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OPTIMIZATION OF THE SHAPE OF REGIONS SUPPORTING BOUNDARY
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Abstract. This article deals with the optimization of the shape of the regions assigned to different types

of boundary conditions in the definition of a ‘physical’ partial differential equation. At first, we analyze a

model situation involving the solution uΩ to a Laplace equation in a domain Ω; the boundary ∂Ω is divided
into three parts ΓD, Γ and ΓN , supporting respectively homogeneous Dirichlet, homogeneous Neumann

and inhomogeneous Neumann boundary conditions. The shape derivative J ′(Ω)(θ) of a general objective

function J(Ω) of the domain is calculated in the framework of Hadamard’s method when the considered
deformations θ are allowed to modify the geometry of ΓD, Γ and ΓN (i.e. θ does not vanish on the boundary

of these regions). The structure of this shape derivative turns out to depend very much on the regularity

of uΩ near the boundaries of the regions ΓD, Γ and ΓN . For this reason, in particular, J ′(Ω) is difficult

to calculate and to evaluate numerically when the transition ΓD ∩ Γ between homogeneous Dirichlet and
homogeneous Neumann boundary conditions is subject to optimization. To overcome this difficulty, an

approximation method is proposed, in which the considered ‘exact’ Laplace equation with mixed boundary

conditions is replaced with a ‘smoothed’ version, featuring Robin boundary conditions on the whole boundary
∂Ω with coefficients depending on a small parameter ε. We prove the consistency of this approach in our

model context: the approximate objective function Jε(Ω) and its shape derivative converge to their exact

counterparts as ε vanishes. Although it is rigorously justified only in a model problem, this approximation
methodology may be adapted to many more complex situations, for example in three space dimensions, or

in the context of the linearized elasticity system. Various numerical examples are eventually presented in

order to appraise the efficiency of the proposed approximation process.
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1. Introduction

Stimulated by the multiple prospects offered by fields so diverse as structural engineering, fluid mechanics,
electromagnetism or biology, to name a few, shape and topology optimization techniques have aroused
much enthusiasm in the scientific and industrial communities; see for instance [6, 12, 31, 45] for reference
monographs, and [22, 34] for an account of recent developments and research perspectives.

Shape optimization problems consist in minimizing a given objective function J(Ω) of the domain Ω,
possibly under some constraints. In most realistic applications, J(Ω) depends on the optimized shape Ω
via a state uΩ arising as the solution to a boundary value problem for a certain partial differential equation
posed on Ω, which characterizes its physical situation.

Quite often, it turns out that only one part of the boundary ∂Ω of the shape is subject to optimization,
which is associated to one single type of boundary conditions for the state uΩ in the underlying physical partial
differential equation, while the remaining regions are not meant to be modified. For example, in structural
design, where uΩ is the displacement of the structure and is the solution to the linearized elasticity system,
it is customary to optimize only the traction-free part of ∂Ω (i.e. that bearing homogeneous Neumann
boundary conditions). Likewise, in fluid applications (where uΩ is the velocity of the fluid, solution to the
Stokes or Navier-Stokes equations), one is often interested in optimizing only the region of ∂Ω supporting
no-slip (that is, homogeneous Dirichlet) boundary conditions.

A little surprisingly, the dependence of a given performance criterion J(Ω) with respect to the relative
locations of regions accounting for different types of boundary conditions has been relatively seldom inves-
tigated in shape and topology optimization. Yet, situations where it is desirable to optimize not only the
overall shape of Ω but also the repartition of the zones on ∂Ω bearing different types of boundary conditions
are multiple in concrete applications. Let us mention a few of them:

• When the objective criterion involves thermal effects inside the optimized shape Ω, uΩ is the temper-
ature, solution to the stationary heat equation. The regions of ∂Ω associated to Dirichlet boundary
conditions are those where a known temperature profile is imposed, while Neumann boundary con-
ditions account for heat injection. It may be desirable to investigate the regions where heat should
enter the medium Ω (or those which should be kept at fixed temperature) in order to minimize, for
instance, the mean temperature inside Ω, or its variance; see for instance [10] about such physical
applications.

• In the context of linearly elastic structures, (homogeneous) Dirichlet boundary conditions account for
the regions of ∂Ω where the structure is fixed, while inhomogeneous (resp. homogeneous) Neumann
boundary conditions correspond to regions of ∂Ω where external loads are applied (resp. to traction-
free regions). It may be of great interest to optimize the design of fixations [49], or the places
where loads should be applied. One interesting application of this idea concerns the optimization
of a clamping-locator fixture system (a very brief outline of the stakes of this subject is provided
in Section 5.2 below); see for instance [41] in the framework of density-based topology optimization
methods, or the contributions [36, 50], relying on genetic algorithms or artificial neural networks.
More recently, in [56, 57] the authors present an adapted level set method for the joint optimization
of the shape of an elastic structure Ω and of the region of its boundary ∂Ω where it should be fixed;
see also [58] for analogous simultaneous optimization problems of the structural shape and of the
support region using parametrized level set functions and B-spline finite element methods.
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• In acoustic applications, uΩ is the solution to the time-harmonic Helmholtz equation. In this situa-
tion, the contribution [24] deals with the optimal repartition of an absorbing material (accounted for
by Robin-like boundary conditions) on the walls of a room in order to minimize the sound pressure.

From the mathematical point of view, the above problems are of unequal difficulty: the calculation of the
shape derivative J ′(Ω) of the optimized criterion J(Ω) (or that of the constraint functions) in the framework
of Hadamard’s method depends very much on the regularity of the physical state uΩ of the problem in the
neighborhood of the optimized transition region between zones bearing different types of boundary conditions.
In some of the above situations, uΩ is ‘smooth enough’ near these transitions, and the calculation of J ′(Ω)
is achieved by classical means. On the contrary, the situation become much more difficult to analyze when
uΩ happens to be ‘weakly singular’ near these transitions; indeed, the calculation of the shape derivative of
J(Ω) requires a precise knowledge of this singular behavior of uΩ. The resulting formula is also quite difficult
to handle in algorithmic practice, since it brings into play quantities which somehow measure this singular
behavior, that are difficult to evaluate from the numerical viewpoint. To the best of our knowledge, the first
theoretical calculation of shape derivatives in a context where regions bearing different types of boundary
conditions are optimized — dealing with the difficulty of a ‘weakly singular’ state uΩ — dates back to
[28]. Such calculations have also been considered in a series of articles [8, 47] by the so-called Generalized
J-integral method. The authors of the latter references propose a mesh refinement procedure in order to
achieve an accurate numerical calculation of the state function in the neighborhood of the transition between
regions of ∂Ω with different boundary conditions.

Our purpose in this article is to study such shape optimization problems in which the regions of the
boundary of the optimized shape Ω bearing different types of boundary conditions are subject to optimization.
Most of the theoretical analysis unfolds in a model two-dimensional situation where a functional J(Ω) of
the shape Ω is minimized; J(Ω) depends on Ω via a state uΩ which is the solution to a Laplace equation
with mixed boundary conditions: the boundary ∂Ω is divided into three regions ΓD, ΓN and Γ, and uΩ

satisfies homogeneous Dirichlet boundary conditions on ΓD, inhomogeneous Neumann boundary conditions
on ΓN , and homogeneous Neumann boundary conditions on Γ; see (2.2) below. At first, we rigorously
calculate the derivative J ′(Ω) of J(Ω) with respect to variations of the shape Ω in both situations where the
transitions ΣN = Γ ∩ ΓN and ΣD = Γ ∩ ΓD are also subject to optimization. In the former case, the shape
derivative turns out to have a classical structure, and it lends itself to a fairly simple treatment in numerical
algorithms. On the contrary, in the latter context, the state uΩ is weakly singular near ΣD, which makes the
formula for J ′(Ω) uneasy to handle in practice. To circumvent this drawback, our second contribution is to
propose an approximation method for the considered state problem (2.2), and thereby for the resulting shape
optimization problem: elaborating on the idea developped in [24] and on our previous work [4], the considered
‘exact’ Laplace equation with mixed boundary conditions is replaced with an approximate counterpart,
parametrized by a ‘small’ parameter ε, where Robin boundary conditions with ε-varying coefficients are
imposed on the whole boundary ∂Ω: the ‘sharp’ transition ΣD between regions equipped with homogeneous
Dirichlet and Neumann boundary conditions is thus ‘smeared’ into a zone with thickness ε; the shape
optimization problem of the counterpart Jε(Ω) of J(Ω) where uΩ is replaced with the approximate state uΩ,ε

lends itself to an easier mathematical analysis: in particular, the approximate shape derivative J ′ε(Ω) does
not involve any singular component, and it is therefore much easier to use in practice. We then turn to prove
the consistency of this approach: namely, the approximate objective function Jε(Ω) and its shape derivative
J ′ε(Ω) converge to their exact counterparts J(Ω) and J ′(Ω) when the smoothing parameter ε vanishes.

Let us emphasize that although this approximation method is rigorously justified only in a model situation,
it is easy to generalize (and thus to use in a formal way) to many different, more involved situations, such as
that of the linearized elasticity system (in two or three space dimensions), and we discuss several numerical
examples in this spirit.

The remainder of this article is organized as follows. In Section 2, we present the considered model
situation, involving the solution uΩ to a Laplace equation with mixed boundary conditions, and we recall
some ‘classical’, albeit technical material about the regularity of the state function uΩ in the neighborhood of
the transition between regions associated to different types of boundary conditions. In Section 3, we carefully
calculate the shape derivative of a generic objective functional J(Ω) of the domain involving uΩ in both
contexts where the transitions ΣN and ΣD between, respectively, inhomogeneous Neumann - homogeneous
Neumann and homogeneous Dirichlet - homogeneous Neumann boundary conditions are also subject to
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optimization. In Section 4, we focus on the second situation, which turns out to be especially intricate.
We propose an approximation of the considered state problem which makes it much easier to analyze from
the theoretical viewpoint, and supplies an approximate version Jε(Ω) of J(Ω) which is quite convenient
to use in numerical practice (in particular, its shape derivative is easier to evaluate); we then prove the
consistency of this approximation process. The efficiency of the methods proposed in this article is illustrated
in Section 5: model, analytical test-cases are investigated as well as more realistic applications such as
optimization examples of 3d elastic structures. This article ends with the technical Appendix A in which
some useful facts about tangential calculus are recalled.

2. Optimization of a function of the domain allowing variations of the regions supporting
boundary conditions

In this section, we present the model problem under scrutiny in most of the article, which concentrates the
main difficulties we plan to address in a simplified setting, and lends itself to a rather complete mathematical
analysis.

2.1. Presentation of the model physical problem and notations

Let Ω ⊂ Rd be a smooth bounded domain (d = 2 or 3 in applications), whose boundary ∂Ω is divided into
three disjoint, complementary open regions ΓD 6= ∅, ΓN and Γ:

(2.1) ∂Ω = ΓD ∪ ΓN ∪ Γ.

We denote by uΩ the unique solution in the space

H1
ΓD (Ω) :=

{
u ∈ H1(Ω), u = 0 on ΓD

}
to the following mixed boundary value problem:

(2.2)


−∆uΩ = f in Ω,
uΩ = 0 on ΓD,
∂uΩ

∂n = g on ΓN ,
∂uΩ

∂n = 0 on Γ,

where n is the unit normal vector to ∂Ω, pointing outward Ω, and the source term f and boundary flux g
are supposed to be regular enough, say f ∈ L2(Rd), g ∈ H1(Rd). Note that g may vanish on some subset of
ΓN , so that the inclusion Γ ⊂

{
x ∈ ∂Ω, ∂uΩ

∂n = 0
}

may be strict.

In this context, we denote by ΣD = ΓD ∩ Γ ⊂ ∂Ω (resp. ΣN = ΓN ∩ Γ ⊂ ∂Ω) the boundary between the
region ΓD ⊂ ∂Ω bearing homogeneous Dirichlet boundary conditions (resp. the region ΓN ⊂ ∂Ω bearing
inhomogeneous Neumann boundary conditions) and that Γ endowed with homogeneous Neumann boundary
conditions; for simplicity, we assume that ΓD ∩ ΓN = ∅. The sets ΣD and ΣN are both assumed to be
smooth, codimension 1 submanifolds of ∂Ω: in particular, they amount to collections of isolated points in
the case d = 2, and to sets of smooth closed curves drawn on ∂Ω if d = 3. We denote by nΣD : ΣD → Rd
(resp. nΣN : ΣN → Rd) the unit normal vector to ΣD (resp. ΣN ) pointing outward ΓD (resp. ΓN ), inside
the tangent plane to ∂Ω; see Fig. 1 (left) for an illustration of these definitions.

On several occurrences, the rigorous mathematical analysis of this model will be greatly simplified under
further simplifying assumptions; in particular, in some duly specified situations, we shall proceed under the
following hypotheses, in the situation where d = 2:

(2.3)
The region ΓD ∩ Γ consists of only two points ΓD ∩ Γ = {s0, s1} ,

and
the domain Ω ⊂ R2 is locally flat around s0, s1;

see Fig. 1 (right). In this last case, letting n = (n1, n2), we shall denote by τ := (n2,−n1) the unit tangent
vector to ∂Ω, oriented so that (τ, n) is a direct orthonormal frame of the plane.
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Figure 1. (Left) Sketch of the considered setting in Section 2.1; (right) the simplified sit-
uation where Assumption (2.3) is fulfilled.

2.2. The shape optimization problem

In the setting of Section 2.1, we consider the following shape optimization problem:

(2.4) inf
Ω∈Uad

J(Ω),

featuring an objective criterion J(Ω) of the form

(2.5) J(Ω) =

∫
Ω

j(uΩ) dx

where j : R → R is a smooth function satisfying appropriate growth conditions: there exists a constant
C > 0 such that:

∀t ∈ R, |j(t)|≤ C(1 + t2), |j′(t)|≤ C(1 + |t|), and |j′′(t)| ≤ C.
In (2.4), Uad is a set of smooth admissible shapes; in the following, two distinct shape optimization problems
of this form are considered, implying different definitions of Uad:

• On the one hand, the transition ΣD between homogeneous Dirichlet and homogeneous Neumann
boundary conditions is subject to optimization, and the region ΓN bearing inhomogeneous Neumann
boundary conditions is fixed. Then, Uad corresponds to the set:

UDN :=
{

Ω ⊂ Rd is bounded and of class C2, ΓN ⊂ ∂Ω
}
.

• On the other hand, when the region ΣN between Γ and ΓN is optimized (while the region ΓD ⊂ ∂Ω
is fixed), Uad reads:

UNN :=
{

Ω ⊂ Rd is bounded and of class C2, ΓD ⊂ ∂Ω
}
.

Notice that problem (2.4) is not guaranteed to have a solution; nevertheless, we assume in the following
that it is the case or that, at least, local minima exist. Moreover, observe that the objective function J(Ω)
featured in (2.5) and the solution uΩ to (2.2) depend on the particular subdivision (2.1) of the boundary
∂Ω into ΓD, ΓN and Γ; with some little abuse and so as to keep notations simple insofar as possible, this
dependence is not made explicit in the formulation of our shape optimization problem.

Most practical optimization algorithms for solving problems of the form (2.4) rely on the derivative of J(Ω),
which calls for a notion of differentiation with respect to the domain. Several ways are available to achieve
this, and in the present work, we rely on Hadamard’s boundary variation method; see e.g. [6, 33, 46, 53]. In
a nutshell, variations of a domain Ω are considered under the form:

Ωθ := (Id + θ)(Ω), θ ∈W 1,∞(Rd,Rd), ||θ||W 1,∞(Rd,Rd)< 1.

Accordingly, a function of the domain F (Ω) is said to be shape differentiable at Ω if the underlying mapping
θ 7→ F (Ωθ), from W 1,∞(Rd,Rd) into R, is Fréchet differentiable at θ = 0. The following expansion then
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holds in the neighborhood of θ = 0:

(2.6) F (Ωθ) = F (Ω) + F ′(Ω)(θ) + o(θ), where
o(θ)

||θ||W 1,∞(Rd,Rd)

θ→0−−−→ 0.

In practice, so that variations of an admissible shape stay admissible, the considered deformations θ are
confined to a subset Θad ⊂W 1,∞(Rd,Rd) of admissible deformations. In the present article, Θad stands for
one of the sets ΘDN or ΘNN defined by:

(2.7) ΘDN :=
{
θ ∈ C2(Rd,Rd) ∩W 1,∞(Rd,Rd), θ = 0 on ΓN

}
,

and

(2.8) ΘNN :=
{
θ ∈ C2(Rd,Rd) ∩W 1,∞(Rd,Rd), θ = 0 on ΓD

}
,

both being equipped with the natural norm, when the considered set of admissible shapes is UDN or UNN,
respectively.

Remark 2.1. In practice, it often turns out that the expression of the shape derivative J ′(Ω)(θ) of the
considered objective function does not readily allow to identify a descent direction for J(Ω), that is, a defor-
mation θ ∈ Θad such that J ′(Ω)(θ) < 0. To remedy this difficulty, we rely on the ‘change of inner products’
strategy presented, e.g. in [14, 21]: in a nutshell, a suitable Hilbert space H ⊂ Θad is selected, with inner
product a(·, ·), and the gradient associated to the derivative J ′(Ω)(θ) via this inner product is calculated as
the solution to the following problem:

(2.9) Search for V ∈ H s.t. ∀ξ ∈ H, a(V, ξ) = J ′(Ω)(ξ).

It then follows immediately from (2.6) that θ = −V is a descent direction for J(Ω). A popular strategy
consists in taking H = H1(D)d (where D is a large computational domain), equipped with the inner product

a(θ, ξ) = α2

∫
D

∇θ : ∇ξ dx+

∫
D

θ · ξ dx,

where the parameter α is chosen of the order of the mesh size; the resolution of (2.9) then boils down to that
of a Laplace-like equation. Note that this choice is only formal (since H may not be contained in Θad) but
it turns out to work well in practice.

Remark 2.2. In principle, the shape optimization problem (2.4) could be supplemented with p constraints
of the form

Ci(Ω) ≤ 0, i = 1, ..., p;

since this does not add anything to the points we intend to highlight in this article, but only increases the
difficulty of the numerical treatment of (2.4), we ignore these issues.

2.3. A brief account of the regularity of uΩ

As is well-known in the field of elliptic boundary value problems (see e.g. [2], or [13] §9.6 for a comprehensive
introduction), when the featured data f , g (and Ω itself) are smooth enough, the solution uΩ to (2.2) is more
regular than a mere element in H1(Ω), as predicted by the classical Lax-Milgram variational theory. For
instance, in the ‘simple’ case where (2.2) only brings into play homogeneous Dirichlet boundary conditions
(i.e. Γ and ΓN are empty), the classical ‘shift theorem’ states that, provided f belongs to Hm(Ω) for some
m ≥ 0 (and Ω is smooth), uΩ belongs to Hm+2(Ω).

In the situations at stake in the present article, such as (2.2), things are a little more subtle. The
assumptions that f ∈ L2(Rd) and g ∈ H1(Rd) still guarantee that uΩ has H2 regularity in some open
neighborhood of an arbitrary point x0 which is either interior to Ω, or which belongs to ∂Ω but is interior
to one of the regions ΓD, Γ or ΓN . On the contrary, uΩ has limited regularity around those points x0 ∈ ΣD
or x0 ∈ ΣN marking the transition between regions subjected to different types of boundary conditions.
A whole mathematical theory exists in the literature, which is devoted to the precise study of the ‘weakly
singular’ behavior of uΩ in these regions; we refer for instance to the monographs [20, 30, 37].

In this section, we first recall briefly some classical material about functional spaces in Section 2.3.1,
before summarizing in Section 2.3.2 the needed results about the regularity of the solution uΩ to (2.2) for
our purposes.
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2.3.1. Some functional spaces

Let Ω be a smooth bounded domain in Rd. For s > 0 and 1 < p <∞, let us introduce:

• The usual Sobolev space W s,p(Ω) is defined by, when s = m is an integer:

Wm,p(Ω) =
{
u ∈ Lp(Ω), ∂αu ∈ Lp(Ω) for α ∈ Nd, |α|≤ m

}
,

and when s = m+ σ with m ∈ N and σ ∈ (0, 1),

W s,p(Ω) =

{
u ∈Wm,p(Ω),

∫
Ω

∫
Ω

|∂αu(x)− ∂αu(y)|p
|x− y|d+pσ

dy dx <∞ for all |α|= m

}
.

Both sets are equipped with the natural norms. Let us recall that the exact same definitions hold
when the bounded domain Ω is replaced by the whole space Rd.

• The subspace W̃ s,p(Ω) of W s,p(Ω) is that composed of functions whose extension ũ by 0 outside Ω
belongs to W s,p(Rd).

• The space W s,p
0 (Ω) is the closure of the set C∞c (Ω) of C∞ functions with compact support in Ω in

W s,p(Ω).

As is customary, in the case p = 2 we use the notations Hs(Ω), H̃s(Ω) and Hs
0(Ω) for W s,p(Ω), W̃ s,p(Ω)

and W s,p
0 (Ω) respectively.

In spite of their tight relation, the two spaces W̃ s,p(Ω) and W s,p
0 (Ω) may not coincide depending on the

values of s and p. On the one hand, for any s > 0 and 1 < p < ∞, W s,p
0 (Ω) ⊂ W̃ s,p(Ω), but the converse

inclusion may fail. In fact, the following characterization holds (see [30], Lemma 1.3.2.6 and Corollary
1.4.4.10):

(2.10) W̃ s,p(Ω) =

{
u ∈Wm,p

0 (Ω),
1

ρσ
∂αu ∈ Lp(Ω), |α|= m

}
,

where we have decomposed s = m + σ, with m ∈ N and σ ∈ (0, 1), and ρ(x) := d(x, ∂Ω) is the (unsigned)

distance from x to the boundary of Ω. The space W̃ s,p(Ω) is then endowed with the norm

(2.11) ||u||
W̃ s,p(Ω)

=

||u||pWm,p(Ω) +
∑
|α|=m

∫
Ω

1

ρpσ
|∂αu|p dx

 1
p

,

which is equivalent to the natural norm u 7→ ||ũ||W s,p(Rd). Let us also note that:

W̃ s,p(Ω) = W s,p
0 (Ω) when

(
s− 1

p

)
is not an integer.

We eventually mention that the above definitions and results hold in the more general context where Ω
is replaced by a smooth submanifold of Rd, e.g. (a region of) the boundary of a bounded smooth domain of

Rd. For instance, in the setting of Section 2.1, we may consider the spaces W̃ s,p(ΓD), W̃ s,p(ΓN ), etc.

2.3.2. Local structure of uΩ near the transition ΣD

The classical variational theory for (2.2) (based on the Lax-Milgram theorem) features a solution uΩ which
naturally belongs to H1(Ω). Moreover, assuming that the boundary ∂Ω is at least of class C2, and that
f ∈ L2(Rd), g ∈ H1(Rd), the ‘classical’ elliptic regularity theory ensures that uΩ actually has H2 regularity
except perhaps near the transitions zones ΣD and ΣN ; see [2], and [13], §9.6. On the contrary, uΩ fails to
enjoy H2 regularity in the vicinity of ΣD or ΣN , where the boundary conditions it fulfills change types.

The precise behavior of uΩ near ΣD will be of utmost interest for our purpose; it is exemplified by the
following theorem, which takes place under Assumption (2.3) (see [30], Chap. 4 and notably Th. 4.4.3.7):

Proposition 2.1. For any point x0 ∈ Ω or x0 ∈ ∂Ω\ (ΣD∪ΣN ), there exists an open neighborhood W of x0

in R2 such that uΩ belongs to H2(Ω∩W ). Furthermore, for either i = 0 or i = 1, there exists an open neigh-
borhood V of si with the following property: introducing the polar coordinates (r, ν) at si, assuming without
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loss of generality that si = 0, Ω ∩ V = {x ∈ V, s.t. x2 > 0}, and ΓD ∩ V = {x ∈ V, s.t. x2 = 0, x1 < 0},
there exist a function uir ∈ H2(V ), and a constant ci ∈ R such that:

(2.12) uΩ = uir + ciSi on V, where Si(r, ν) = r
1
2 cos(

ν

2
).

The function Si is sometimes said to be weakly singular, in the sense that it belongs to H1(V ), but not
to H2(V ). More precisely, invoking Theorem 1.4.5.3 in [30] to estimate the Sobolev regularity of functions
of the form rαϕ(ν), one proves that, for every 0 ≤ s < 3

2 , uΩ ∈ Hs(V ), with:

(2.13) ||uΩ||Hs(V ) ≤ Cs||f ||L2(Rd).

In the language of Section 2.3.1, it follows in particular that uΩ ∈ H̃
1
2 (Γ∪ΓN ), while ∂uΩ

∂n ∈ (H̃
1
2 (Γ∪ΓN ))∗.

Remark 2.3. Higher-order versions of the expansion (2.12) are available. Actually, for any integer m ≥ 2,
if f ∈ Hm−2(Rd), the following decomposition holds in a neighborhood V of si (see [30], Th. 5.1.3.5):

uΩ = uir,m +

m−1∑
k=1

cikS
i
k, where uir,m ∈ Hm(V ) and Sik(r, ν) = rk−

1
2 cos((k − 1

2
)ν).

Remark 2.4. Still in the two-dimensional context, when the boundary ∂Ω is not flat in the vicinity of ΣD,
an expansion of the form (2.12) still holds: the weakly singular function Si shows the same dependence r

1
2

with respect to r, but its dependence with respect to ν is no longer explicit. Nevertheless, there still holds that
uΩ ∈ Hs(V ) with an estimate of the form (2.13), where V is an open neigborhood of ΣD in Ω and 0 ≤ s < 3

2
is arbitrary; see [30], Chap. 5 or [18].

3. Shape derivatives of the functional J(Ω)

In this section, we rigorously calculate the shape derivative of the objective function (2.4); we start in
Section 3.1 with the case where the transition region ΣN is optimized and ΣD is fixed (i.e. the sets of
admissible shapes and admissible deformations are UNN and ΘNN respectively), before turning in Section 3.2
to the more difficult case where ΣD is optimized and ΣN is not — i.e. Uad = UDN and Θad = ΘDN — under
the simplifying assumption (2.3).

3.1. Calculation of the shape derivative of J(Ω) when only the homogeneous Neumann - inho-
mogeneous Neumann transition is optimized

Our main result in this section is the following.

Proposition 3.1. The functional J(Ω) defined by (2.5) is shape differentiable over the admissible set UNN;
its shape derivative reads (volumetric form):

(3.1) ∀θ ∈ ΘNN, J
′(Ω)(θ) =

∫
∂Ω

(j(uΩ)− fpΩ)θ · n ds−
∫

Ω

j′(uΩ)∇uΩ · θ dx

+

∫
Ω

(divθ I−∇θ −∇θT )∇uΩ · ∇pΩ dx+

∫
Ω

f∇pΩ · θ dx−
∫

ΓN

((div∂Ωθ)g +∇g · θ)pΩ ds,

where div∂Ω stands for the tangential divergence on ∂Ω (see Appendix A), and the adjoint state pΩ is the
unique solution in H1

ΓD
(Ω) to the system:

(3.2)


−∆pΩ = −j′(uΩ) in Ω,

pΩ = 0 on ΓD,
∂pΩ

∂n = 0 on ΓN ∪ Γ.

The above shape derivative has the alternative, surfacic form:

(3.3) ∀θ ∈ ΘNN, J
′(Ω)(θ) =

∫
Γ∪ΓN

j(uΩ)θ · n ds+

∫
Γ∪ΓN

∇uΩ · ∇pΩ θ · n ds−
∫

Γ∪ΓN

fpΩθ · n ds

−
∫

ΓN

(
∂g

∂n
+ κg

)
pΩθ · n ds−

∫
ΣN

gpΩθ · nΣN d`.
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Remark 3.1. One comment is in order about the precise meaning of (3.3), and notably that of the term

(3.4)

∫
Γ∪ΓN

∇uΩ · ∇pΩ θ · n ds

featured in there. The function uΩ belongs to the space

(3.5) E(∆, L2(Ω)) :=
{
u ∈ H1(Ω), ∆u ∈ L2(Ω)

}
,

and as such, it has a normal trace ∂uΩ

∂n ∈ H−1/2(∂Ω), which is defined by the Green’s formula:

(3.6) ∀w ∈ H1(Ω),

∫
∂Ω

∂uΩ

∂n
w ds :=

∫
Ω

∆uΩw dx+

∫
Ω

∇uΩ · ∇w dx;

see [30], Th. 1.5.3.10 for more details about this point. Also, since uΩ ∈ H1/2(∂Ω), the tangential derivative
∂uΩ

∂τ naturally belongs to the dual space H−1/2(∂Ω). On the other hand, the function pΩ enjoys H2 regularity
on account of elliptic regularity (see Section 2.3), except perhaps near ΣD where it has a weak singularity of
the form (2.12). Since deformations θ ∈ ΘNN are smooth and vanish identically on ΓD, the product (∇pΩ)θ ·n
has a trace in H1/2(∂Ω), and so the integral (3.4) is well-defined as a duality product.

Proof. The proof is an application of fairly classical techniques in shape optimization, except perhaps on
one point regarding the regularity of uΩ and pΩ. Since variations of this argument are used in the following,
we present a sketch of it for the reader’s convenience. The proof is decomposed into two steps.

Step 1: Proof of the shape differentiability of J(Ω) and derivation of (3.1).
This step amounts to the analysis of the differentiability of the mapping θ 7→ J(Ωθ) from ΘNN into R,

which features the solution uΩθ to the version of (2.2) posed on Ωθ. The main idea consists in recasting the
latter problem as a boundary-value problem on Ω for the transported function uθ := uΩθ ◦ (Id + θ) ∈ H1(Ω);
thence, the implicit function theorem allows to calculate the derivative of the mapping θ 7→ uθ; see [33, 46].

For θ ∈ ΘNN with norm ||θ||ΘNN
< 1, the function uΩθ is the unique solution in H1

ΓD
(Ωθ) to the following

variational problem:

∀v ∈ H1
ΓD (Ωθ),

∫
Ωθ

∇uΩθ · ∇v dx =

∫
Ωθ

fv dx+

∫
(ΓN )θ

gv ds.

Using test functions of the form v ◦ (Id + θ)−1, v ∈ H1
ΓD

(Ω), a change of variables yields the following

variational formulation for uθ ∈ H1
ΓD

(Ω):

∀v ∈ H1
ΓD (Ω),

∫
Ω

A(θ)∇uθ · ∇v dx =

∫
Ω

|det(I +∇θ)|f ◦ (Id + θ)v dx+

∫
ΓN

|com(I +∇θ)n|g ◦ (Id + θ)v ds,

where A(θ) is the d×d matrix A(θ) = |det(I+∇θ)|(I+∇θ)−1(I+∇θ)−T and com(M) stands for the cofactor
matrix of a d× d matrix M . Now introducing the mapping F : Θad ×H1

ΓD
(Ω)→ (H1

ΓD
(Ω))∗ defined by:

∀v ∈ H1
ΓD (Ω), F(θ, u)(v) =

∫
Ω

A(θ)∇u · ∇v dx−
∫

Ω

|det(I +∇θ)|f ◦ (Id + θ)v dx

−
∫

ΓN

|com(I +∇θ)n|g ◦ (Id + θ)v ds,

it follows that for ‘small’ θ ∈ ΘNN, uθ is the unique solution of the equation F(θ, uθ) = 0. Then, the
implicit function theorem (see e.g. [38], Chap. 1, Th. 5.9) together with classical calculations imply that
the mapping θ 7→ uθ is Fréchet differentiable from a neighborhood of 0 in ΘNN into H1

ΓD
(Ω), and that its

derivative θ 7→ ůΩ(θ) at θ = 0 — the so-called ‘Lagrangian derivative’ of the mapping Ω 7→ uΩ — is the
unique solution to the following variational problem:

(3.7) ∀v ∈ H1
ΓD (Ω),

∫
Ω

∇ůΩ(θ) · ∇v dx = −
∫

Ω

(divθI−∇θ −∇θT )∇uΩ · ∇v dx

+

∫
Ω

div(fθ)v dx+

∫
ΓN

((div∂Ωθ)g +∇g · θ) v ds.
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On the other hand, performing the same change of variables in the definition of J(Ω) yields:

J(Ωθ) =

∫
Ω

|det(I +∇θ)| j(uθ) dx,

and so the mapping θ 7→ J(Ωθ) from ΘNN into R is Fréchet differentiable at θ = 0 with derivative:

(3.8) J ′(Ω)(θ) =

∫
Ω

(divθ j(uΩ) + j′(uΩ)ůΩ(θ)) dx.

The material derivative ůΩ(θ) can now be eliminated from (3.8) thanks to the introduction of the adjoint
state pΩ, solution to (3.2). Indeed, the variational formulation of pΩ reads:

(3.9) ∀v ∈ H1
ΓD (Ω),

∫
Ω

∇pΩ · ∇v dx = −
∫

Ω

j′(uΩ)v dx.

Hence, combining (3.8) with (3.9) yields:

J ′(Ω)(θ) =

∫
Ω

(divθ)j(uΩ) dx−
∫

Ω

∇pΩ · ∇ůΩ(θ) dx,

=

∫
Ω

(divθ)j(uΩ) dx+

∫
Ω

((divθ)I−∇θ −∇θT )∇uΩ · ∇pΩ dx−
∫

Ω

div(fθ)pΩ dx

−
∫

ΓN

((div∂Ωθ)g +∇g · θ) pΩ ds,

=

∫
Ω

div(j(uΩ)θ) dx−
∫

Ω

j′(uΩ)∇uΩ · θ dx+

∫
Ω

((divθ)I−∇θ −∇θT )∇uΩ · ∇pΩ dx

−
∫

Ω

div(fθpΩ) dx+

∫
Ω

f∇pΩ · θ dx−
∫

ΓN

((div∂Ωθ)g +∇g · θ) pΩ ds,

where we have used the variational formulation (3.7) for ůΩ(θ) to pass from the first line to the second one.
This results in the desired expression (3.13). Note that at this point, we have not used the fact that either
uΩ or pΩ is more regular than H1(Ω).

Step 2: Derivation of the surface expression (3.3).
This expression is classically achieved from (3.1) using integration by parts; doing so requires a more

careful attention to the regularity of uΩ and pΩ.
Let us notice that the function uΩ may not be much more regular than just H1 in the neighborhood of

the transition ΣN . Actually, it belongs to the space E(∆, L2(Ω)), defined by (3.5). The key point is that pΩ

is locally H2 in the neighborhood of ΣN , on account of the material in Section 2.3 (note that ∂pΩ

∂n = 0 on

Γ ∪ ΓN ). Relying on the following identity, which holds for smooth functions v, w ∈ C∞c (Rd),
(3.10)∫

Ω

((divθ)I−∇θ −∇θT )∇v · ∇w dx =

∫
Γ∪ΓN

(
(∇v · ∇w) θ · n− ∂v

∂n
∇w · θ − ∂w

∂n
∇v · θ

)
ds

+

∫
Ω

(−∇(∇v · ∇w) + ∆v∇w + ∆w∇v +∇2w∇v +∇2v∇w) · θ dx,

=

∫
Γ∪ΓN

(
(∇v · ∇w) θ · n− ∂v

∂n
∇w · θ − ∂w

∂n
∇v · θ

)
ds

+

∫
Ω

(∆v∇w + ∆w∇v) · θ dx,

and using the density of C∞c (Rd) in E(∆, L2(Ω)) and H2(Ω) (see [30], Lemma 1.5.3.9), we obtain:

(3.11)∫
Ω

((divθ)I−∇θ −∇θT )∇uΩ · ∇pΩ dx =

∫
Γ∪ΓN

(
(∇uΩ · ∇pΩ) θ · n− ∂uΩ

∂n
∇pΩ · θ −

∂pΩ

∂n
∇uΩ · θ

)
ds

+

∫
Ω

(∆uΩ∇pΩ + ∆pΩ∇uΩ) · θ dx.
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Let us now work on the last integral in the right-hand side of (3.1); we obtain:

(div∂Ωθ)g +∇g · θ = div∂Ω(gθ) + ∂g
∂nθ · n,

= div∂Ω(g(θ − (θ · n)n)) +
(
∂g
∂n + κg

)
θ · n.

Hence, an integration by parts on the region ΓN using Proposition A.1 yields:

(3.12)

∫
ΓN

((div∂Ωθ)g +∇g · θ) pΩ ds =

∫
ΣN

gpΩ θ · nΣNd`+

∫
ΓN

(
∂g

∂n
+ κg

)
pΩθ · n ds.

Combining (3.11) and (3.12) with the volumetric formula (3.1) and using the facts that −∆uΩ = f and
−∆pΩ = −j′(uΩ) in Ω, we finally obtain the desired surface formula (3.3). �

Remark 3.2. This calculation extends readily to the linearized elasticity case, to deal with Neumann-
Neumann transitions.

3.2. Calculation of the shape derivative of J(Ω) when only the Dirichlet-homogeneous Neumann
transition is optimized

In this section, we investigate the shape differentiability of the functional J(Ω) defined in (2.5) in the
particular case where the boundary ΣD between the regions ΓD and Γ of ∂Ω bearing homogeneous Dirichlet
and homogeneous Neumann boundary conditions is also subject to optimization; in other terms, we suppose:

Uad = UDN, and Θad = ΘDN.

The main difficulty of the present situation lies in the weakly singular behavior of the solution uΩ to (2.2) near
ΣD. In particular, the use of the formal Céa’s method (see [15] and [6] for a comprehensive presentation),
which implicitly relies on the smoothness of uΩ, gives rise to an erroneous shape derivative in the present
context.

The conclusion of Proposition 3.2 was already observed in [8, 28], but our proof is slightly different: we
rely on a direct calculation based on integration by parts.

Proposition 3.2. The functional J(Ω) is shape differentiable at any admissible shape Ω ∈ UDN, and its
shape derivative reads (volumetric form):

(3.13) ∀θ ∈ ΘDN, J
′(Ω)(θ) =

∫
∂Ω

(j(uΩ)− fpΩ)θ · n ds−
∫

Ω

j′(uΩ)∇uΩ · θ dx

+

∫
Ω

((divθ)I−∇θ −∇θT )∇uΩ · ∇pΩ dx+

∫
Ω

f∇pΩ · θ dx,

where the adjoint state pΩ is the unique solution in H1
ΓD

(Ω) to the system:

(3.14)


−∆pΩ = −j′(uΩ) in Ω,

pΩ = 0 on ΓD,
∂pΩ

∂n = 0 on ΓN ∪ Γ.

Moreover, under the assumption (2.3), let us write the local structure of uΩ and pΩ in an open neighborhood
V i of si, i = 0, 1 as follows:

(3.15) uΩ = uis + uir and pΩ = pis + pir;

in the above formula, uir, p
i
r ∈ H2(V i) and the weakly singular functions uis and pis ∈ H1(V i) have the

following expressions in local polar coordinates centered at si:

(3.16) uis(r, ν) = ciur
1
2 cos(

ν

2
), and pis(r, ν) = cipr

1
2 cos(

ν

2
), if nΣD (si) = e1,

or

(3.17) uis(r, ν) = ciur
1
2 sin(

ν

2
), and pis(r, ν) = cipr

1
2 sin(

ν

2
), if nΣD (si) = −e1,

where (e1, e2) is the canonical basis of the plane. Then (3.13) rewrites (surface integral form):
(3.18)

J ′(Ω)(θ) =

∫
ΓD∪Γ

(j(uΩ)− fpΩ)θ · n ds−
∫

ΓD

∂pΩ

∂n

∂uΩ

∂n
θ · n ds+

∫
Γ

∂uΩ

∂τ

∂pΩ

∂τ
θ · n ds+π

4

∑
i=0,1

ciuc
i
p(θ · nΣD )(si).
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Remark 3.3. In the surface formula (3.18), the integrals

−
∫

ΓD

∂pΩ

∂n

∂uΩ

∂n
θ · n ds+

∫
Γ

∂uΩ

∂τ

∂pΩ

∂τ
θ · n ds

are not well-defined individually, since they may blow up around the points si, as is quite clear from the look
of the structure (3.16) and (3.17) of the singular parts of uΩ and pΩ. However, these integrals turn out to
have compensating singularities at si, so that their sum is well-defined as a Cauchy principal value; see the
proof below.

Proof. The calculation of the volumetric formula (3.13) unfolds almost as in the case of Proposition 3.1, and
we focus on the derivation of the surface formula (3.18), assuming that (2.3) holds. Again, the main idea
of the calculation is to perform integration by parts from (3.13), taking advantage of the smoothness of uΩ

and pΩ far from the singularities at si, i = 0, 1, and of the local structure (3.15) of these functions in the
vicinity of si.

Let θ ∈ ΘDN be fixed; for small δ > 0, let Bi(δ) := B(si, δ) be the ball centered at si with radius δ, and

let Ωδ := Ω \ (B0(δ) ∪ (B1(δ)). Since uΩ and pΩ belong to H1(Ω), it holds from (3.13):

J ′(Ω)(θ) =

∫
∂Ω

(j(uΩ)− fpΩ)θ · n ds+ lim
δ→0

Iδ,

where:

Iδ := −
∫

Ωδ

j′(uΩ)∇uΩ · θ dx+

∫
Ωδ

(divθI−∇θ −∇θT )∇uΩ · ∇pΩ dx+

∫
Ωδ

f∇pΩ · θ dx.

Using the smoothness of uΩ and pΩ on Ωδ, the fact that θ vanishes on ΓN , the definitions of uΩ, pΩ and an
integration by parts on the second term in the above right-hand side based on the identity (3.10), we obtain:

(3.19) Iδ =

∫
∂Ωδ

(
∇uΩ · ∇pΩ θ · n−

∂uΩ

∂n
∇pΩ · θ −

∂pΩ

∂n
∇uΩ · θ

)
ds.

To proceed further, we decompose the boundary ∂Ωδ as the disjoint reunion:

∂Ωδ = ΓD,δ ∪ Γδ ∪ ΓN ∪ γ0,δ ∪ γ1,δ,

where ΓD,δ = ΓD ∩Ωδ, Γδ = Γ∩Ωδ, and γi,δ = ∂Bi(δ)∩Ω is the half-circle with center si and radius δ. We
also denote by si,δ the intersection point between ∂Bi(δ) and Γ; see Fig. 2 about these notations.

���D,�

�0,�n

⌧⌦�

s0,�s0
•⌫•

Figure 2. The local situation around the point s0 in the proof of Proposition 3.2.

Since θ = 0 on ΓN , it follows that:

(3.20) Iδ =

∫
Γδ

∂uΩ

∂τ

∂pΩ

∂τ
θ · n ds−

∫
ΓD,δ

∂uΩ

∂n

∂pΩ

∂n
θ · n ds+

∑
i=0,1

∫
γi,δ

K(uΩ, pΩ) ds,

where we have introduced the shorthand:

K(v, w) = ∇v · ∇w θ · n− ∂v

∂n
∇w · θ − ∂w

∂n
∇v · θ.
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Let us now evaluate the contributions of Iδ on γi,δ for i = 0, 1 in the expression (3.20). Without loss of
generality, we only deal with i = 0, and we assume that s0 = 0; according to (2.3), ∂Ω is horizontal in the
neighborhood of s0 and we also assume that ΓD (resp. Γ) lies on the left-hand side (resp. the right-hand
side) of s0; see again Fig. 2. Introducing the polar coordinates (r, ν) with origin at s0 = 0, taking into
account our conventions for τ and n, we have:

n = − cos νe1 − sin νe2, τ = − sin νe1 + cos νe2,

and as far as derivatives are concerned:
∂

∂n
= − ∂

∂r
, and

∂

∂τ
=

1

r

∂

∂ν
.

Recalling the local expressions (3.15) of uΩ and pΩ around s0, it is easily seen that the only possibly
non vanishing contribution of

∫
γ0,δ

K(uΩ, pΩ) ds in the limit δ → 0 is given by the most singular part of its

integrand:

lim
δ→0

∫
γ0,δ

K(uΩ, pΩ) ds = lim
δ→0

Ĩ0
δ , where Ĩ0

δ :=

∫
γ0,δ

K(u0
s, p

0
s) ds.

Let us then calculate the last integral. We have, on γ0,δ:

(3.21)

(∇u0
s · ∇p0

s)(θ · n) =
(
∂u0

s

∂τ
∂p0
s

∂τ +
∂u0

s

∂n
∂p0
s

∂n

)
(θ · n),

=
(

1
r2

∂u0
s

∂ν
∂p0
s

∂ν +
∂u0

s

∂r
∂p0
s

∂r

)
(θ · n),

=
(
c0uc

0
p

4r

)
(θ · n).

Likewise,

(3.22)

−∂u
0
s

∂n ∇p0
s · θ = −∂u

0
s

∂n
∂p0
s

∂τ θ · τ −
∂u0

s

∂n
∂p0
s

∂n θ · n,
= 1

r
∂u0

s

∂r
∂p0
s

∂ν θ · τ −
∂u0

s

∂r
∂p0
s

∂r θ · n,
= − c

0
uc

0
p

4r cos(ν2 ) sin(ν2 )θ · τ − c0uc
0
p

4r cos2(ν2 )θ · n,
and

(3.23) − ∂p0
s

∂n
∇u0

s · θ = −∂u
0
s

∂n
∇p0

s · θ = −c
0
uc

0
p

4r
cos(

ν

2
) sin(

ν

2
)θ · τ − c0uc

0
p

4r
cos2(

ν

2
)θ · n.

Gathering (3.21) to (3.23), we now obtain:

K(u0
s, p

0
s) =

c0uc
0
p

4r

(
(1− 2 cos2(ν2 ))θ · n− 2 cos(ν2 ) sin(ν2 )θ · τ

)
,

=
c0uc

0
p

4r (−(sin ν)θ · τ − (cos ν)θ · n) ,

=
c0uc

0
p

4r θ1,

where θ1 is the horizontal component of θ = θ1e1 + θ2e2. Therefore:

Ĩ0
δ =

(∫ π

0

c0uc
0
p

4
θ1(δ cos ν, δ sin ν) dν

)
δ→0−−−→ πc0uc

0
p

4
θ1(0).

Combining all these results, we obtain the surface form (3.18) of the shape derivative J ′(Ω)(θ). �

Remark 3.4. The result extends to the case where the boundary ∂Ω is not flat (but is still smooth) in the
neighborhood of ΣD = {s0, s1}. More precisely, let V be a small enough neighborhood of either of the si, and
let us introduce a local description of Ω as a graph, assuming for simplicity that si = 0 and n(si) = −e2:
U is a neighborhood of 0 in R2 and ψ(x1, x2) = (x1, ϕ(2)) is a smooth diffeomorphism from U onto V such
that:

Ω ∩ V =
{
x = (x1, x2) ∈ R2, x2 > ϕ(x1)

}
∩ U.

Then, it follows from [30], §5.2 that uΩ reads in this case:

uΩ = ciSi ◦ ψ−1 + uir on Bδ(si),

where uir ∈ H2(V ). The proof extends to this latter context then.

Remark 3.5.
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• Interestingly, if uΩ and pΩ are assumed to be actually smooth (say H2) in the neighborhood of the
transition points s0 and s1, the shape derivative (3.18) no longer involves any term related to the
geometry of the repartition of ΓD and Γ. In other terms, all the information about the sensitivity of
J(Ω) with respect to the repartition of ΓD and Γ is encoded in the (weak) singularities of uΩ and pΩ.

• The fact that the sensitivity of J(Ω) with respect to variations of ΣD in (3.18) involves the singular
behavior of uΩ and pΩ near ΣD is reminiscent of the field of fracture mechanics. There, the so-called
Irwin formula relates the singularity of the elastic displacement of a material at the tip of a crack to
the energy release rate guiding the growth of the crack; see [43].

4. An approximate shape optimization problem to deal with the Dirichlet-Neumann
transition

We have calculated in Section 3 the shape derivative of the functional J(Ω) given by (2.5), in the situation
where either the transition ΣN or ΣD is subject to optimization. The resulting expression in the former
case (see Proposition 3.1) may be readily used in a typical gradient-based shape optimization algorithm; see
Section 5.

On the other hand, in the case where ΣD is optimized, the expression supplied by Proposition 3.2 is
unfortunately awkward from both the theoretical and practical perspectives. Indeed,

• The calculation of the surface form (3.18) of J ′(Ω)(θ) was enabled by the precise knowledge of the
local behavior (3.15) of uΩ and pΩ near the singularities s0 and s1. In more involved situations, for
instance in three space dimensions, or in more challenging physical contexts (such as those of the
linearized elasticity system, or the Stokes equations), such precise information may not be available,
or may be difficult to handle.

• The numerical evaluation of the shape derivative J ′(Ω)(θ) requires the calculation of the coefficients
cu and cp featured in (3.15); this is doable, but it demands adapted numerical techniques, for instance
an enrichment of the finite element basis with the singular functions, or adapted p/hp finite mesh
refinement methods; see [9, 27, 39] and the references therein. In our numerical setting, presented
in Section 5, such techniques are bound to be all the more difficult to carry out that the boundary
ΣD is not explicitly discretized in the computational mesh.

• Eventually, it is possible in principle to rely only on the volumetric form (3.13) of the shape de-
rivative for algorithmic purposes, as is suggested for instance in [35, 29] and the references therein;
nevertheless, for many practical purposes, it is interesting to have a surface expression for this shape
derivative - for instance when it comes to using advanced optimization algorithms such as that
introduced in [26].

We thenceforth focus our efforts on the instance of the problem (2.4) where this transition zone ΣD is
also subject to optimization (while ΣN is not). To overcome the aforementioned difficulties, we introduce
an approximation method which allows for the optimization of the boundary ΣD between regions bearing
homogeneous Dirichlet and Neumann boundary conditions, without requiring the knowledge of the weakly
singular behavior of uΩ (and that of the adjoint state pΩ) in the neighborhood of ΣD. As we shall see in
Section 5, this method lends itself to an easy generalization to more difficult situations: transitions between
other types of boundary conditions involving a singular state, other physical contexts than that of the Laplace
equation, etc.

Throughout this section, unless stated otherwise, we consider the shape optimization problem (2.4) in
the physical setting of Section 2, in the particular case where the transition ΣD between the regions ΓD and
Γ of ∂Ω is subject to optimization: Uad = UDN and Θad = ΘDN. After introducing a few notations and
background material regarding the notion of geodesic distance function in Section 4.1, in Section 4.2, we
present an approximate version of the physical problem (2.2), relying on a ‘small’ parameter ε > 0, with the
noticeable feature that its unique solution uΩ,ε is smooth. This leads to the introduction of an approximate
shape optimization problem of a smoothed functional Jε(Ω) in Section 4.3; we calculate the shape derivative
J ′ε(Ω)(θ) by classical means, and the numerical evaluation of the resulting expression poses no particular
difficulty. Finally, in Section 4.4, we prove in the model context where (2.3) holds that the approximate
shape optimization problem converges to its exact counterpart, in the sense that uΩ,ε → uΩ as ε → 0, and
the values of Jε(Ω) and J ′ε(Ω)(θ) converge to their exact counterparts J(Ω) and J ′(Ω)(θ).
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4.1. About the signed distance function to a subset on a manifold

In this section, we collect some material about the signed distance function to a subregion of an oriented,
closed and smooth submanifold M of Rd with codimension 1; M is equipped with a Riemannian structure
by endowing its tangent bundle with the inner product induced by that of Rd and we denote by n its unit
normal vector. In the context of Section 2, M stands for the boundary ∂Ω of the considered shape Ω.

Let us first set some notations and recall some necessary background material from Riemannian geometry;
for these matters, we refer to [25].

The length `(γ) of a piecewise differentiable curve γ : I →M defined on an interval I ⊂ R is

`(γ) =

∫
I

|γ′(t)| dt.

The geodesic distance dM(x, y) between two points x, y ∈M is then:

dM(x, y) = inf `(γ),

where the infimum is taken over all piecewise differentiable curves γ : (a, b) → M such that γ(a) = x and
γ(b) = y. Likewise, we denote by

dM(x,K) = inf
y∈K

dM(x, y)

the distance between x ∈M and a subset K ⊂M.
The notion of distance onM is conveniently described in terms of the exponential mapping : for any point

p ∈ M and vector v in the tangent plane TpM to M at p, expp(v) stands for the point γ(1, p, v), where
t 7→ γ(t, p, v) is the unique geodesic curve on M such that

γ(0) = p, and γ′(0) = v.

As a well-known fact in Riemannian geometry, the mapping expp is well-defined on an open neighborhood
U of 0 in TpΓ and it is a diffeomorphism from U onto an open neighborhood V of p in M. The reciprocal
mapping is the logarithm logp : V → U :

∀y ∈ V, logp(y) = the unique v ∈ U s.t. γ(1, p, v) = y.

We now turn to the notion of signed distance function on the submanifold M: let G ⊂ M be an open
subset which we assume to be smooth for simplicity; its boundary Σ := ∂G is a closed, smooth submanifold
of Rd with codimension 2, and we denote by nΣ : Σ→ S1 the unit normal vector to Σ pointing outward G.
In particular, nΣ is a vector field along Σ which is tangential to M.

Definition 4.1. The signed distance function dG to G is defined by:

∀x ∈M, dG(x) =


−dM(x,Σ) if x ∈ G,

0 if x ∈ Σ,
dM(x,Σ) if x ∈M \G.

For y ∈ M, we denote by pΣ(y) the projection of y onto Σ, that is, the unique point x ∈ Σ such that
dM(x, y) = dM(x,Σ), when this makes sense (i.e. when there is indeed such a unique point).

The following theorem states in essence that, when G is a regular subset of M, the projection mapping
pΣ is well-defined and smooth on a neighborhood of Σ. The proof is essentially the same as that of Theorem
3.1 in [7]: it is a local argument relying on the implicit function theorem, and we omit the details for brevity.

Theorem 4.1. Let G be a regular open subset of M; then there exists an open neighborhood U ⊂ M of Σ
such that the mapping

Σ× (−t0, t0)→ U, F(x, t) = expx(tnΣ(x))

is a diffeomorphism of class C∞. For y = F(x, t) ∈ U , one has:

t = dG(y), and x = pΣ(y).

Let us now state a result about the (tangential) gradient of the distance function; the proof of the first
point lies e.g. in [54], while the second one follows from a direct application of the theorem of differentiation
of a minimum value (see [23], Chap. 10, Th. 2.1):

Proposition 4.1.
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• Let p ∈M; consider the function ρ(x) := dM(x, p) on a neighborhood U of p. Then ρ is differentiable
on U \ {p} and its (tangential) gradient reads:

∇ρ(x) = − 1

dM(x, p)
logx(p).

• Let G be a regular open subset of M with boundary Σ, and let U be the neighborhood supplied by
Theorem 4.1. Then the signed distance function dG is differentiable at any point x ∈ U , and its
gradient reads:

∇dG(x) = − 1

dG(x)
logx(pΣ(x)).

We eventually consider the differentiation of the signed distance function dG with respect to variations of
the manifold M (and thus of Σ). The following result is new to the best of our knowledge:

Proposition 4.2. Let G be a regular open subset of M, and let U be the neighborhood of Σ = ∂G supplied
by Theorem 4.1. consider a fixed point y ∈ U \ Σ, and let p = pΣ(y), so that σ(t) = expp(tnΣ(p)) is the

unique geodesic joining p to y, parametrized by arc length. For any vector field θ ∈ C1,∞(Rd,Rd), we define
the variations of M and G according to Hadamard’s method (see Section 2.2):

Mθ = (Id + θ)(M), and Gθ = (Id + θ)(G).

Define:

D(θ) = dGθ (y + θ(y)).

Then D is Fréchet differentiable at θ = 0 and its derivative reads:

(4.1) D′(0)(θ) = −θ(y) · logy(p)

dG(y)
− θ(p) · nΣ(p) +

∫ dG(y)

0

ΠMσ(t)(σ
′(t), σ′(t)) (θ · n)(σ(t)) dt.

In the above formula, ΠMp is the second fundamental form of M at p, that is:

∀v ∈ TpM, ΠMp v · v = −∇n(p)v · v,

where n is any extension of the normal vector n :M→ Rd to an open neighborhood of M in Rd.

Proof. Assume for simplicity that y ∈M\G, the result being proved in a similar same way if y ∈ G. From
the definition of D(θ), one has:

D(θ) = inf
x∈Σ

inf
γ:(a,b)→Mθ

γ(a)=x+θ(x), γ(b)=y+θ(y)

∫ b

a

|γ′(t)| dt,

= inf
x∈Σ

inf
γ:(a,b)→M

γ(a)=x, γ(b)=y

∫ b

a

√
(I +∇θT (γ(t)))(I +∇θ(γ(t)))γ′(t) · γ′(t) dt,

and we know that, for θ = 0, this infimum is attained uniquely for x = p and γ = σ, the geodesic curve
joining p to y. Therefore, the theorem of differentiation through a minimum (see again [23], Chap. 10, Th.
2.1) entails that D is differentiable at θ = 0 and:

D′(0)(θ) =

∫ b

a

1

|σ′(t)|∇θ(σ(t))σ′(t) · σ′(t) dt.

Since σ(t) = expp(tnΣ(p)) is parametrized by arc length, we have in particular |σ′(t)|= 1, σ(0) = p and
σ(dG(y)) = y (that is, a = 0 and b = dG(y) in the above formula); therefore,

D′(0)(θ) =

∫ dG(y)

0

∇θ(σ(t))σ′(t) · σ′(t) dt =

∫ dG(y)

0

(θ(σ(t)))′ · σ′(t) dt,

whence, using integration by parts:

D′(0)(θ) = θ(y) · σ′(dG(y))− θ(p) · σ′(0)−
∫ dG(y)

0

θ(σ(t)) · σ′′(t) dt.
16



In the above formula, it follows from the definition of σ and Proposition 4.1 that:

σ′(0) = nΣ(p), and σ′(dG(y)) = − logy(p)

dG(y)
.

On the other hand, it follows from the fact that σ is a geodesic that:

σ′′(t) · v = 0 for any tangent vector v ∈ Tσ(t)M;

see [25], Chap. 2, Exercise 4. Since in addition σ′(t) · n(σ(t)) = 0, differentiation with respect to t yields:

σ′′(t) · n(σ(t)) = −∇n(σ(t))σ′(t) · σ′(t) = ΠMσ(t)(σ
′(t), σ′(t)),

which terminates the proof. �

Remark 4.1.

• The formula (4.1) is of ‘Lagrangian’ nature: for given y ∈M, the derivative of the distance function
to the perturbed set Gθ at the perturbed point y+θ(y) is calculated. Using the more classical notation

d̊G(θ)(y) = D′(0)(θ) for this derivative, the corresponding Eulerian derivative d′G(θ)(y) of dG at y is
then defined by the formula:

d′G(θ)(y) := d̊G(θ)(y)−∇dG(y) · θ,

= −θ(p) · nΣ(p) +

∫ dG(y)

0

ΠMσ(t)(σ
′(t), σ′(t)) (θ · n)(σ(t)) dt,

where we have used Proposition 4.1.
• The structure of (4.1) is quite intuitive: the first two terms are exactly those featured in the formula

for the ‘Lagrangian’ derivative of the signed distance function in the Euclidean case, i.e. without
taking into account the curvature of the ambient space (see e.g. [19]), while the last one expresses
the deformation with respect to θ of the geodesic between p and y out of the (normal) variation of
the manifold M.

4.2. The smoothed setting

In the setting of Section 2 (see also Fig. 1), and following the works [4, 24], we trade the solution uΩ to the
‘exact’ problem (2.2) for that uΩ,ε to the following approximate version, where the homogeneous Dirichlet
and Neumann boundary conditions on ΓD and Γ respectively are replaced by a Robin boundary condition
on ΓD ∪ Γ:

(4.2)


−∆uΩ,ε = f in Ω,

∂uΩ,ε

∂n + hεuΩ,ε = 0 on Γ ∪ ΓD,
∂uΩ,ε

∂n = g on ΓN .

Here, the coefficient hε is defined by:

(4.3) hε(x) =
1

ε
h

(
dΓD (x)

ε

)
,

where h : R→ R is a smooth function with the properties:

0 ≤ h ≤ 1, h ≡ 1 on (−∞,−1], h(0) > 0, h ≡ 0 on [1,∞),

and dΓD (x) is the (geodesic) signed distance function to ΓD on the surface ∂Ω; see Definition 4.1. In other
words, hε equals 1

ε inside ΓD, ‘far’ from ΣD, 0 on Γ ‘far’ from ΣD, and it presents a smooth transition
between these two values in a tubular neighborhood of ΣD with (geodesic) width ε, so that the boundary
conditions in (2.2) are approximately satisfied; see Fig. 3.

In particular, hε vanishes on a neighborhood of ΓN in ∂Ω; notice also that our assumptions on h imply
that there exists a real value α > 0 which is independent of ε such that:

(4.4) ∀x ∈ ΓD, α ≤ εhε(x).

The variational formulation associated to (4.2) reads: uΩ,ε is the unique function in H1(Ω) such that

(4.5) ∀v ∈ H1(Ω),

∫
Ω

∇uΩ,ε · ∇v dx+

∫
ΓD∪Γ

hεuΩ,εv ds =

∫
Ω

fv dx+

∫
ΓN

gv ds.
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Figure 3. Graph of the function hε defined by (4.3).

It follows from the standard Lax-Milgram theory that this problem is well-posed. In addition, for a fixed value
of ε > 0, due to the smoothness of Ω and hε (see Section 4.1 about the smoothness of dΓD ), the solution uΩ,ε

to (4.2) actually enjoys H2 regularity on a neighborhood of ΣD, as a consequence of the standard regularity
theory for elliptic equations; see e.g. [13], Chap. 9.

Remark 4.2. This approximation method can be straightforwardly adapted to different contexts, such as that
of the linearized elasticity system; see Section 5 for illustrations, and [24] for an adaptation in the context
of the acoustic Helmholtz equation.

4.3. The approximate shape optimization problem

We propose to replace the exact shape optimization problem (2.4) by its regularized counterpart:

(4.6) inf
Ω∈UDN

Jε(Ω), where Jε(Ω) :=

∫
Ω

j(uΩ,ε) dx,

and uΩ,ε is the solution to (4.2).
When it comes to the shape derivative of Jε(Ω), the result of interest is the following:

Proposition 4.3. The functional Jε(Ω) is shape differentiable at any admissible shape Ω ∈ UDN, and its
shape derivative reads, for arbitrary θ ∈ ΘDN (volumetric form):

(4.7)

J ′ε(Ω)(θ) =

∫
∂Ω

(j(uΩ,ε)− fpΩ,ε) θ · n ds−
∫

Ω

j′(uΩ,ε)∇uΩ,ε · θ dx+

∫
Ω

(divθI−∇θ −∇θT )∇uΩ,ε · ∇pΩ,ε dx

+

∫
Γ∪ΓD

(div∂Ω)θ hεuΩ,εpΩ,ε ds+

∫
Ω

f∇pΩ,ε · θ dx

+
1

ε2

∫
Γ∪ΓD

h′(
dΓD

ε
)

(
−θ(x) · logx(pΣD (x))

dΓD (x)
− θ(pΣD (x)) · nΣD (pΣD (x))

)
uΩ,εpΩ,ε ds(x)

1

ε2

∫
Γ∪ΓD

h′(
dΓD

ε
)

(∫ dΓD
(x)

0

Π∂Ω
σx(t)(σ

′
x(t), σ′x(t)) (θ · n)(σx(t)) dt

)
uΩ,εpΩ,ε ds(x),
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where σx(t) = exppΣD(x)
(tnΣD (pΣD (x))) is the unique geodesic passing through x and pΣD (x), and the adjoint

state pΩ,ε is the unique solution in H1(Ω) to the following system:

(4.8)


−∆pΩ,ε = −j(uΩ,ε) in Ω,
∂pΩ,ε

∂n + hεpΩ,ε = 0 on ΓD ∪ Γ,
∂pΩ,ε

∂n = 0 on ΓN .

Equivalently, this rewrites (surface form):

(4.9) J ′ε(Ω)(θ) =

∫
Γ∪ΓD

(
j(uΩ,ε)− fpΩ,ε +∇∂ΩuΩ,ε · ∇∂ΩpΩ,ε −

∂uΩ,ε

∂n

∂pΩ,ε

∂n
− κpΩ,ε

∂uΩ,ε

∂n

)
θ · n ds

+
1

ε2

∫
Γ∪ΓD

h′(
dΓD

ε
)

(
−θ(pΣD (x)) · nΣD (pΣD (x)) +

∫ dΓD
(x)

0

Π∂Ω
σx(t)(σ

′
x(t), σ′x(t)) (θ · n)(σx(t)) dt

)
uΩ,εpΩ,ε ds(x).

Proof. Proof of (4.7): The proof is very similar to that of the volumetric formula (3.1) in Proposition 3.2,
and we only sketch the main ingredients. At first, using the implicit function theorem, one sees that the
solution uΩ,ε to (4.2) has a ‘Lagrangian derivative’ ůΩ,ε(θ), which is the unique solution in H1(Ω) to the
following variational problem: for all v ∈ H1(Ω),

(4.10)

∫
Ω

∇ůΩ,ε(θ) · ∇v dx+

∫
Γ∪ΓD

hε(dΓD )̊uΩ,ε(θ)v ds =∫
Ω

(div(fθ)v + (∇θ +∇θT − divθI)∇uΩ,ε · ∇v) dx−
∫

Γ∪ΓD

(div∂Ωθ) hε(dΓD )uΩ,εv ds

− 1

ε2

∫
Γ∪ΓD

h′(
dΓD

ε
)

(
−θ(x) · logx(pΣD (x))

dΓD (x)
− θ(pΣD (x)) · nΣD (pΣD (x))

)
uΩ,εv ds(x)

− 1

ε2

∫
Γ∪ΓD

h′(
dΓD

ε
)

(∫ dΣD
(x)

0

Π∂Ω
γ(t)(γ

′(t), γ′(t)) (θ · n)(γ(t)) dt

)
uΩ,εv ds(x),

where we have used Proposition 4.2 for the ‘Lagrangian’ derivative of the geodesic distance.
On the other hand, using a change of variables yields:

Jε(Ωθ) =

∫
Ω

|det(I +∇θ)|j(uΩθ,ε ◦ (Id + θ)) dx,

whence, differentiating with respect to θ and using the variational formulation for the adjoint system (4.8):

J ′ε(Ω)(θ) =

∫
Ω

divθj(uΩ,ε) dx+

∫
Ω

j′(uΩ,ε)̊uΩ,ε(θ) dx,

=

∫
Ω

divθj(uΩ,ε) dx−
∫

Ω

∇ůΩ,ε(θ) · ∇pΩ,ε dx

∫
Γ∪ΓD

hε(dΓD )̊uΩ,ε(θ)pΩ,ε ds,

Combining this with (4.10) eventually yields the desired result.

Proof of (4.9): To simplify notations, until the end of the proof, we take the shortcuts u ≡ uΩ,ε and p ≡ pΩ,ε.
We decompose the volumetric expression (4.7) as:

J ′ε(Ω)(θ) = I1(θ) + I2(θ),

where

I1(θ) =

∫
∂Ω

(j(u)− fp) θ · n ds−
∫

Ω

j′(u)∇u · θ dx+

∫
Ω

(divθI−∇θ −∇θT )∇u · ∇p dx

+

∫
Γ∪ΓD

div∂Ωθ hΩ,εup ds+

∫
Ω

f∇p · θ dx,

and

I2(θ) =
1

ε2

∫
Γ∪ΓD

h′(
dΓD

ε
)

(
−θ(x) · logx(pΣD (x))

dΓD (x)
− θ(pΣD (x)) · nΣD (pΣD (x))

)
up ds(x)
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+
1

ε2

∫
Γ∪ΓD

h′(
dΓD

ε
)

(∫ dΓD
(x)

0

Π∂Ω
σx(t)(σ

′
x(t), σ′x(t)) (θ · n)(σx(t)) dt

)
up ds(x).

Let us first rearrange the expression of I1(θ). To this end, using the same type of calculations as in the
proofs of Propositions 3.1 and 3.2, integration by parts together with the fact that u and p have at least H2

regularity near ΓD ∪ Γ yield straightforwardly:
(4.11)

I1(θ) =

∫
∂Ω

(j(u)− fp) θ · n ds−
∫

Ω

j′(u)∇u · θ dx+

∫
Ω

f∇p · θ dx+

∫
Γ∪ΓD

div∂Ωθ hΩ,εup ds

+

∫
Γ∪ΓD

(
∇u · ∇p θ · n− ∂u

∂n
∇p · θ − ∂p

∂n
∇u · θ

)
ds

+

∫
Ω

(−∇(∇u · ∇p) + ∆u∇p+ ∆p∇u+∇2p∇u+∇2u∇p) · θ dx

=

∫
∂Ω

(j(u)− fp) θ · n ds+

∫
Γ∪ΓD

div∂Ωθ hΩ,εup ds+

∫
Γ∪ΓD

(
∇u · ∇p θ · n− ∂u

∂n
∇p · θ − ∂p

∂n
∇u · θ

)
ds.

Denoting by D the last integrand in the above right-hand side, we obtain:

(4.12)

D := ∇u · ∇p θ · n− ∂u
∂n∇p · θ −

∂p
∂n∇u · θ,

= − ∂u∂n
∂p
∂nθ · n−

(
∂u
∂n∇∂Ωp · θ + ∂p

∂n∇∂Ωu · θ
)
,

= − ∂u∂n
∂p
∂nθ · n+ hε (u∇∂Ωp · θ + p∇∂Ωu · θ) .

On the other hand, integrating by parts on the surface ∂Ω (see again Proposition A.1), we obtain:

(4.13)

∫
∂Ω

div∂Ωθ hΩ,εup ds =

∫
ΓD∪Γ

hεκupθ · n ds−
∫

Γ∪ΓD

hε(p∇∂Ωu · θ + u∇∂Ωp · θ) ds

− 1

ε2

∫
Γ∪ΓD

h′(
dΓD

ε
)(∇∂ΩdΓD · θ)up ds.

Finally, combining (4.11) to (4.13) with the definitions of I1(θ) and I2(θ), as well as Proposition 4.1 for the
tangential gradient of the geodesic signed distance function, the desired result follows. �

4.4. Study of the convergence of the approximate model to the exact problem

In this section, we are interested in evaluating in which capacity the exact shape optimization problem (2.4)
is correctly approximated by its smoothed counterpart (4.6). More precisely, we investigate the convergence
of the objective function Jε(Ω) and that of its shape derivative J ′ε(Ω) to the exact versions J(Ω) and J ′(Ω)
respectively, for a fixed shape Ω ⊂ R2. In order to keep the exposition as simple as possible, we proceed
under the assumption (2.3), however we believe the result holds in greater generality, and notably in the 2d
case where ∂Ω is not flat in the neighborhood of ΣD; see Remark 2.4. Let us mention that a quite similar
problem is investigated from the theoretical viewpoint in [17], with stronger conclusions. Our first result in
this direction is the following:

Theorem 4.2. Under assumption (2.3), the function uΩ,ε converges to uΩ strongly in H1(Ω), and the
following estimate holds:

(4.14) ||uΩ,ε − uΩ||H1(Ω)≤ Csεs||f ||L2(Ω),

for any 0 < s < 1
4 , where the constant Cs depends on s.

Proof. The error rε := uΩ,ε − uΩ is the unique solution in H1(Ω) to the system:

(4.15)

{ −∆rε = 0 in Ω,
∂rε
∂n + hεrε = −∂uΩ

∂n − hεuΩ on ∂Ω,

which rewrites, under variational form:

(4.16) ∀v ∈ H1(Ω),

∫
Ω

∇rε · ∇v dx+

∫
∂Ω

hεrεv ds = −
∫
∂Ω

∂uΩ

∂n
v ds−

∫
ΓD∪Γ

hεuΩv ds.
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Note that the above variational problem is well-posed, as follows from the Lax-Milgram lemma and the
following Poincaré-like inequality (which is proved by the standard contradiction argument):

(4.17) ∀v ∈ H1(Ω), ||v||2H1(Ω)≤ C
(∫

Ω

|∇v|2 dx+

∫
ΓD

v2 ds

)
;

here and throughout the proof, C stands for a positive constant which is independent of ε. The estimate
(4.14) is then obtained within two steps.

Step 1: We prove that rε is bounded in H1(Ω), uniformly with respect to ε.
To this end, we estimate the first term in the right-hand side of (4.16) as:

(4.18)

∣∣∣∣∫
∂Ω

∂uΩ

∂n
v ds

∣∣∣∣ ≤ C ∣∣∣∣∣∣∣∣∂uΩ

∂n

∣∣∣∣∣∣∣∣
H−1/2(∂Ω)

||v||H1(Ω),

where we have the control ∣∣∣∣∣∣∣∣∂uΩ

∂n

∣∣∣∣∣∣∣∣
H−1/2(∂Ω)

≤ C||f ||L2(Rd),

as follows from the Green’s formula (3.6) applied to the function uΩ in E(∆, L2(Ω)) (see (3.5)). We are thus
left with the task of estimating the second term in the right-hand side of (4.16), that is, the integral:∫

ΓD∪Γ

hεuΩv ds =

∫
Γ

hεuΩv ds.

To achieve this goal, recall that, since uΩ ∈ Hs(Ω) for 1
2 < s < 3

2 , and owing to the continuity of the trace

u 7→ u|∂Ω from Hs(Ω) into Hs− 1
2 (∂Ω), for s > 1

2 (see e.g. [44], Th. 3.37), it comes that uΩ ∈ Hs− 1
2 (∂Ω),

and in fact, using (2.2), that uΩ ∈ H̃s− 1
2 (ΓN ∪ Γ). Using now the characterization (2.10) of the space

H̃s− 1
2 (ΓN ∪ Γ), it follows that for all 0 < σ < 1, the function 1

ρσ uΩ belongs to L2(Γ), where we have

introduced the weight ρ(x) := min(|x− s0|, |x− s1|).
Using this fact in combination with the Sobolev embedding from H1/2(Γ) into Lq(Γ) for any 1 ≤ q <∞

(see e.g. [1]), we get successively:

(4.19)

∣∣∣∣∫
Γ

hεuΩv ds

∣∣∣∣ =

∣∣∣∣∫
Γ

ρσhε
1

ρσ
uΩv ds

∣∣∣∣ ,
≤

(∫
Γ

ρpσhpε ds

) 1
p
(∫

Γ

1

ρ2σ
u2

Ω ds

) 1
2
(∫

Γ

vq ds

) 1
q

,

≤
(∫

Γ

ρpσhpε ds

) 1
p

||uΩ||H̃σ(ΓN∪Γ)||v||Lq(Γ),

≤ C

(∫
Γ

ρpσhpε ds

) 1
p

||uΩ||H̃σ(ΓN∪Γ)||v||H1(Ω),

for any p > 2 (the constant C depends on p), where we have used Hölder’s inequality with 1
2 + 1

p + 1
q = 1 to

pass from the first line to the second one.
To proceed further, let us decompose Γ as

Γ = Γε ∪ U0 ∪ U1, where Ui := {x ∈ Γ, |x− si|< ε} , and Γε := {x ∈ Γ, ρ(x) > ε} .
Taking advantage of the structure (4.3) of hε, the first integral in the right-hand side of (4.19) is of the form∫

Γ

ρpσhpε ds =

∫
U1

ρpσhpε ds+

∫
U2

ρpσhpε ds+

∫
Γε

ρpσhpε ds

≤ C

εp

∫ ε

0

tpσh(
t

ε
)pdt,

≤ Cεpσ+1

εp

∫ 1

0

tpσh(t)p dt,

≤ Cεp(σ−1)+1.
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Therefore, (∫
Γ

ρpσhpε ds

) 1
p

≤ Cεσ−1+ 1
p ;

now, choosing p > 2 and σ < 1 adequately and using (2.11), (2.13) and (4.19), we have proved that, for all
s < 1

2 , there exists a constant Cs:

(4.20)

∣∣∣∣∫
Γ

hεuΩv ds

∣∣∣∣ ≤ Csεs||f ||L2(Rd)||v||H1(Ω).

Eventually, taking v = rε as a test function in (4.16), we obtain the standard a priori estimate for rε:

(4.21)

∫
Ω

|∇rε|2 dx+

∫
∂Ω

hεr
2
ε ds = −

∫
∂Ω

∂uΩ

∂n
rε ds−

∫
Γ

hεuΩrε ds.

Combining (4.21) with the estimates (4.18) and (4.20), the Poincaré inequality (4.17) and the fact that
hε ≥ 1 on ΓD (see (4.4)), it follows that there exists a constant C, which does not depend on ε, such that:

(4.22) ||rε||H1(Ω)≤ C||f ||L2(Rd).

Step 2: We now turn to the proof of (4.14) so to speak.
Multiplying both sides of (4.21) by ε and using (4.4), we obtain:

(4.23)

||rε||2L2(ΓD) ≤ Cε

∫
ΓD

hεr
2
ε ds,

≤ Cε

(∫
Ω

|∇rε|2 dx+

∫
∂Ω

hεr
2
ε ds

)
≤ Cε

∣∣∣∣∫
∂Ω

∂uΩ

∂n
rε ds

∣∣∣∣+ Cε

∣∣∣∣∫
Γ

hεuΩrε ds

∣∣∣∣ ,
≤ Cε||f ||2L2(Rd),

where we have used the estimate (4.20) with v = rε and the bound (4.22) over rε.
Interpolating between (4.22) and (4.23) (see for instance [40]), for all 0 ≤ s ≤ 1

2 , s = (1− t)0 + 1
2 t, there

exists a constant Cs such that:

||rε||Hs(ΓD)≤ Cs||rε||1−tL2(ΓD)||rε||tH 1
2 (ΓD)

≤ Csε
1
2−s||f ||L2(Rd).

Now, since uΩ ∈ Hs(Ω) for 1
2 < s < 3

2 , it comes that ∂uΩ

∂n ∈ Hs− 3
2 (∂Ω) (see [16], Lemma 4.3), and so

(4.24)

∣∣∣∣∫
ΓD

∂uΩ

∂n
rε ds

∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∂uΩ

∂n

∣∣∣∣∣∣∣∣
Hs−

3
2 (ΓD)

||rε||
H

3
2
−s(ΓD)

≤ Csεs−1||f ||2L2(Rd),

for all 1 < s < 3
2 . Returning to (4.21) and using (4.17), (4.20) and (4.24), we now see that, for any s < 1

2

and σ < 1
2 , there exists a constant C > 0 (depending on s and σ) such that:

||rε||2H1(Ω) ≤ C

(∫
Ω

|∇rε|2 ds+

∫
ΓD

r2
ε ds

)
≤ C

(
εs||f ||2L2(Rd)+ε

σ||f ||L2(Rd)||rε||H1(Ω)

)
,

Hence (4.14) holds, and this terminates the proof. �

As a straightforward consequence of Theorem 4.2, we obtain:

Corollary 4.1. Under assumption (2.3), for any given admissible shape Ω ∈ UDN, the approximate shape
functional Jε(Ω) converges to its exact counterpart J(Ω).

Let us now turn to the convergence of the derivative of Jε(Ω).

Theorem 4.3. Under Assumption (2.3), for a given admissible shape Ω ∈ UDN, the approximate shape
derivative J ′ε(Ω) converges to its exact counterpart J ′(Ω) in the sense that:

sup
θ∈ΘDN,

||θ||ΘDN
≤1

|J ′ε(Ω)(θ)− J ′(Ω)(θ)| = 0.
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Proof. We rely on the volumetric expressions (3.13) and (4.7) of the shape derivatives J ′(Ω)(θ) and J ′ε(Ω)(θ).
In our context where (2.3) is satisfied, the boundary ∂Ω is flat in the neighborhood of ΣD = {s0, s1}; hence,
for ε > 0 small enough, the second fundamental form of ∂Ω vanishes where hε > 0, and the normal vectors
nΣD (s0), nΣD (s1) to ΣD coincide with the tangent vectors ±τ(s0) and ±τ(s1) to ∂Ω. Then, the approximate
shape derivative J ′ε(Ω) supplied by Proposition 4.3 simply boils down to:

(4.25)

J ′(Ω)(θ) =

∫
∂Ω

(j(uΩ,ε)− fpΩ,ε) θ · n ds−
∫

Ω

j′(uΩ,ε)∇uΩ,ε · θ dx+

∫
Ω

(divθI−∇θ −∇θT )∇uΩ,ε · ∇pΩ,ε dx

+

∫
Γ∪ΓD

div∂ΩθhεuΩ,εpΩ,ε ds+
1

ε2

∫
Γ∪ΓD

h′(
x− s0

ε
)(θ(x)− θ(s0)) · nΣD (s0) uΩ,εpΩ,ε ds(x)

+
1

ε2

∫
Γ∪ΓD

h′(
x− s1

ε
)(θ(x)− θ(s1)) · nΣD (s1) uΩ,εpΩ,ε ds(x) +

∫
Ω

f∇pΩ,ε · θ dx.

Given the expression (3.13) of the exact shape derivative J ′(Ω), and in light of Theorem 4.2, it is obviously
enough to show that the three integrals

I1(θ) :=

∫
Γ∪ΓD

divΓθ hεuΩ,εpΩ,ε ds, I2(θ) :=
1

ε2

∫
Γ∪ΓD

h′(
x− s0

ε
)(θ(x)− θ(s0)) · τ(s0)uΩ,εpΩ,ε ds(x),

and

I3(θ) :=
1

ε2

∫
Γ∪ΓD

h′(
x− s1

ε
)(θ(x)− θ(s1)) · τ(s1) uΩ,εpΩ,ε ds(x)

converge to 0 as ε→ 0, uniformly with respect to θ when ||θ||ΘDN≤ 1.
As far as the integral I1(θ) is concerned, Theorem 4.2 and the facts that −∆uε = −∆uΩ = f imply that

∂uΩ,ε

∂n
→ ∂uΩ

∂n
in H−1/2(∂Ω), and uΩ,ε → uΩ in H1/2(∂Ω) as ε→ 0;

similar convergence results hold about pΩ,ε and pΩ. Therefore,

(4.26)

∫
Γ∪ΓD

divΓθ hΩ,εuΩ,εpΩ,ε ds
ε→0−−−→ −

∫
Γ∪ΓD

divΓθ
∂uΩ

∂n
pΩ ds,

where the last integral may be decomposed as∫
Γ∪ΓD

div∂Ωθ
∂uΩ

∂n
pΩ ds =

∫
ΓD

div∂Ωθ
∂uΩ

∂n
pΩ ds+

∫
Γ

div∂Ωθ
∂uΩ

∂n
pΩ ds = 0,

as follows from the boundary conditions satisfied by uΩ and pΩ. This convergence is easily seen to be uniform
with respect to θ ∈ ΘDN, ||θ||ΘDN

≤ 1.
Let us now turn to the treatment of I2(θ), that of I3(θ) being on all points identical. We assume for

notation simplicity that s0 = 0, and again, we identify the neighborhood of s0 in ∂Ω (which is a horizontal
line) with a subset of the real line R. The key remark in the analysis of I2(θ) is that there exists a vector

field θ̃(x) vanishing identically on ΓN such that (θ(x)− θ(0)) · τ(0) = x · θ̃(x), as is easily seen from a Taylor
expansion at 0. This will allow to improve the available convergence rates of uΩ,ε and pΩ,ε in the integrand
of I2(θ). More precisely, using integration by parts on the boundary ∂Ω, I2(θ) rewrites:

I2(θ) =

∫
Γ∪ΓD

∂hε
∂τ

x · θ̃(x)uΩ,εpΩ,ε ds,

= −
∫

Γ∪ΓD

hε
∂

∂τ

(
x · θ̃(x)uΩ,εpΩ,ε

)
ds,

= −
∫

Γ∪ΓD

hεθ̃(x) ·
(
x
∂uΩ,ε

∂τ
pΩ,ε + x

∂pΩ,ε

∂τ
uΩ,ε

)
ds−

∫
Γ∪ΓD

hεuΩ,εpΩ,ε
∂(x · θ̃(x))

∂τ
ds

= −
∫

Γ∪ΓD

hεθ̃(x) ·
(
x
∂uΩ,ε

∂τ
pΩ,ε + x

∂pΩ,ε

∂τ
uΩ,ε

)
ds+Rε(θ),

where Rε(θ) is a remainder (possibly changing from one line to the next) gathering several integrals which are
proved to converge to 0 as ε→ 0, uniformly with respect to θ when ||θ||ΘDN

≤ 1 owing to similar calculations
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to those involved in the above proof of convergence of I1(θ) (see (4.26)). Then, using the boundary conditions
satisfied by uΩ,ε and pΩ,ε,

I2(θ) =

∫
Γ∪ΓD

(
ρ(x)

∂uΩ,ε

∂τ

∂pΩ,ε

∂n
+ ρ(x)

∂pΩ,ε

∂τ

∂uΩ,ε

∂n

)(
x

ρ(x)
· θ̃(x)

)
ds+Rε(θ),

=

∫
Γ∪ΓD

(
∂(ρuΩ,ε)

∂τ

∂pΩ,ε

∂n
+
∂(ρpΩ,ε)

∂τ

∂uΩ,ε

∂n

)(
x

ρ(x)
· θ̃(x)

)
ds+Rε(θ),

where we have posed ρ(x) = |x| and the same calculations as in (4.26) have been used.

At this point, we know from Theorem 4.2 that
∂uΩ,ε

∂n (resp.
∂pΩ,ε

∂n ) converges to ∂uΩ

∂n (resp. ∂pΩ

∂n ) in

H−1/2(∂Ω). Hence, the proof of the convergence of I2(θ), and thereby that of Theorem 4.3, follows from the
following results:

(4.27)
∂(ρuΩ,ε)

∂τ

ε→0−−−→ ∂(ρuΩ)

∂τ
in H1(Ω), and

∂(ρpΩ,ε)

∂τ

ε→0−−−→ ∂(ρpΩ)

∂τ
in H1(Ω),

where τ stands for any smooth extension to the whole Ω of the tangent vector τ to ∂Ω; see Appendix A. We
now sketch the proof of this last statement focusing on the case of uΩ,ε; the counterpart result as regards
pΩ,ε being proved in a similar fashion.

The convergence (4.27) actually follows from exactly the same arguments as that in the proof of (4.14). At
first, using the representation of Proposition 2.1 (or more exactly a higher-order avatar of it, see Remark 2.3),
observe that the function ρuΩ belongs to Hs(Ω) for all 0 ≤ s < 5

2 . Letting the notation rε := uΩ,ε − uΩ,

and using test functions of the form ρ(x)v ∈ H1(Ω) for v ∈ H1(Ω) inside the variational formulation (4.16)
of rε, we see that ρrε satisfies:

(4.28) ∀v ∈ H1(Ω),

∫
Ω

∇(ρrε) · ∇v dx+

∫
Γ∪ΓD

hερrεv ds =

−
∫

Γ

hερuΩv ds−
∫

ΓD

∂uΩ

∂n
ρv ds−

∫
Ω

∇ρ · (v∇rε − rε∇v) dx.

Now using test functions of the form ∂v
∂τ , v ∈ H1(Ω) in (4.28), then integrating by parts yields the following

variational formulation for qε := ∂(ρrε)
∂τ :

(4.29) ∀v ∈ H1(Ω), −
∫

Ω

∇qε · ∇v dx−
∫

Γ∪ΓD

hεqεv ds =

∫
∂Ω

∂hε
∂τ

ρrεv ds+

∫
Γ

∂

∂τ
(hερ(x)uΩ)v ds

+

∫
ΓD

∂

∂τ

(
ρ
∂uΩ

∂n

)
v ds+ 〈Fε, v〉H1(Ω)∗,H1(Ω),

where the remainder Fε is a sequence of linear forms in the dual H1(Ω)∗ of H1(Ω) which converges to 0 in
the strong dual topology.

Finally, using the result of Theorem 4.2, together with very similar calculations than those involved in its
proof, the desired result (4.27) follows, which concludes the proof. �

5. Numerical illustrations

In this final section we present several numerical illustrations of the previous mathematical developments.
The examples discussed below take place in situations which are variations of the basic model introduced
in Section 2.1. The notations may differ slightly depending on the context at stake, and so do the involved
numerical methods; the precise description of the considered setting is adapted to each particular case.

One common feature of our examples is that all of the simulations are done using the finite element method
in FreeFem++ [32] with Lagrange P1 finite elements. When it comes to operations related to the level set
method we used our own C++ implementation interfaced within FreeFem++. Finally, all computations were
done on a basic laptop.

We start in Section 5.1 with a fairly simple academic example which aims to validate the approximation
procedure of Section 4 for optimization problems featuring the transition between regions supporting homo-
geneous Dirichlet and Neumann boundary conditions. We then turn in Sections 5.2 and 5.3 to more realistic
applications in the context of the linearized elasticity equations. Specifically, Section 5.3 deals with problems
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where both the shape and the region of its boundary supporting Dirichlet boundary conditions are subject
to optimization.

5.1. An academic, validation example

We start with a toy example, meant to assess the validity of the approximation process of Section 4 for
the optimization of the transition ΣD between regions of the shape Ω bearing homogeneous Dirichlet and
Neumann boundary conditions.

We consider a rectangular domain Ω = (−1, 1)× (− 1
2 ,

1
2 ), as depicted on Fig. 4 (left), which is filled with

a material with inhomogeneous conductivity a ∈ L∞(Ω) satisfying the conditions

m ≤ a(x) ≤M a.e. x ∈ Ω,

for some constants 0 < m ≤ M . To be quite precise, in the present application, a(x) takes the values 1
inside a (fixed) subset K ⊂ Ω, and 100 outside K. A constant, unit body source is acting inside Ω, and the
boundary ∂Ω is divided into two distinct regions ΓD and Γ supporting respectively homogeneous Dirichlet
and Neumann boundary conditions. The region ΓD is parametrized by two real parameters α, β, and is
thenceforth denoted by Γα,β ; it is of the form:

(5.1) Γα,β =

{(
α+ t,−1

2

)
, t ∈ (−w,w)

}
∪
{(

β + t,
1

2

)
, t ∈ (−w,w)

}
;

in other terms, Γα,β is the reunion of two intervals with fixed width w > 0, which are respectively centered
at the points (α,− 1

2 ) and (β, 1
2 ) ∈ ∂Ω, where α, β ∈ (−1 +w, 1−w). In this situation, the voltage potential

uα,β inside Ω arises as the unique solution in H1
Γα,β

(Ω) to the conductivity equation:

(5.2)


−div(a(x)∇uα,β) = 1 in Ω,

uα,β = 0 on Γα,β ,
∂uα,β
∂n = 0 on Γ.

Our purpose is to optimize the position (α, β) of the two intervals defining Γα,β so as to minimize the
average potential inside the region K; that is, we considered the following optimization problem of two real
parameters:

(5.3) inf
(α,β)∈(−1+w,1−w)2

J(α, β), where J(α, β) :=

∫
K

uα,β dx.

We first perform a brute-force calculation of all the possible values J(Ω) when the couple (α, β) runs
through the set (−1 +w, 1−w)2. The results are reported on Fig. 4. In particular, it is visible that J(α, β)
possesses two local minima, near the points (−0.5, 0.5) and (0.5,−0.5), respectively.
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Figure 4. (Left) Setting of the validation example of Section 5.1; (right) value of the
objective function for all admissible positions of the boundary ΓD, parametrized by α and β.
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According to the methodology developed in Section 4, we now approximate the problem (5.3) by that

(5.4) inf
(α,β)∈(−1+w,1−w)2

Jε(α, β), where Jε(α, β) :=

∫
K

uα,β,ε dx,

featuring the solution uα,β,ε ∈ H1(Ω) to the following smoothed counterpart of (5.2):

(5.5)

{ −div(a(x)∇uα,β,ε) = 1 in Ω,
∂uα,β,ε
∂n + hεuα,β,ε = 0 on ∂Ω.

In (5.5), the interpolation profile hε is constructed as in (4.3), in which the small parameter ε is chosen of
the order of the mesh size.

The partial derivatives of Jε(α, β) are easily calculated thanks to Proposition 4.3, taking advantage of the
particularly simple form (5.1) of the optimized region ΓD of ∂Ω; for instance, one has:

∂Jε
∂α

(α, β) = − 1

ε2

∫
L+
α

h′
(
t− α− w

ε

)
uα,β,εpα,β,ε dt+

1

ε2

∫
L−α

h′
(−t+ α− w

ε

)
uα,β,εpα,β,ε dt,

where L+
α , L−α are the one-dimensional sets defined by L+

α =
{

(t,− 1
2 ), t > α

}
, L−α =

{
(t,− 1

2 ), t < α
}

(with
a little abuse of notations, L±α are identified to the corresponding subsets of the real line). In the above
expression, the adjoint state pα,β,ε is the unique solution in H1(Ω) to the problem:{ −div(a(x)∇pα,β,ε) = −1K in Ω,

∂pα,β,ε
∂n + hεpα,β,ε = 0 on ∂Ω,

where 1K is the characteristic function of K. A similar expression holds for the partial derivative ∂Jε
∂β .

We solve the approximate problem (5.4) by means of a standard gradient algorithm, starting from several
different initial configurations (α, β) as regards the two connected components of Γα,β . The results are
reported in Fig. 5: in particular, depending on the initialization, the boundary Γα,β smoothly converges
to an optimized position which matches the two local minima of the exact functional J(α, β) (see again
Fig. 4, (right)). This indicates a good agreement between the exact optimization problem (5.3) and its
approximation (5.4), and notably between the exact and approximate derivatives of the optimized criterion.
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Figure 5. Histories of (left) the objective function Jε(α, β) and (right) the locations α, β
of the components of the optimized boundary Γα,β in the validation example of Section 5.1.
Three experiments are performed, with different initial values (α, β) (associated to red, green
and blue lines).
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5.2. Optimization of the repartition of clamps and locators on the boundary of an elastic
structure

Our second example deals with the application of the results of Sections 3 and 4 to the problem of optimal
repartition of clamps and locators on an elastic structure; see [11], Chap. 9, for a presentation of the physical
context and [36, 41, 50] for optimization studies conducted in this context.

5.2.1. Description of the physical setting and of the optimization problem

In this example, Ω stands for a three-dimensional rectangular beam with size 4× 1× 1, filled with a linearly
elastic material, whose Hooke’s law A is defined by, for any symmetric matrix e with size 3× 3:

Ae = 2µe+ λtr(e),

where λ, µ are the Lamé parameters of the material; in our context

(5.6) λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

1 + ν

with E = 100, ν = 0.3. During its construction, Ω receives the vertical load gtool = (0, 0,−1) from the
manufacturing tool, which is applied on the upper side ΓT of its boundary. So that the structure do not
move under this effort, a clamping-locator system is used: Ω is attached on a subregion ΓD of the left-hand
side ΛD of ∂Ω (locator), while it receives a prescribed load g = (0,−1, 0) on another region ΓN of the
right-hand side ΛN ⊂ ∂Ω (clamping); the latter is exerted by an external mechanical device pressing against
the structure; see Fig. 6 for a sketch of the situation.

�T

�N

�D g

gtool

e1

e2

e3

Figure 6. Setting of the example of Section 5.2 about the optimal repartition of clamps and
locators on the boundary of an elastic structure.

In this context, the displacement of Ω is the unique solution uΓD,ΓN ∈ H1
ΓD

(Ω)3 to the following linear
elasticity system:

(5.7)


−div(Ae(uΓD,ΓN ) = 0 in Ω,

uΓD,ΓN = 0 on ΓD,
Ae(uΓD,ΓN )n = gtool on ΓT ,
Ae(uΓD,ΓN )n = g on ΓN ,
Ae(uΓD,ΓN )n = 0 on Γ,

where e(u) := 1
2 (∇u+∇uT ) is the strain tensor associated to a vector field u : Ω→ R3.

Our aim is to optimize the positions ΓN and ΓD of clamps and locators on the surface of the structure
Ω, whose shape itself is not subject to optimization, so that the displacement of Ω under the action of gtool
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be minimal. We also add constraints on the size of the regions ΓN ,ΓD and on the perimeter of ΓD via fixed
penalizations of the objective function. More precisely, we consider the optimization problem:

(5.8) inf
ΓD⊂ΛD
ΓN⊂ΛN

J(ΓD,ΓN ), where J(ΓD,ΓN ) =

∫
Ω

|uΓD,ΓN |2 dx+ `D

∫
ΓD

ds+ `N

∫
ΓN

ds+ `KD

∫
ΣD

ds,

where `D, `N and `KD are fixed Lagrange multipliers: `D = 2.10−2, `N = 10−3, `KD = 10−2. In the
framework of Hadamard’s method (see Section 2.2), we consider deformations θ such that:

(5.9) θ · n = 0 on ∂Ω, and θ = 0 on ∂Ω \ (ΛD ∪ ΛN ).

The numerical resolution of this problem relies on the knowledge of the shape derivatives of the partial
mappings ΓD 7→ J(ΓD,ΓN ) and ΓN 7→ J(ΓD,ΓN ). In order to accomodate the presence of the transition
ΣD := ΓD ∩Γ ⊂ ΛD between homogeneous Dirichlet and Neumann boundary conditions, we follow the lead
of Section 4 and consider the following approximate counterpart of (5.10):

(5.10) inf
ΓD⊂ΛD
ΓN⊂ΛN

Jε(ΓD,ΓN ), where Jε(ΓD,ΓN ) :=

∫
Ω

|uΓD,ΓN ,ε|2 dx+ `D

∫
ΓD

ds+ `N

∫
ΓN

ds+ `KD

∫
ΣD

ds,

where uΓD,ΓN ,ε is the solution in H1(Ω)3 to the system:

(5.11)


−div(Ae(uΓD,ΓN ,ε) = 0 in Ω,

Ae(uΓD,ΓN ,ε) + hεuΓD,ΓN ,ε = 0 on ΛD,
Ae(uΓD,ΓN ,ε)n = gtool on ΓT ,
Ae(uΓD,ΓN ,ε)n = g on ΓN ,
Ae(uΓD,ΓN ,ε)n = 0 on Γ \ ΛD,

featuring the interpolation profile hε in (4.3).
Thence, the calculation of the shape derivative of ΓN 7→ Jε(ΓD,ΓN ) is provided by Section 3.1, or more

exactly, the straightforward adaptation of its proof to the present linearized elasticity context. The shape
derivative of the smoothed mapping ΓD 7→ Jε(ΓD,ΓN ) is calculated exactly as in the proof of Proposition 4.3
(or by using Céa’s formal method), and we omit the formula for brevity.

5.2.2. Numerical representation of the regions ΓN and ΓD

When it comes to the numerical representation of the optimized subsets ΓD and ΓN of the lateral bound-
aries ΛD and ΛN ⊂ ∂Ω, we rely on the level set method, pioneered in [48], then introduced in the shape
optimization context in [5, 52, 55].

Let us for instance provide a little more details about the numerical representation of ΓD—the same
ingredients being used in the case of ΓN . The region ΓD is described as the negative subdomain of a scalar
‘level set’ function φ : ΛD → R, defined on the (planar) lateral boundary ΛD, that is:

∀x ∈ ΛD,

 φ(x) < 0 if x ∈ ΓD,
φ(x) = 0 if x ∈ ΣD,
φ(x) > 0 otherwise.

The motion in (pseudo) time of ΓD ≡ ΓD(t) according to a velocity field with normal component v(t, x)
(which in our case is associated to the shape gradient of the optimized functional Jε(ΓD,ΓN ) in (5.10)) is
then described in terms of an associated level set function φ(t, ·) by the following Hamilton-Jacobi equation:

(5.12)
∂φ

∂t
(t, x) + v(t, x)|∇φ(t, x)| = 0, for t > 0, x ∈ ΛD.

In practice, (5.12) is discretized in time, and solved on a Cartesian grid of ΛD by means of the second-order
scheme presented in [51], §6.4.

Last but not least, let us mention that at each iteration of the process, the level set function φ is reinitialized
as the signed distance function dΓD to the actual region ΓD by using the fast marching algorithm (see for
instance [51], Chap. 8). On the one hand, this operation is well-known to be a key ingredient in the numerical
performance of the level set method (see again [51]); on the other hand, the signed distance function dΓD is
needed to calculate the coefficient hε in (5.11) (see again (4.3)).
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5.2.3. Numerical application

Let us now consider a concrete example in the previous context. A tetrahedral mesh of Ω composed of 45000
vertices is used, and the optimization problem (5.10) is solved for the positions of ΓD and ΓN while, again, the
shape of Ω itself is unchanged. Relying on the level set method of Section 5.2.2 for representing ΓD and ΓN ,
we use a standard gradient algorithm based on the knowledge of the shape derivatives of ΓD 7→ Jε(ΓD,ΓN )
and ΓN 7→ Jε(ΓD,ΓN ); the computation takes about 8 hours and the results are presented on Fig. 7.

(a) Design of clamps at iteration 1 (b) Design of locators at iteration 1

(c) Design of clamps at iteration 20 (d) Design of locators at iteration 20

(e) Design of clamps at iteration 100 (f) Design of locators at iteration 100

Figure 7. Initial, intermediate and optimized designs of clamps and locators in the test-
case of Section 5.2.

We notice in particular that the optimized design of the clamps is concentrated under ΓT whereas the
locators are symmetrically positioned at both ends of the beam. The deformed configurations of the initial
and optimized shapes are displayed in Fig. 8.

(a) Deformed configura-

tion of Ω with the initial
configuration of clamps

and locators

(b) Deformed configura-

tion of Ω with the op-
timized configuration of

clamps and locators
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Figure 8. Details of the optimization example of clamps and locators of Section 5.2.
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5.3. Joint optimization of the shape and the regions supporting different types of boundary
conditions

We finally turn to examples where the shape Ω of a 2d structure is optimized at the same time as the region
ΓD of its boundary supporting homogeneous Dirichlet boundary conditions. For simplicity, the region ΓN
supporting inhomogeneous Neumann boundary conditions is fixed, which means that we are exactly in the
setting of Sections 3.2 and 4: in all the examples in this subsection, we consider the following shape and
topology optimization problem:

(5.13) inf
Ω⊂D

ΓD⊂ΛD∩∂Ω

J(Ω), where J(Ω) = j(uΩ) + `V

∫
Ω

ds+ `D

∫
ΓD

ds

is a weighted sum of a case-dependent objective defined from a smooth function j, involving the elastic
displacement uΩ of the shape, solution to (5.11), and of constraints on both the volume of shapes, and on
the area of the Dirichlet boundary ΓD (the latter constraints being enforced by means of fixed Lagrange
multipliers `V , `D). Notice that in the statement (5.13) of the considered shape optimization problem, we
have committed the same abuse of notations as in Section 2.2: uΩ and J(Ω) depend on both the overall
shape Ω of the structure and the position ΓD of the region supporting homogeneous Dirichlet boundary
conditions (the latter being constrained to belong to a fixed region ΛD of the computational domain D),
while only the first dependence is explicit.

As regards the numerical setting, the computational domain D is equipped with a fixed mesh. Each shape
Ω ⊂ D is represented by the level set method, i.e. Ω is described via a level set function φ : D → R such
that:

∀x ∈ D,

 φ(x) < 0 if x ∈ Ω,
φ(x) = 0 if x ∈ ∂Ω,
φ(x) > 0 otherwise;

see Section 5.2.2 above for more details about the level set method.
Since the shape Ω is not discretized (it is only known via the datum of a level set function), no com-

putational mesh is available to calculate the elastic displacement uΩ by means of a standard finite element
method. To alleviate this issue, the ‘ersatz material trick’ (see e.g. [3, 5, 12]) is used to approximate the
considered linearized elasticity systems posed on Ω with systems posed on D as a whole: uΩ is approximated
by the solution u to:

−div(Aηe(u)) = 0 in D,
u = 0 on ΓD,

Aηe(u)n = g on ΓN ,
Aηe(u) = 0 on Γ,

where Aη(x) :=

{
A if x ∈ Ω,
ηA otherwise,

and η is a small parameter so that the void region D \ Ω is filled with a very soft material instead of
void (typically, we take η = 10−3). In this section the Lamé parameters are still given by (5.6) but using
E = 1, ν = 0.3.

As far as the representation of the optimized part ΓD of ∂Ω is considered, it is constrained to belong
to a planar subset ΛD of the boundary ∂D in the examples of Sections 5.3.1 and 5.3.2. In this case, it is
represented by means of a level set function on a subset of the real line. In Section 5.3.3, the set ΛD is a
whole region of D. Then, ΓD is represented by means of a different level set function ψ : ΛD → R from that
φ used to represent Ω. Both cases are simple adaptations from the general idea outlined in Section 5.2.2; see
also [57, 56] about this type of representation.

The same process as before is applied to approximate the transition region ΣD between homogeneous
Dirichlet and Neumann boundary condition in the formulation of Problem (5.13), and we do not repeat the
details for brevity.

5.3.1. Optimization of the shape of a two-dimensional bridge and its supports

We first consider the joint optimization of the shape of a two-dimensional bridge Ω and of the location of
its fixations. The situation is that depicted in Fig. 9: Ω is enclosed inside a two-dimensional computational
domain D meshed with 80537 triangles; a unit vertical load is distributed along the upper deck ΓN , a
neighborhood of which is imposed to be part of Ω. We optimize Ω and the set of fixations ΓD (which is
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restrained to a subset ΛD of the lower part of ∂D) with respect to the elastic compliance of the configuration;
more precisely, the optimization problem reads as (5.13) with the expressions:

j(u) =

∫
ΓN

g · u ds, `V = 50, `D = 10.

2

1
2

1
2

1

0.1

ΓN

ΛDΛD

g = (0,-1)

Figure 9. Setting of the 2d bridge test-case of Section 5.3.1; the dashed rectangle corre-
sponds to the deck of the bridge, which is a non-optimizable area of Ω.

We perform two optimization experiments, corresponding to different initial states as for Ω and ΓD; the
results are reported in Fig. 10 and Fig. 11. In particular, we observe very different optimized topologies
depending on the initial definition of the fixation region ΓD.

(a) Iteration 1 (b) Iteration 25 (c) Iteration 100

(d) Deformed configuration of the opti-

mized shape
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Figure 10. Concurrent optimization of the shape and the fixation regions of the bridge of
Section 5.3.1, with an initial configuration for ΓD composed of two line segments.
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(a) Iteration 1 (b) Iteration 25 (c) Iteration 100
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mized shape

20

25

30

35

40

45

50

55

0 10 20 30 40 50 60 70 80 90 100

O
b

je
ct

iv
e

va
lu

e

Number of iterations

Objective

(e) Convergence history

Figure 11. Concurrent optimization of the shape and the fixation regions of the bridge of
Section 5.3.1, with an initial configuration for ΓD composed of 18 line segments.

5.3.2. Optimization of the shape of a force inverter and of its fixations

Our second example deals with the optimization of a force inverter mechanism, that is, a device which convert
a pulling force into a pushing one. The details of the test-case are presented on Fig. 12: the considered shapes
Ω are contained in a box D meshed with 78408 triangles; they are subjected to a given load g = (−1, 0)
applied on a non optimizable subset ΓN of their left-hand side, and they are attached on another subset ΓD
of ∂Ω, contained in the upper and lower sides of ∂D. In this context, the aim is to optimize the overall shape
Ω and the location of the fixations ΓD so that the elastic displacement of Ω on a non optimizable subset ΓT
is maximized. The symmetry of the optimized shapes with respect to the horizontal axis is enforced.

g = (-1,0)

1

10.15

0.05

ΛD

ΛD

ΓN
ΓT

Figure 12. Setting of the force inverter test-case of Section 5.3.2. The two dashed rectan-
gles represent non optimizable areas.

More precisely, in the general formulation of the problem (5.13), we set:

j(u) = 10−1

∫
ΓT

|u− (1, 0)|2 ds− 10−3

∫
ΓN

u1 ds, `V = 5× 10−3, `D = 0
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where the little penalization on the compliance was added to make it easier to obtain a connected structure.

(a) Iteration 1 (b) Iteration 50 (c) Iteration 100

(d) Deformed configuration of

the optimized shape
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Figure 13. Concurrent optimization of the shape and the fixation regions of the force in-
verter of Section 5.3.2, with an initial configuration for ΓD composed of 8 line segments.

5.3.3. Optimization of the shape and the support regions of a two-dimensional cantilever beam

Our last example deals with the concurrent optimization of the shape of a classical 2d cantilever beam and
its fixation zones. The considered shapes Ω are contained in a fixed computational domain D, meshed with
39402 triangles. They are attached on the upper and lower left corners, as well as on a region ΓD which
is subjected to optimization, and which is constrained to be contained inside a given region DD ⊂ D. A
vertical load g = (0,−1) is applied on a non optimizable subset ΓN of the right-hand boundary; see Fig. 15.
Notice that, contrary to the previous two examples, the region ΓD is not a subset of a region ΛD ⊂ ∂D but it
is allowed to evolve freely inside a region of D. This demands a little adaptation of the framework described
above (another level set function is used to identify the region ΓD).

Symmetry with respect to the horizontal axis is imposed on the optimized shape.
All things considered, we consider the optimization problem (5.13) with the expressions:

j(u) =

∫
ΓT

g · u ds, `V = 150, `D = 0.

Results are presented on Fig. 16; obviously, the Dirichlet region aims to get as close as possible to the
application region of the load g. It also tends to concentrate on the top and bottom corners of the region
DD, following insofar as possible the principal stress directions of the structure.
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(a) Iteration 1 (b) Iteration 50 (c) Iteration 300

(d) Deformed configuration of the
optimized shape

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 50 100 150 200 250 300

O
b

je
ct

iv
e

va
lu

e

Number of iterations

Objective

(e) Convergence history

Figure 14. Concurrent optimization of the shape and the fixation regions of the force in-
verter of Section 5.3.2, with an initial configuration for ΓD composed of 4 line segments.

ΛD

g = (0,-1)

2

1ΓN0.2

Figure 15. Setting of the 2d cantilever test-case of Section 5.3.3.

6. Conclusions and perspectives

In this article, we have considered the optimization problem of a shape Ω and of the regions of its boundary
supporting different types of boundary conditions in the description of the underlying physical context. Re-
lying on the basic model of a Laplace equation, we have calculated the shape derivative of a quite general
objective function J(Ω) with respect to variations of the ‘inhomogeneous Neumann - homogeneous Neu-
mann’ and ‘homogeneous Dirichlet - homogeneous Neumann’ transition zones ΣN and ΣD. Since the second
expression is very difficult to use in practice, for it involves a measure of the ‘singular’ character of the
Laplace equation near ΣD, we have proposed an approximation process to carry out this optimization in
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(c) Iteration 50 (d) Iteration 100
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Figure 16. Concurrent optimization of the shape Ω and the fixation zones ΓD of the two-
dimensional cantilever of Section 5.3.3 (the latter are represented using red lines).

practice, which consists in ‘smearing’ the sharp transition ΣD between homogeneous Dirichlet and homo-
geneous Neumann boundary conditions into a band with small thickness ε supporting Robin-like boundary
conditions. We have verified the numerical efficiency of this process on several application examples involving
notably the context of linearized elastic structures in two or three space dimensions. In these examples, we
have made the simplifying assumption that ΣD belongs to a ‘flat’ region, and it would be interesting to also
conduct the optimization in the case where it is enclosed in a curved surface. Although this setting is already
dealt with in our theoretical developments, this is a little more demanding from the numerical point of view:
in particular, we would have to apply the level set method on a curved surface, which could for instance
involve the so-called ‘closest point method’; see for instance [42]. Also, it would be natural and interesting
to extend the idea approximate ‘singular’ transition regions between different types of boundary conditions
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to different physics than those considered in this article (e.g. electromagnetism); let us again mention that
it was already used in [24] in the context of the acoustic Helmholtz equations.
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Appendix A. Some facts from tangential calculus

In this section, we briefly review some facts from tangential calculus which come in handy in several parts
of this article; see [33] for a more exhaustive presentation.

Let Ω be a smooth bounded domain in Rd. There exists a tubular neighborhood U of its boundary ∂Ω
such that the projection mapping p∂Ω : U → Γ given by

p∂Ω(y) = the unique x ∈ Γ s.t. |x− y|= d(y,Γ)

is well-defined and smooth; see [7], Th. 3.1. This allows to define smooth extensions of the normal vector
field n and of any tangential vector field τ : ∂Ω→ Rd to U via the formulas:

n(y) ≡ n(p∂Ω(y)), and τ(y) ≡ τ(p∂Ω(y)),

respectively. From these notions, we define the mean curvature κ of ∂Ω by κ = divn.
In this context, the tangential gradient ∇∂Ωf of a smooth enough function f : ∂Ω → R is defined by

∇∂Ωf = ∇f̃ − (∇f̃ · n)n, where f̃ is any smooth extension of f to an open neighborhood of ∂Ω.
In the same spirit, the tangential divergence div∂ΩV of a smooth vector field V : ∂Ω → Rd is defined by

div∂ΩV := divṼ − (∇Ṽ n) · n, where Ṽ is any extension of V to an open neighborhood of ∂Ω.
Let us finally recall the following integration by parts formulas on the boundary of smooth domains; see

[33], Prop. 5.4.9 for the first point, and [19], §5.5.4 for the second one.

Proposition A.1. Let Ω ⊂ Rd be a smooth bounded domain with boundary ∂Ω;

(1) Let u ∈ H1(∂Ω) and V ∈ H1(∂Ω)d; then:∫
∂Ω

div∂ΩV u ds =

∫
∂Ω

(−V · ∇∂Ωu+ κuV · n) ds

(2) Let G be a subset of ∂Ω with smooth boundary Σ, and denote by nΣ its unit normal vector pointing
outward G (nΣ is a tangent vector field to ∂Ω). Let u ∈ H1(∂Ω) and V ∈ H1(∂Ω)d; then:∫

G

div∂ΩV u ds =

∫
Σ

uV · nΣd`+

∫
G

(−∇∂Ωu · V + κuV · n) ds,

where d` denotes integration over the codimension 2 submanifold Σ of Rd.
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ESAIM: Mathematical Modelling and Numerical Analysis, 20 (1986), pp. 371–402.

[16] M. Costabel, Boundary integral operators on lipschitz domains: elementary results, SIAM Journal on Mathematical

Analysis, 19 (1988), pp. 613–626.
[17] M. Costabel and M. Dauge, A singularly mixed boundary value problem, Communications in Partial Differential Equa-

tions, 21 (1996), pp. 1919–1949.

[18] M. Costabel and E. Stephan, Curvature terms in the asymptotic expansions for solutions of boundary integral equations
on curved polygons, The Journal of Integral Equations, (1983), pp. 353–371.

[19] C. Dapogny, Shape optimization, level set methods on unstructured meshes and mesh evolution, PhD thesis, Paris 6, 2013.

[20] M. Dauge, Elliptic boundary value problems on corner domains: smoothness and asymptotics of solutions, vol. 1341,
Springer, 2006.

[21] F. De Gournay, Velocity extension for the level-set method and multiple eigenvalues in shape optimization, SIAM journal

on control and optimization, 45 (2006), pp. 343–367.
[22] J. D. Deaton and R. V. Grandhi, A survey of structural and multidisciplinary continuum topology optimization: post

2000, Structural and Multidisciplinary Optimization, 49 (2014), pp. 1–38.
[23] M. C. Delfour and J.-P. Zolésio, Shapes and geometries: metrics, analysis, differential calculus, and optimization,

SIAM, 2011.

[24] J. Desai, A. Faure, G. Michailidis, G. Parry, and R. Estevez, Topology optimization in acoustics and elasto-acoustics
via a level-set method, submitted, (2017).

[25] M. P. Do Carmo and J. Flaherty Francis, Riemannian geometry, vol. 115, Birkhäuser Boston, 1992.
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