E(J) and H(M) inside the media. Different formulations can be obtained by discretizing the regions and by choosing adequate unknowns and interpolation shape function. The use of 2-form Withney face interpolation with the use of current density J and magnetic flux density B leads to the unstructured PEEC method [START_REF] Meunier | A magnetic flux-electric current volume integral formulation based on facet elements for solving electromagnetic problems[END_REF].

B. Thin regions model

In the case of thin regions, we consider that the evaluation of electric and magnetic fields outside of the media can be obtained by using the average current and magnetisation Jm, Mm flowing the thin regions:
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where e is the thickness of thin regions. Equivalent material behavior laws which take into account dynamic effects across the thickness, can be used. Following [START_REF] Krähenbühl | Thin layers in electrical engineering. Example of shell models in analyzing eddy-currents by boundary and finite element methods[END_REF] 

where σ is the conductivity, µ=µ0µr is the permeability and δ is the skin depth. Integral equations are then obtained by matching expression of (2) on the external surfaces of the thin region with constitutive relationships [START_REF] Fabbri | Magnetic flux density and vector potential of uniform polyhedral sources[END_REF]. It leads to surface integral equations with Jm and Bm as unknowns.

C. Unstructured PEEC model

Regions ΓJ and ΓM are discretized by surface finite element meshes (composed of triangles or quadrilaterals for instance) on which Jm and Bm are interpolated by using 2D first order surface facet elements: Joule Losses ( frequency
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In (4), ΔVs and Δφs represent the differences of electric and magnetic potentials between two adjacent elements. Q : are the magnetic fluxes going outside the elements and Δφe are the differences of magnetic potentials between elements and the infinite [START_REF] Meunier | A magnetic flux-electric current volume integral formulation based on facet elements for solving electromagnetic problems[END_REF]. The solution of (4) can be obtained using a circuit solver based on an independent loops search technique. Fundamental circuit equations to be solved are: Capacitive effects in vacuum can be considered by adding in (4) a capacitive matrix, similar to [P]. Moreover, the formulation can be naturally coupled with volume regions, non-meshed inductor coils and external circuits, connected or not to the meshed regions. In order to get a good accuracy, integrals of Green's kernels of L, Y, C and P matrices are computed with the use of analytical integration techniques for the self-interactions [START_REF] Fabbri | Magnetic flux density and vector potential of uniform polyhedral sources[END_REF]. Finally, this formulation has been developed with the possibility of using matrix compression technique.

III. RESULTS

We first present an academic problem constituted of a magnetic and conductive thin sphere (diameter 1m, thickness 1mm, µr = 1000, σ = 5E+5) placed in a field produced by a cylinder coil. The results are compared with a reference solution obtained with an axi-symetrical FEM using a mesh ensuring the convergence of the solution at any frequency. Figure 1 compares eddy current losses obtained with both simulations. In the case of the unstructured-PEEC Method, losses are computed by using the equivalent material properties [START_REF] Krähenbühl | Thin layers in electrical engineering. Example of shell models in analyzing eddy-currents by boundary and finite element methods[END_REF]: Results obtained are very satisfactory (difference lower than 1% at any frequencies), given the difficulty of accurately calculating eddy current losses. We also test the formulation for computing eddy currents and magnetic flux density in a body car. The mesh contains about 18.000 triangles and matrix compression techniques (FMM and HCA) has been used for the solving (Fig. 2). The new formulation enables the modeling of thin conductive and/or magnetic regions in order to simulate efficiently various devices with only a surface mesh. The computational effort is considerably reduced in comparison with volume approaches. Equivalent material properties enable the computation of eddy currents losses with a good accuracy at any frequency. The formulation has been validated on various devices from academic examples to more complex problems.
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  and Φ D@ are respectively the current and the magnetic flux flowing the 2D facets on Γ. Applying a Galerkin projection on facet functions wi of equations (1), we get a circuit representation (capacitive effects are not represented here):

  ] and [MM] are the branch-fundamental independent loop matrixes for electric and magnetic circuit representations respectively. Let us notice that with such a formulation, nonsimply connected domain can be treated naturally (see an example on Figure2).
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  Figure1 : Losses in the magnetic and conductive thin sphere. Comparison between VIM and FEM method for various frequencies.
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 2 Figure 2: Eddy currents (top) and magnetic flux density (bottom) on a body car IV. CONCLUSION