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Introduction

To instantiate McEliece encryption scheme, one needs a family of codes
with random looking generator matrices and an efficient decoding algo-
rithm. If the original proposal due to McEliece himself [12] relies on clas-
sical Goppa codes endowed with the Hamming metric, one can actually
consider codes endowed with any other metric. The use of Fqm–linear rank
metric codes, first suggested by Gabidulin et. al. [7] is of particular in-
terest, since the Fqm–linearity permits a very “compact” representation of
the code and hence permits to design a public key encryption scheme with
rather short keys compared to the original McEliece proposal.

Compared to the Hamming metric world, only few families of codes
with efficient decoding algorithms are known in rank metric. Basically,
the McEliece scheme has been instantiated with two general families of
rank metric codes, namely Gabidulin codes [5,6] and LRPC codes [8].

In [11], Loidreau proposed the use of codes which can somehow be
regarded as an intermediary version between Gabdiulin codes and LRPC
codes. These codes are obtained by right multiplying a Gabidulin code
with an invertible matrix whose entries are in Fqm and span an Fq–
subspace of small dimension λ. This approach can be regarded as a “rank
metric” counterpart of BBCRS scheme [1] in Hamming metric.

In the present article, we explain why the case λ = 2 and dimCpub >
n/2 is weak and describe a key recovery attack in this situation.



Note. The material of the present article has been communicated to Pierre
Loidreau in april 2016. The article [11] is subsequent to this discussion
and proposes parameters which avoid the attack described in the present
article.

1 Prerequisites

1.1 Rank metric codes

In this articlem,n denote positive integers and q a prime power. A code of
dimension k is an Fqm–subspace of Fnqm whose dimension as an Fqm–vector
space is k. Given a vector x ∈ Fnqm , the rank weight or rank of x, denoted
as |x|R is the dimension of the Fq–vector sub-space of Fqm spanned by
the entries of x. The support of a vector x ∈ Fnqm , denoted supp(x) is
the Fq–vector space spanned by the entries of x. Hence the rank of x is
nothing but the dimension of its support. The rank distance or distance
of two vectors x,y ∈ Fnqm is defined as

dR(x,y)
def
= |x− y|R.

Given a code C ⊆ Fnqm , the minimum distance of C is defined as

dmin(C )
def
= min

x∈C \{0}
{|x|R} .

1.2 q–polynomials and Gabidulin codes

A q–polynomial or a linear polynomial is an Fqm–linear combination of
monomials X,Xq, Xq2 , . . . , Xqs , . . . Such a polynomial induces a function
Fqm → Fqm which is Fq–linear. The q–degree of a q–polynomial P , denoted
by degq(P ) is the integer s such that the degree of P is qs. In short:

P =

degqP∑
i=0

piX
qi , pi ∈ Fqm , pdegqP 6= 0.

The following very classical result is crucial in what follows.

Proposition 1. Let P ∈ Fqm [X] be a q–polynomial. Then, the set of
roots of P in Fqm is an Fq–vector space of dimension less than or equal to
degq P .
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The space of q–polynomials is denoted by L and, given a positive
integer s, the space of q–polynomials of degree less than s is denoted by

L<s
def
=
{
P ∈ L | degqP < s

}
.

Given positive integers k, n with k 6 n 6 m and an n–tuple a =
(a1, . . . , an) of Fq–linearly independent elements of Fqm , the Gabidulin
code Gk(a) is defined as

Gk(a)
def
= {(f(a1), . . . , f(an)) | f ∈ L<k}.

Such codes are known to have minimum distance n− k+1 and to benefit
from a decoding algorithm correcting up to half the minimum distance
(see [9]).

The n–tuple a is referred to as the support of the code. Note that
the support is not unique as shown by the following lemma which will be
useful for our attack.

Lemma 1. Let α ∈ Fqm . Then Gk(a) = Gk(αa).

1.3 The component-wise Frobenius map

In what follows, we will frequently apply the component-wise Frobenius
map or its iterates to vectors or codes. Hence, we introduce the following
notation. Given a vector v ∈ Fnqm and a nonnegative integer s, we denote
by v[s] the vector:

v[s]
def
= (vq

s

1 , . . . , v
qs

n ).

Similarly, given a code C ⊆ Fnqm and a positive integer s, the code C [s]

denotes the code
C [s] def

= {c[s] | c ∈ C }.

1.4 Overbeck’s distinguisher

In [13], Overbeck proposes a general framework to break cryptosystems
based on Gabidulin codes. The core of his attack is that a simple operation
permits to distinguish Gabidulin codes from random ones. Indeed, given
a random code C ⊆ Fnqm of dimension k < n/2, the expected dimension
of the code C + C [1] equals 2k and, equivalently C ∩ C [1] is likely to be
equal to 0. More generally, we have the following statement.

3



Proposition 2. If Crand is a code of length n and dimension k chosen
uniformly at random, then for a nonnegative integer a and for a positive
integer s < k, we have

P
(
dimFqm

Crand+Crand
[1]+· · ·+Crand

[s] 6 min(n, (s+1)k)−a
)

= O(q−ma).

On the other hand, for a Gabidulin code, the behaviour with respect
to such operations is completely different as explained in the following
statement.

Proposition 3. Let a ∈ Fnqm be a word of rank n, k 6 n and s be an
integer. Then,

Gk(a) ∩ Gk(a)[1] = Gk−1(a[1]);
Gk(a) + · · ·+ Gk(a)[s] = Gk+s(a).

2 Loidreau’s scheme

In order to mask the structure of Gabidulin codes and to resist to Over-
beck’s attack, Loidreau suggested in [11] the following construction. De-
note by G a random generator matrix of a Gabidulin code Gk(a). Fix an
integer λ 6 m and an Fq–vector subspace V of Fqm of dimension λ. Let
P ∈ GL(n,Fqm) whose entries are all in V. Then, let

Gpub
def
= GP−1.

We have the following encryption scheme.

Public key: The pair (Gpub, t) where t
def
= bn−k2λ c.

Secret key: The pair (a,P ).
Encryption: Given a plaintext m ∈ Fkqm , choose a uniformly random

vector e ∈ Fnqm of rank weight t. The ciphertext is

c
def
= mGpub + e.

Decryption: Compute,
cP =mG+ eP .

Since the entries of P are all in V then, the entries of eP are in the
product space supp(e) · V def

= 〈uv | u ∈ supp(e), v ∈ V〉Fq . The dimen-
sion of this space is bounded from above by tλ 6 n−k

2 . Therefore, using
a classical decoding algorithm for Gabidulin codes, one can recoverm.
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3 A distinguisher when λ = 2

3.1 Context

The goal of this section is to establish a distinguisher for Loidreau’s cryp-
tosystem instantiated with λ = 2 and a public code Cpub of dimension
k > n

2 . Similarly to Overbeck’s attack, this distinguisher reposes on Propo-
sitions 2 and 3.

Similarly to the attacks of BBCRS system [3,4], it is more convenient
to work on the dual of the public code because of the following lemmas.

Lemma 2 ([10, Page 52]). The code Gk(a)⊥ is a Gabidulin code Gn−k(b)
for some b ∈ Fnqm of rank n.

Lemma 3 ([4, Lemma 1]). Any full-rank generator matrix Hpub of
C⊥pub can be decomposed as Hpub =HsecP

T where Hsec is a parity–check
of the Gabidulin code Gk(a).

The convenient aspect of the previous lemma is that the matrix P has
its entries in a small vector space, while its inverse has not.

3.2 The case λ = 2

We suppose in this section that the vector space V ⊆ Fnqm in which the
matrix P has all its entries has dimension 2:

λ = dimFqV = 2.

Note that, w.l.o.g, one can suppose that 1 ∈ V. Indeed, if V is spanned over
Fq by α, β ∈ Fqm \{0}, then one can replaceHsec byH ′sec = αHsec which
spans the same code and P ′ = α−1P has entries in V ′ = Span

{
1, α−1β

}
and Hpub =H ′secP

′T .
Thus, from now on, we suppose that V = Span{1, γ} for some γ ∈

Fqm \ Fq. Consequently, P T can be decomposed as

P T = P 0 + γP 1,

where P 0,P 1 are square matrices with entries in Fq. For convenience,
we suppose from now on that P 0 and P 1 are both invertible. Note that
this actually holds with a high probability. If one of these matrices was
not invertible, then the attack could probably be performed after minor
adjustments.

We have seen that C⊥sec = Gn−k(a) for some a ∈ Fnqm with |a|R = n.
We define

g
def
= aP 0 and h

def
= aP 1.
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Lemma 4. The code C⊥pub is spanned by

g + γh, g[1] + γh[1], . . . , g[n−k−1] + γh[n−k−1].

We can now state a crucial result.

Theorem 1. The dual of the public code satisfies:

dimFqm
C⊥pub + C⊥pub

[1]
+ C⊥pub

[2]
6 2 dimFqm

C⊥pub + 2.

As a conclusion, thanks to Proposition 2, we deduce that C⊥pub is dis-
tinguishable in polynomial time from a random code as soon as 2k−2 > n.

4 The attack

In this section, we derive an attack from the distinguisher defined in Sec-
tion 3. In what follows, we suppose that λ = 2 and the public code has rate
larger than 1/2 so that the distinguisher introduced in Section 3 works
on it. Recall that C⊥pub = Gn−k(a)P for some a ∈ Fnqm whose entries are
Fq–independent and P is of the form P 0 + γP 1 for P 0,P 1 ∈ Mn(Fq)
and γ ∈ Fqm \ Fq. Finally recall that

g
def
= aP 0 and h

def
= aP 1.

In addition, we make the following assumptions:

(1) P 0,P 1 ∈ GL(n,Fq);
(2) γ is not contained in any subfield of Fqm ;
(3) dimC⊥pub + C⊥pub

[1]
+ C⊥pub

[2]
= 2(n− k) + 2.

Assumption (1) has already been discussed in § 3.2. Assumption (2) is
reasonable in order to prevent against possible attacks based on an ex-
haustive search of γ. Finally, Assumption (3) is what typically happens
according to our experiments using Magma [2].

The aim of the attack is to recover the triple (γ, g,h), or more precisely,
to recover a triple (γ′, g′,h′) such that

C⊥pub = 〈g′[i] + γ′h′[i] | i = 0, . . . , n− k − 1〉. (1)

Actually, the triple (γ, g,h) is far from being unique and any other triple
satisfying (1) permits to decrypt messages (see further § 4.3). Let us de-
scribe an action of PGL(2,Fq) on such triples.

Proposition 4. Let a, b, c, d ∈ Fq such that ad−bc 6= 0 and δ ∈ Fqm such
that γ = aδ+b

cδ+d . Then, the triple (δ, dg + bh, cg + ah) satisfies (1).
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4.1 Step 1: using the distinguisher to compute some subcodes

As shown in the proof of Theorem 1, C⊥pub + C⊥pub
[1] is spanned by:

g + γh and g[1],h[1], . . . , g[t],h[t] and g[t+1] + γqh[t+1],

where t def
= n− k − 1. Then, by iterating intersections

(C⊥pub + C⊥pub
[1]
) ∩ (C⊥pub

[1]
+ C⊥pub

[2]
) ∩ · · · ∩ (C⊥pub

[t]
+ C⊥pub

[t+1]
),

we obtain the code spanned by

g[t] + γq
t
h[t] and g[t+1] + γqh[t+1].

Notice that Assumption (3) permits to prove that this intersection has
exactly dimension 2. Applying the inverse of the t–th Frobenius, we get
the code spanned by

g + γh and g[1] + γq
1−t
h[1].

Note that t = n− k − 1 < n 6 m. Hence γq1−t 6= γq because of Assump-
tion (2). Next, one can compute

C⊥pub ∩ 〈g + γh, g[1] + γq
1−t
h[1]〉 = 〈g + γh〉 (2)

and

〈g + γh, g[1] + γq
1−t
h[1]〉 + 〈g + γh〉[1]

= 〈g + γh, g[1] + γq
1−t
h[1], g[1] + γqh[1]〉

= 〈g + γh, g[1],h[1]〉.

Similarly, we compute the intersection with C⊥pub
[−1] def

= C⊥pub
[m−1] and get

C⊥pub
[−1] ∩ 〈g + γh, g[1],h[1]〉 = 〈g[1] + γq

m−1
h[1]〉. (3)

Applying the inverse Frobenius to the last code, we get 〈g + γq
m−2

h〉.
Since, from (2), we also know 〈g + γh〉, one can compute

〈g + γh〉+ 〈g[1] + γq
m−1

h[1]〉
[−1]

= 〈g + γh, g + γq
m−2

h〉 = 〈g,h〉. (4)

Next, for any i ∈ {1, . . . , t} one can compute

Cpub
⊥ ∩ 〈g,h〉[i] = 〈g[i] + γh[i]〉.
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By applying the i–th inverse Frobenius to the previous result, we obtain
the space 〈g + γq

−i
h〉 for any i ∈ {1, . . . , t}. In summary, we know the

spaces
〈g + γh〉, 〈g + γq

−1
h〉, . . . , 〈g + γq

−t
h〉.

In addition, from Lemma 1, the vector g is determined up to some
multiplicative constant. Therefore, one can choose an arbitrary element
of 〈g + γh〉 and suppose that this element is g + γh.

4.2 Step 2. Finding γ

In summary, the vector g + γh and the spaces 〈g + γq
i
h〉 for any i ∈

{−1, . . . ,−t} are known. To compute γ, we will use the following lemma.

Lemma 5. For i, j ∈ {1, . . . , t}, i 6= j, there exists a unique pair (uij ,vij) ∈
〈g + γq

−i
h〉 × 〈g + γq

−j
h〉 such that uij + vij = g + γh.

The pairs of vectors (uij ,vij) can be easily computed. Thus, from
now on, we suppose we know them. In addition, despite γ, g+ γq

−i
h and

g + γq
−j
h are unknown, a calculation permits to show that uij ,vij have

the following expressions.

uij =
γq

−j − γ
γq−j − γq−i ·(g+γq

−i
h) and vij =

γ − γq−i

γq−j − γq−i ·(g+γq
−j
h). (5)

Consider the vectors u12 and u13. They are collinear since, from (5),
they are both multiples of g + γq

−1
h. Therefore, one can compute the

scalar α such that u12 = α · u13. From (5) we deduce that γ satisfies the
following relation.

γq
−2 − γ

γq−2 − γq−1 = α · γq
−2 − γ

γq−2 − γq−1 · (6)

Or equivalently, γ is a root of the polynomial

Qγ(X)
def
= (Xq −Xq3)(X −Xq2)− αq3(X −Xq3)(Xq −Xq2).

One can easily check that (Xq −X)q+1 divides Qγ and we set

Pγ(X)
def
=

Qγ
(Xq −X)q+1

·

The element γ we look for is a root of Pγ but actually, the forthcoming
Proposition 5 provides the description of the other roots. We first need a
technical Lemma.
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Lemma 6. Let a, b, c, d ∈ Fq, let i, j be two nonnegative integers and set
A(X) = Xqi −Xqj ∈ Fq[X]. Then,

A

(
aX + b

cX + d

)
=

ad− bc
(cX + d)qi+qj

·A(X).

Proposition 5. The set of roots of Pγ equals the orbit of γ under the
action of PGL(2,Fq). Equivalently, any root of Pγ is of the form aγ+b

cγ+d for
a, b, c, d ∈ Fq such that ad− bc 6= 0.

Thanks to Propositions 4 and 5, we deduce that choosing an arbitrary
root γ′ of Pγ provides a candidate for γ and there remains to compute
g′,h′ providing our triple. The triple can be deduced from the knowledge
of g + γh = g′ + γ′h′ and the computation of g′ + γ′q

−1
h′ which can be

proved to satisfy

g′ + γ′q
−1
h′ =

γ′q
−2 − γ′q−1

γ′−2 − γ′
u12.

4.3 End of the attack

Given the pair g′,h′, compute the matrix Q ∈ GL(n,Fq) such that h′ =
g′Q. Then,

C⊥pub = Gn−k(g′) · (In + γ′Q)

and this representation of the dual provides all the elements necessary to
decode, that is to decrypt any ciphertext.

Conclusion

We provided a distinguisher à la Overbeck for the public keys of Loidreau’s
scheme when λ = 2 and the public code has rate Rpub > 1

2 . From this
distinguisher, we are able to derive a polynomial time key recovery attack.
This attack can probably be extended to other values of λ when the public
code rate satisfies Rpub > 1 − 1

λ . Therefore, such parameters should be
avoided in Loidreau’s scheme.
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