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Abstract: 14 

A common assumption in phosphorus (P) load apportionment studies is that P loads in rivers consist 15 

of flow independent point source emissions (mainly from domestic and industrial origins) and flow 16 

dependent diffuse source emissions (mainly from agricultural origin). Hence, rivers dominated by 17 

point sources will exhibit highest P concentration during low-flow, when flow dilution capacity is 18 

minimal, whereas rivers dominated by diffuse sources will exhibit highest P concentration during 19 

high-flow, when land-to-river hydrological connectivity is maximal. Here, we show that Soluble 20 

Reactive P (SRP) concentrations in three forested catchments free of point sources exhibited 21 

seasonal maxima during the summer low-flow period, i.e. a pattern expected in point source 22 

dominated areas. A load apportionment model (LAM) is used to show how point sources 23 

contribution may have been overestimated in previous studies, because of a biogeochemical process 24 

mimicking a point source signal. Almost twenty-two years (March 1995 – September 2016) of 25 

monthly monitoring data of SRP, dissolved iron (Fe) and nitrate-N (NO3) were used to investigate the 26 

underlying mechanisms: SRP and Fe exhibited similar seasonal patterns and opposite to that of NO3. 27 

We hypothesise that Fe oxyhydroxide reductive dissolution might be the cause of SRP release during 28 

the summer period, and that NO3 might act as a redox buffer, controlling the seasonality of SRP 29 

release. We conclude that LAMs may overestimate the contribution of P point sources, especially 30 

during the summer low-flow period, when eutrophication risk is maximal. 31 

Keywords: 32 

Soluble reactive phosphorus, iron, redox processes, catchment, point source, load apportionment  33 
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1. Introduction 34 

Phosphorus (P) concentration in freshwater bodies is an important controlling factor of 35 

eutrophication worldwide (Smith and Schindler, 2009). Hence, national and federal regulations, such 36 

as the European Water Framework Directive (Directive 2000/60/EC), attach much importance to the 37 

reduction of P emissions to streams and rivers. Cost-effective alleviation of P emissions requires 38 

precise estimation of the contribution of different P sources in catchments to prioritise management 39 

efforts (Bowes et al., 2014; Jarvie et al., 2013b; Withers et al., 2014b). 40 

Point source emissions, mainly from domestic and industrial origins, consist of direct P delivery into 41 

the river system. Diffuse source emissions, mainly from agricultural origin, result from the 42 

mobilisation of P sources distributed over the landscape and their delivery to rivers (Haygarth et al., 43 

2005). In the case of point source emissions, P delivery from large waste water treatment plants can 44 

be monitored directly, but direct assessment of septic tanks leaking in rural areas requires detailed 45 

surveys or use of costly fingerprinting techniques (Arnscheidt et al., 2007; Neal et al., 2010; Richards 46 

et al., 2016). As an alternative, indirect methods have been developed to determine the relative 47 

contribution of point source and diffuse source emissions based on observed concentration-48 

discharge relationships (Bowes et al., 2008, 2014; Greene et al., 2011; Jarvie et al., 2012). These load 49 

apportionment models (LAMs) can take different forms, but rely on the same assumptions: point 50 

emissions are assumed to be constant in time while diffuse emissions are assumed to increase with 51 

discharge, as a result of increasing P mobilisation and delivery during runoff events (Bowes et al., 52 

2015). The point source contribution to P concentration is thus modelled as a linear function of the 53 

inverse of discharge (dilution effect) and several equations have been proposed to describe 54 

increasing diffuse P concentration during high flow. For example, Bowes et al. (2008) proposed a 55 

power function of discharge, and Greene et al. (2011) proposed a linear combination of discharge 56 

and the square of discharge. To account for the temporary retention of P during low-flow and its 57 

remobilisation during high flow, and not to attribute all the remobilised P to diffuse sources, Jarvie et 58 
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al. (2012) proposed an improved version of LAMs using chloride as a conservative tracer of 59 

wastewater effluents. In summary, LAMs belong to a large family of empirical models used to fit 60 

water quality time series (Minaudo et al., 2017; Moatar et al., 2017; Zhang and Ball, 2017) with the 61 

characteristic that they make an explicit distinction between flow dependent and flow independent 62 

pollution emissions. 63 

The estimated contribution of point and diffuse sources to annual P loads vary according to the area 64 

(Jarvie et al., 2010), but even in catchments where diffuse emissions dominate annual loads, it is 65 

common to observe that point source emissions dominate daily P loads during a majority of the time 66 

(Greene et al., 2011; Serrano et al., 2015; Sharpley et al., 2009; Shore et al., 2017). Another 67 

consequence is that the summer low-flow season is assumed to be dominated by point emissions 68 

where they occur and are coincident to known point source pressures (Jordan et al., 2007, 2012; 69 

Withers et al., 2014a). Also, because this season is when light and temperature conditions are 70 

favourable to eutrophication, river basin managers might decide to target point sources as a priority 71 

to mitigate river eutrophication problems in a cost-effective manner (Jarvie et al., 2006; Shore et al., 72 

2017; Stamm et al., 2014). 73 

However, the low-flow period also corresponds to the warm summer season in catchments of the 74 

temperate zone, and it is well known that the biogeochemical processes influencing the P cycle in 75 

soils and river sediments are temperature dependent (Withers and Jarvie, 2008). In this paper, we 76 

hypothesised that temperature dependent biogeochemical processes could lead to P release to 77 

rivers during the summer low-flow period and that this release might be unduly attributed to point 78 

source emissions in load apportionment studies. To test this hypothesis, three rivers draining small 79 

forested catchments free of any point sources were investigated over a 22-year period to: i) quantify 80 

the seasonal variability of Soluble Reactive P (SRP) concentration and other solutes, ii) determine if 81 

previous P LAMs can be misrepresented by the seasonal dynamics observed, and iii) identify the 82 

controlling factors of this seasonal dynamics in order to improve future LAMs. 83 
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2. Materials and methods 84 

2.1. Study area 85 

The Carlsfeld reservoir is located in eastern Germany, in the federal state of Saxony (Figure 1). Its 86 

catchment area is 5 km² and spans both sides of the German – Czech border. Climate is temperate 87 

continental, with mean ± standard deviations of annual precipitation and temperature of 1237.0 ± 88 

273.0 mm and 5.7 ± 1.0 °C, respectively (1995 – 2015). Mean monthly temperature varies from -3.0 ± 89 

4.4 °C in January to 14.4 ± 3.8 °C in July (1995 – 2015). The catchment is located in a low-mountain 90 

range, the Ore Mountains, with elevations ranging from 904 to 971 m. The geology is dominated by 91 

granite capped by podsols (classified as “well drained”) in the upslope domain and organic gleysols 92 

(classified as “poorly drained”) in valley-bottoms. Both dominant soil types were classified as “very 93 

acidic” (pH < 5), according to the German soil classification (DBK Sachsen, 1:50.000). 94 

Three independent sub-catchments were selected for this study: Carlsfeld 1, 1.8 km²; Carlsfeld 2, 0.6 95 

km² and Carlsfeld 3, 0.6 km² (Figure 1). Their topography is gentle with an average slope of 3° in each 96 

of the sub-catchments. The percentage of organic gleysols was 58.2% in Carlsfeld 1, 44.4% in 97 

Carlsfeld 2 and 50.2% in Carslfeld 3. Land use was 100% forest (spruce) without any agriculture or 98 

human dwellings. Hence, the three study sub-catchments are free of any point source emissions to 99 

the streams and any fertiliser application on the land surface. 100 
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 101 

Figure 1: Localisation of the Carlsfeld reservoir and soil types in the three study catchments  102 

2.2.  Hydro chemical monitoring 103 

The total discharge into the Carlsfeld reservoir was estimated daily from a mass balance calculation 104 

involving 15 min record of the reservoir water level (aggregated on a daily basis) and daily record of 105 

outflowing discharge. It was assumed that all three sub-catchments had the same specific discharge 106 

(in mm d-1), equal to the specific discharge estimated for the whole catchment area of the reservoir. 107 

This assumption was considered acceptable because the total catchment area was small, with similar 108 

topography and the same land use over the sub-catchments. Discharge data were available for the 109 

whole study period (March 1995 to September 2016) except from June 1997 to November 1999 110 

(Figure 2). 111 

Grab samples were collected monthly from March 1995 to September 2016, at the outlet of the 112 

three sub-catchments, between 8:00 am and 12:00 pm local time, and analysed for Soluble Reactive 113 

Phosphorus (SRP), nitrate-N (NO3) and dissolved Fe after 0.45 µm filtration (Figure 2). Chemical 114 
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analyses of water samples were performed using standard protocols (Wasserchemische Gesellschaft, 115 

2014). SRP was determined colorimetrically by reaction with ammonium molybdate (UV-VIS Specord 116 

200); NO3 was determined as N by ionic chromatography (ICS-1100 Dionex); Fe was determined by 117 

atomic absorption spectrometry (AAS Solaar M5, Thermo). 118 

The three studied catchments have been previously included in two multi-site biogeochemical 119 

studies (Musolff et al., 2016; Sucker et al., 2011). A shorter time series of Carlsfeld 1 has also been 120 

selected for a showcase analysis of long-term Dissolved Organic Carbon (DOC) and SRP trends in 121 

Musolff et al., (2016), and in a DOC load uncertainty evaluation study (Buettner and Tittel, 2013). In 122 

contrast to the previously published biogeochemical studies, the present paper focuses on seasonal 123 

SRP variations and their implications for LAM. 124 

2.3. Data analysis 125 

The data analysis was threefold. 126 

x The seasonal component of concentration and discharge time series was extracted from a 127 

long term trend component using Generalised Additive Models (GAM). GAM are generalized 128 

linear models in which the linear form is replaced by a sum of smooth functions (Hastie and 129 

Tibshirani, 1987). Technically, the year (1995-2016) and the month (1-12) for each data point 130 

were used as predictor variables to estimate the long term non-linear trend and a seasonal 131 

component, respectively. The R package mgcv (Wood, 2006) was used for this purpose, with 132 

cyclic cubic spline to avoid discontinuities at the end points of the spline (in other words, no 133 

discontinuity between December and January) and a correction for autocorrelation 134 

(autoregressive-moving-average model). 135 

x The significance of trends was quantified by the slope of a linear regression model of annual 136 

mean concentration and discharge values as a function of the year. Although the GAM long 137 

term trend was not perfectly linear (see results), analysis of residuals showed that a linear 138 

model was acceptable to quantify a mean percentage increase or decrease during the study 139 
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period and whether this increase or decrease was significant (p < 0.05). Only fully monitored 140 

years were considered here, i.e. from 1996 to 2015 for concentration data, and 1996 and 141 

from 2000 to 2015 for discharge. Percentage exceedance of an indicative SRP eutrophication 142 

threshold of 0.02 mg SRP l-1 (EC, 2002) was estimated for the first ten full years of study 143 

(1996-2005) and the last ten full years of study (2006-2015). 144 

x Concentration-discharge (C-Q) plots and concentration-concentration (C-C) plots between 145 

each pair of solutes were drawn. A LAM was fitted to the SRP-Q plots, to test whether the 146 

observed SRP-Q relationships in catchments without point source emissions could mimic a 147 

point source signal. Here the simplest version of the LAM was selected: 148 

    
 
       

where    is the “virtual” contribution of point sources and      is the contribution of diffuse 149 

sources. The a and b parameters were constrained to be >0 and the c parameter was 150 

constrained to be >= 1. A nonlinear least-squares estimate of the parameters was 151 

determined with the nls() function in the R software (R Development Core Team, 2008). The 152 

“virtual” contribution of point sources on annual SRP load and the percentage of the time 153 

when “virtual” point sources dominated were estimated separately for the first ten full years 154 

of study (1996-2005) and the last ten full years of study (2006-2015). Also for the first ten 155 

years and the last ten years of study, alternative empirical (linear) models based on identified 156 

SRP controlling factors (see result section 3.2.) were tested and compared. For this 157 

comparison the LAM was used without a power law function to allow comparison with other 158 

linear models including two parameters. 159 

3. Results 160 

3.1. Long term and seasonal variability of SRP, dissolved Fe and nitrate 161 

concentrations 162 
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Mean (± standard deviation) annual SRP and dissolved Fe concentrations in Carlsfeld 1 (13.1 ± 3.5 µg 163 

P l-1; 0.92 ± 0.16 mg Fe l-1) and Carlsfeld 3 (19.9 ± 5.3 µg P l-1; 0.91 ± 0.17 mg Fe l-1) were significantly 164 

higher than in Carlsfeld 2 (7.6 ± 1.8 µg P l-1; 0.44 ± 0.07 mg Fe l-1) (paired Wilcoxon test, p<0.05, 165 

n=20). Conversely, mean annual NO3 concentration in Carlsfeld 1 (0.38 ± 0.14 mg N l-1) and Carlsfeld 166 

3 (0.34 ± 0.12 mg N l-1) was significantly lower than in Carlsfeld 2 (0.46 ± 0.11 mg N l-1). Differences 167 

between Carlsfeld 1 and Carlsfeld 3 were also significant for SRP and NO3 but not for Fe, and the 168 

differences between Carlsfeld 1 and Carlsfeld 3 were generally smaller than between Carlsfeld 1 or 3 169 

and Carlsfeld 2 (6.8 µg P l-1 versus 5.5 and 12.3 µg P l-1, 0.01 mg Fe l-1 versus 0.48 and 0.47 mg Fe l-1, 170 

0.04 mg N l-1 versus 0.08 and 0.12 mg N l-1, respectively). 171 

From 1996 to 2015, mean annual SRP concentration increased significantly (linear model, p < 0.05, 172 

n=20) in the three catchments (+121 % in Carlsfeld 1, +72 % in Carlsfeld 2 and +106 % in Carlsfeld 3). 173 

In Carlsfeld 1 and Carlsfeld 3, significant increases in the mean annual concentration of dissolved Fe 174 

(+47 % and +62%, respectively) were also observed, but not in Carlsfeld 2 (p > 0.05). Conversely, 175 

mean annual NO3 concentration decreased significantly in the three catchments (-66 % in Carlsfeld 1, 176 

-48 % in Carlsfeld 2 and -67 % in Carlsfeld 3). No trend in mean annual discharge, precipitation or 177 

temperature could be detected from 1996 to 2015 (Figure S1), although the discharge long term 178 

trend appeared to decrease between 2012 and 2016 (Figure 2a). 179 

Similar to the long-term trend, the seasonal dynamics of SRP and dissolved Fe mirrored that of NO3 180 

(and discharge) in the three catchments: SRP and dissolved Fe reached their seasonal maximum in 181 

the late summer (August to October) which corresponded to the period with the lowest NO3 182 

concentration and the lowest discharge (Figure 2b). Conversely, NO3 reached its seasonal maximum 183 

during the high flow period (March to May). The SRP and dissolved Fe seasonal dynamics and trends 184 

also seemed to be dependent on NO3 values and NO3 decreasing trends: in Carlsfeld 2, where NO3 185 

concentrations were the highest and NO3 decreasing trend was the lowest, the seasonal amplitude 186 
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of the dissolved Fe and SRP signal was weaker than in Carlsfeld 1 and 3, where NO3 concentrations 187 

were lower and NO3 decreasing trends were stronger (Figure 2). 188 

The number of months for which SRP concentration exceeded the indicative eutrophication 189 

threshold of 0.02 mg l-1 increased for two of the three study catchments, between the first ten full 190 

years of record (1996-2005) and the last ten full years of record (2006-2015). In Carlsfeld 1, this 191 

threshold was exceeded 3% of the time during the first period and 24% of the time during the second 192 

period. In Carlsfeld 3, the threshold was exceeded 26% of the time during the first period and 53% of 193 

the time during the second period. In Carlsfeld 2, exceedance represented less than 0.1% of the time 194 

during both periods. The season at which this exceedance was observed in Carlsfeld 1 and 3 was 195 

mainly the late summer period (Figure 2), i.e., a period where light and temperature conditions are 196 

favourable for eutrophication.  197 
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 198 

Figure 2: Monthly concentration and discharge data and long term components of GAM model (a) and seasonal 199 

component of GAM model (b). Open circles represent the original monthly time series and bold lines represent long term 200 

(a) and seasonal (b) GAM components. 201 

3.2. C-Q and C-C relationships 202 

None of the three solutes studied exhibited a clear and univocal relationship with discharge for the 203 

entire study period (1995-2016). Nitrate concentration was not significantly correlated with 204 

discharge (p > 0.1) and SRP and dissolved Fe exhibited high concentrations both for the lowest and 205 

the highest discharge values (Figure S2). This lack of a clear relationship between concentrations and 206 

discharge is in apparent contradiction with the seasonal GAM component (Figure 2b), which shows 207 

that NO3 dynamics were in phase with discharge while SRP and dissolved Fe had opposite seasonal 208 



12 
 

dynamics to discharge. However, the solutes were affected by large long term trends, and this was 209 

not the case for discharge; consequently, the C-Q relationships changed from year to year and these 210 

relationships taken for the entire study period could not exhibit clear patterns. 211 

Contrary to the C-Q plots, the C-C plot showed clear relationships between pairs of solutes (Figure 3), 212 

for the entire study period (1995-2016). Soluble reactive P was significantly (p < 0.05) correlated with 213 

Fe (r = 0.74 – 77), and both SRP and Fe exhibited a similar non-linear decreasing relationship with 214 

NO3, fitted with an exponential function in Figure 3. 215 

 216 

Figure 3: Concentration-concentration relationships between pairs of solutes. The relationship between SRP and 217 

dissolved iron was fitted with a linear model y = a+b*x, and the relationship between NO3 and dissolved Fe and between 218 

NO3 and SRP was fitted with an exponential model y = a+ b*exp(-c*x). Carlsfeld 1 in black, Carlsfeld 2 in red, Carlsfeld 3 219 

in green. 220 

According to the SRP-Q LAM (Figure 4), annual loads varied from 0.06 to 0.15 kg SRP ha-1 yr-1 for all 221 

three catchments and for the two periods considered: prior to 2005 and after 2005. The differences 222 

between catchments reflected their different SRP concentrations visible in Figure 2, as specific 223 

discharge was assumed to be the same. Estimated loads were similar before and after 2005, but this 224 

result must be considered with care as the load estimation method is very sensitive (by construction) 225 

to the high flow data points, and the number of these may differ between the two periods. 226 

Therefore, it would not be reasonable to split the 22 years into more than two periods to apply the 227 

LAM, as these models are very sensitive to the monitoring frequency and/or duration (Crockford et 228 
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al., 2017). More interestingly, the estimated virtual contribution of point sources increased in the 229 

three sub-catchments. In Carlsfeld 1, the virtual contribution of point sources increased from 10% to 230 

21% between the first ten years of study (1996-2005) and the last ten years (2006-2015), and this 231 

virtual point sources contribution dominated daily loads during 70% and 84% of the time during the 232 

two periods, respectively. In Carlsfeld 2, the virtual contribution of point sources increased from 7% 233 

to 13%, and this virtual point sources contribution dominated daily loads during 62% and 73% of the 234 

time during the two periods, respectively. In Carlsfeld 3, the virtual contribution of point sources 235 

increased from 10% to 21%, and this virtual point source contribution dominated daily loads during 236 

70% and 84% of the time during the two periods, respectively. By construction, the model predicted 237 

point sources to dominate during the low-flow period, i.e., the late summer period (Figure 2), which 238 

is also the period at highest eutrophication risk due to optimal light and temperature conditions. 239 

 240 

Figure 4: Result of the concentration-discharge load apportionment model (blue line) in the three study catchments and 241 

for two periods (before and after 2005). 242 
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Five alternative empirical models were compared for their capacity to fit the SRP data. Simple linear 243 

regressions including discharge or the inverse of discharge all performed poorly, with R² close to 0 244 

(Table 1). The LAM performed fairly well with two variables (R² = 0.57 - 0.79) but the performance of 245 

the “biogeochemical model” (Table 1) was almost as high with only dissolved Fe as a predictor 246 

variable (R² = 0.37 - 0.64). The fitted parameters with this equation were:  247 

                                                  

                                                 

                                                  

                                                 

                                                  

                                                 

With SRP and Fe in mg.l-1 and Q in mm.d-1. 248 

The best model with two variables was the “biogeochemical model” + discharge (R² = 0.92 – 0.93), in 249 

which the part of the equation corresponding to the dilution of a constant source in the LAM is 250 

replaced by a linear function of dissolved Fe.  251 

Table 1: Comparison of the coefficient of determination R² for five linear models fitted to the first ten years of study 252 

(1996 - 2005) and the last ten years (2006-2015) of study in the Carsfeld sub-catchments. 253 

  
R² Carlsfeld 1 R² Carlsfeld 2 R² Carlsfeld 3 

model 

description 
model equation 

before 

2005 

after 

2005 

before 

2005 

after 

2005 

before 

2005 

after 

2005 

Dilution of a 

constant 

source 

SRP ~ 1/Q + 

intercept 
0.02 0.05 0.00 0.01 0.01 0.22 
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Increasing 

export with 

discharge 

SRP ~ Q +  

intercept 
0.01 0.01 0.14 0.04 0.01 0.03 

Load 

apportionmen

t model 

SRP ~ 1/Q + Q 0.64 0.57 0.79 0.58 0.66 0.62 

"Biogeochemi

cal model" 

SRP ~ Fe + 

intercept 
0.59 0.64 0.37 0.57 0.47 0.56 

"Biogeochemi

cal model" + 

increasing 

export with 

discharge 

SRP ~ Fe + Q 0.92 0.93 0.93 0.93 0.93 0.92 

4. Discussion 254 

A recent study of SRP and DOC trends in 110 German catchments draining into drinking water 255 

reservoirs (including the 3 Carlsfeld sub-catchments) has documented a long term increase in SRP 256 

and DOC, associated with an increase in dissolved Fe and a decrease in NO3 in catchments with acidic 257 

soils (Musolff et al., 2016). The authors concluded that Fe oxyhydroxide reduction was the dominant 258 

mechanism explaining increased SRP and DOC release into streams and that NO3, being a stronger 259 

electron acceptor than Fe, acted as a redox buffer. According to this hypothesis, decreasing 260 

atmospheric N deposition could lead to a decrease in NO3 redox buffering capacity and this decrease 261 

is the main cause of the observed increasing SRP and DOC trends in these catchments. Our trend 262 

observations are compatible with the redox hypothesis, hence long term trends in the Carlsfeld sub-263 

catchment will not be discussed further in this paper. Rather, in section 4.1. we discuss whether the 264 

redox hypothesis and NO3 redox buffering could also explain the seasonal variability in SRP observed 265 
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in the Carlsfeld sub-catchments. Also, in section 4.2., we discuss the implications of the observed SRP 266 

seasonal dynamics in terms of water quality assessment and management.  267 

4.1. Interplay of hydrological and biogeochemical processes 268 

Previous studies have demonstrated that variability in dominant flow pathways or in the contribution 269 

of several conceptual compartments with different chemical signatures exert a large control on SRP 270 

and NO3 concentrations in rivers (Mellander et al., 2012; Dupas et al., 2017a), and that this variability 271 

is influenced by changing hydroclimatic conditions on a seasonal or inter annual basis (Ockenden et 272 

al., 2016). In catchments with similar shallow groundwater systems and presence of riparian 273 

wetlands, the seasonal variability of SRP and NO3 has previously been explained by the high 274 

contribution of a riparian compartment (rich in SRP due to the shallow groundwater interacting with 275 

the organic soils and poor in NO3 due to denitrifying conditions) during the dry season, and by the 276 

high contribution of an upslope compartment (poor in SRP due to the deeper groundwater and richer 277 

in NO3 because of limited denitrification in well-drained soils) during the wet season (Dupas et al., 278 

2016, 2017a; Exner-Kittridge et al., 2016; Martin et al., 2004; Woodward et al., 2013). Here, the fact 279 

that the two sub-catchments with substantially higher SRP concentrations, and lower NO3 280 

concentration (Carlsfeld 1 and 3), are also those with the highest percentage of organic riparian soils 281 

(see section 2.1), supports previous assertions that organic riparian soils are internal sources of SRP 282 

(Dupas et al., 2017b; Gu et al., 2017; Records et al., 2016), and a buffer zone for NO3 (Anderson et 283 

al., 2014; Oehler et al., 2009). Other factors such as P speciation in soils may also play a role (Gu et 284 

al., 2017). However, a conceptual model relying only on the hydrological connectivity of two 285 

conceptual compartments with different chemical signatures is questionable, as all water flows pass 286 

through the riparian wetland and/or hyporheic zone and should, according to this conceptual model, 287 

lose NO3 through denitrification and gain SRP through interactions with organic soils regardless of 288 

the season. In this respect, the question of water residence time and temperature is crucial, in 289 

conjunction with an interpretation based on the mixing of conceptual compartments (Hrachowitz et 290 

al., 2016; Pinay et al., 2015). In the Carlsfeld sub-catchments, residence times in the riparian 291 
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compartment were arguably too short during the wet period, when groundwater hydraulic gradients 292 

are maximal and flow velocity at their highest, and temperatures too low, for denitrification and SRP 293 

solubilisation to take place. The central role played by biogeochemical processes in SRP release 294 

mechanisms is illustrated by the C-C relationships (Figure 3) which, contrarily to the C-Q plots (Figure 295 

S2), appeared to be stable in the long term. The strong correlation between SRP and dissolved Fe, 296 

and the negative relationships between SRP or dissolved Fe with NO3 support the hypothesis of a 297 

dominant redox control on seasonal SRP release during the summer period (Li et al., 2012; Musolff et 298 

al., 2016; Smolders et al., 2017). Furthermore, sulphate concentrations and pH do not exhibit 299 

seasonal cycles in these catchments (Figure S3). Simultaneous release of ferrous Fe and SRP have 300 

been measured in-situ in riparian soils (Dupas et al., 2015; Gu et al., 2017; Surridge et al., 2007; van 301 

der Grift et al., 2014), and the same authors observed that NO3 could play the role of a redox buffer 302 

that determines the timing of Fe oxyhydroxides reductive dissolution and subsequent SRP release. 303 

Hence, the seasonal variability of NO3 inputs to the riparian wetland, with high inputs from the 304 

upslope nitrate rich compartment during the wet period and lower inputs combined with higher 305 

denitrification during the warmer summer period (Dupas et al., 2016; Exner-Kittridge et al., 2016; 306 

Woodward et al., 2013), could govern SRP seasonal dynamics via reductive desorption of SRP 307 

previously bound to Fe oxyhydroxides. Hydrology is both a proximate and ultimate control (e.g. 308 

Thomas et al., 2016) of the seasonal variability in SRP and NO3 in the streams of the Carlsfeld 309 

catchment. 310 

The hypothesis of a dominant redox control on SRP and dissolved Fe dynamics is apparently 311 

contradicted by field observation in intensively farmed regions of Belgium and the Netherlands that 312 

phosphate and Fe oxyhydroxides usually co-precipitate during exfiltration of anoxic groundwater to 313 

oxic stream waters, and thus phosphate is retained within soils and sediments (Baken et al., 2015; 314 

van der Grift et al., 2014). However, Baken et al. (2016) have shown in the same region that in-315 

stream water with a P:Fe molar ratio below 0.1, co-precipitation of phosphate and Fe oxyhydroxides 316 

was not leading to retention but instead could form mobile Fe-rich colloids which can be transferred 317 
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to the streams. The mean and maximum P:Fe molar ratio in the three Carlsfeld sub-catchments 318 

ranged from 0.03 to 0.04 and 0.06 to 0.12 respectively, i.e. below or close to the threshold proposed 319 

by Baken et al. (2016). This means that with the relatively low SRP concentrations observed in the 320 

Carlsfeld sub-catchments, it is likely that Fe-rich colloids are the vector of P, and that these Fe-P 321 

colloids can still be measured as SRP (Gu et al., 2017; Sinaj et al., 1998; Van Moorleghem et al., 322 

2011).  323 

To conclude, a biogeochemical process releasing SRP during the summer period was identified: both 324 

a temperature control and a hydrological control, via residence times and NO3 influx to the riparian 325 

reactive zone, and are likely to explain the seasonal dynamics observed. 326 

4.2. Implications for water quality assessment and management 327 

The observed SRP dynamics has implications for water quality assessment. LAMs based on C-Q 328 

relationships might overestimate point source contributions in some contexts where there is a 329 

presence of point sources (i.e. the contexts where load apportionment models can usually be used), 330 

because a biogeochemical process releasing SRP during summer low-flow can augment the point 331 

source signal. This summer SRP release, exceeding 0.05 mg l-1 in one of the study catchments, is likely 332 

to have a significant impact on LAMs in many contexts where small point sources occur: for example 333 

in the TERENO Harz/Central German Lowland Observatory, a 3300 km² area encompassing large 334 

gradients of land use and elevation in Central Germany and including small point sources, summer 335 

SRP concentrations range from < 0.01 mg l-1 to 0.12 mg l-1 (Kamjunke et al., 2013).  Therefore, we 336 

recommend combining these C-Q LAMs with markers of effluent discharge and survey of point 337 

emissions, at least to test the method in catchments where point emissions are well identified and 338 

quantified (Arnscheidt et al., 2007; Neal et al., 2010; Richards et al., 2016). Error in source 339 

identification will have an impact on the cost-effectiveness of measures to remediate P in rivers 340 

because managers might choose to target point sources as a priority, whereas diffuse source 341 

contribution during the summer growing season might be larger than previously estimated (Jarvie et 342 
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al., 2006, 2013b; Withers et al., 2014a, 2014b). In addition, evaluation of water quality remediation 343 

programmes targeting reduction of P inputs on agricultural land might be misled by the long term 344 

SRP trend, controlled by processes independent from inputs, which could mask the effect of 345 

improved management practices within catchments.  346 

Although the seasonal SRP dynamics can mimic a point source signal, as highlighted by the relatively 347 

good fit of the LAM, a better fit to the data was obtained with an empirical model including dissolved 348 

Fe as a predictor variable. However, the latter cannot be transferred to catchments where both the 349 

summer SRP release from riparian wetlands and point source emissions take place, because the 350 

dissolved Fe – SRP relationship established for the Carlsfeld sub-catchment will probably not be valid 351 

in other areas. It would, therefore, be necessary for further research to determine the controlling 352 

factor(s) of this dissolved Fe – SRP relationship (e.g. soil Fe and P content and speciation, hydrology, 353 

land use), as it could provide a basis for a new generation of LAMs that disentangle summer SRP 354 

release from riparian wetlands and point source emissions. 355 

The observed SRP dynamics has implications for water quality management, because management 356 

options generally do not take into account the interactions between nitrogen and phosphorus. If the 357 

hypothesis of NO3 buffering SRP release is confirmed in catchments with higher anthropogenic 358 

pressures, remediation programmes targeting N as a priority might result in increasing SRP 359 

concentrations in streams and rivers. Even when both N and P are targeted by remediation 360 

programmes, the long term legacy of P in soils (Jarvie et al., 2013a) might lead to a slow depletion of 361 

the P accumulated in the catchment as compared to N, thus increased SRP release from riparian 362 

wetlands (in summer) is possible.  363 

Further research is needed to determine if the hypothesis of NO3 buffering SRP release, followed by 364 

SRP delivery to streams, can take place also in agricultural catchments, where N inputs are much 365 

higher than in the study case presented here. The comparison of the three Carlsfeld sub-catchments 366 

suggests that redox mediated SRP release needs extremely low NO3 concentration to take place: in 367 
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Carlsfeld 2, where SRP release seemed to be almost inhibited compared to Carlsfeld 1 and 3, the 368 

mean annual NO3 concentration was only 0.46 ± 0.11 mg N l-1, a concentration far below what is 369 

commonly measured in agricultural areas. However, redox mediated SRP release has been 370 

documented in some of the regions with the highest agricultural pressures in Europe such as 371 

Western France (Dupas et al., 2015; Gu et al., 2017), Belgium (Baken et al., 2016) and the 372 

Netherlands (van der Grift et al., 2014). Hence stream nitrate NO3 may not in isolation be a good 373 

indicator of redox mediated SRP release, as this process can take place in local organic rich hotspots 374 

where NO3 is absent, whereas in agricultural areas NO3 can still be high in deeper flow paths. 375 

5. Conclusions 376 

In this study, with direct implications for catchment management and monitoring programmes 377 

where eutrophication is an issue, we showed that: 378 

x a biogeochemical process releasing SRP during summer low-flow can mimic a point source 379 

signal and may lead to overestimation of point source contributions in P load apportionment 380 

studies;  381 

x a long term increasing SRP trend could possibly mask the effect of reduced P inputs in some 382 

areas; 383 

x seasonal reductive dissolution of Fe oxyhydroxides is a probable mechanism for the summer 384 

SRP release from riparian wetland soils, under the control of temperature, residence times 385 

and NO3 influx.  386 

Further methodological developments are necessary to include summer SRP release from riparian 387 

wetlands into LAMs, especially in rural areas where domestic P emissions are difficult to evaluate due 388 

to their scattered distribution throughout catchments. 389 

Acknowledgements 390 



21 
 

This work was supported by the Federal Ministry of Education and Research Germany (BMBF, 391 

02WT1290A). We thank the State Reservoir Administration of Saxony for providing the chemical and 392 

hydrological data of the Carlsfeld reservoir tributaries. We also thank Marieke Frassl and Olaf 393 

Buettner for building the database and Gi-Mick Wu for statistical support. 394 

References 395 

Anderson, T.R., Groffman, P.M., Kaushal, S.S., Walter, M.T., 2014. Shallow Groundwater 396 
Denitrification in Riparian Zones of a Headwater Agricultural Landscape. Journal of 397 
Environmental Quality, 43(2): 732-744. 10.2134/jeq2013.07.0303 398 

Arnscheidt, J. et al., 2007. Defining the sources of low-flow phosphorus transfers in complex 399 
catchments. Science of the Total Environment, 382(1): 1-13. 10.1016/j.scitotenv.2007.03.036 400 

Baken, S., Moens, C., van der Grift, B., Smolders, E., 2016. Phosphate binding by natural iron-rich 401 
colloids in streams. Water Research, 98: 326-333. 10.1016/j.watres.2016.04.032 402 

Baken, S., Verbeeck, M., Verheyen, D., Diels, J., Smolders, E., 2015. Phosphorus losses from 403 
agricultural land to natural waters are reduced by immobilization in iron-rich sediments of 404 
drainage ditches. Water Research, 71: 160-170. 10.1016/j.watres.2015.01.008 405 

Bowes, M.J. et al., 2015. Characterising phosphorus and nitrate inputs to a rural river using high-406 
frequency concentration-flow relationships. The Science of the total environment, 511: 608-407 
20. 10.1016/j.scitotenv.2014.12.086 408 

Bowes, M.J. et al., 2014. Identifying priorities for nutrient mitigation using river concentration-flow 409 
relationships: The Thames basin, UK. Journal of Hydrology, 517: 1-12. 410 
10.1016/j.jhydrol.2014.03.063 411 

Bowes, M.J., Smith, J.T., Jarvie, H.P., Neal, C., 2008. Modelling of phosphorus inputs to rivers from 412 
diffuse and point sources. Science of the Total Environment, 395(2-3): 125-138. 413 
10.1016/j.scitotenv.2008.01.054 414 

Buettner, O., Tittel, J., 2013. Uncertainties in dissolved organic carbon load estimation in a small 415 
stream. Journal of Hydrology and Hydromechanics, 61(1): 81-83. 10.2478/johh-2013-0010 416 

Crockford, L. et al., 2017. The application of high temporal resolution data in river catchment 417 
modelling and management strategies. Environ. Monit. Assess., 189(9). 10.1007/s10661-017-418 
6174-1 419 

Dupas, R. et al., 2015. Groundwater control of biogeochemical processes causing phosphorus release 420 
from riparian wetlands. Water Research, 84: 307-314. 10.1016/j.watres.2015.07.048 421 

Dupas, R., S., J., Musolff, A., Borchardt, D., Rode, M., 2016. Disentangling the influence of 422 
hydroclimatic patterns and agricultural management on river nitrate dynamics from sub-423 
hourly to decadal time scales. Science of the Total Environment(571): 791-800. 424 
10.1016/j.scitotenv.2016.07.053 425 

Dupas, R. et al., 2017a. The role of mobilisation and delivery processes on contrasting dissolved 426 
nitrogen and phosphorus exports in groundwater fed catchments. Science of the Total 427 
Environment(599-600): 1275–1287. 428 

Dupas, R. et al., 2017b. Carbon and nutrient export regimes from headwater catchments to 429 
downstream reaches. Biogeosciences(14): 4391–4407. 430 

EC, 2002. Eutrophication and health. Luxembourg Office for Official Publications of the European 431 
Communities 432 



22 
 

Exner-Kittridge, M. et al., 2016. The seasonal dynamics of the stream sources and input flow paths of 433 
water and nitrogen of an Austrian headwater agricultural catchment. Science of the Total 434 
Environment, 542: 935-945. 10.1016/j.scitotenv.2015.10.151 435 

Greene, S., Taylor, D., McElarney, Y.R., Foy, R.H., Jordan, P., 2011. An evaluation of catchment-scale 436 
phosphorus mitigation using load apportionment modelling. Science of the Total 437 
Environment, 409(11): 2211-2221. 10.1016/j.scitotenv.2011.02.016 438 

Gu, S. et al., 2017. Release of dissolved phosphorus from riparian wetlands: evidence for complex 439 
interactions among hydroclimate variability, topography and soil properties. Science of the 440 
Total Environment(598): 421–431. 441 

Hastie, T., Tibshirani, R., 1987. Generalized additive-models – some applications. Journal of the 442 
American Statistical Association, 82(398): 371-386. 10.2307/2289439 443 

Haygarth, P.M., Condron, L.M., Heathwaite, A.L., Turner, B.L., Harris, G.P., 2005. The phosphorus 444 
transfer continuum: Linking source to impact with an interdisciplinary and multi-scaled 445 
approach. Science of the Total Environment, 344(1-3): 5-14. 10.1016/j.scitotenv.2005.02.001 446 

Hrachowitz, M. et al., 2016. Transit times—the link between hydrology and water quality at the 447 
catchment scale. Water 448 

Jarvie, H.P., Neal, C., Withers, P.J.A., 2006. Sewage-effluent phosphorus: A greater risk to river 449 
eutrophication than agricultural phosphorus? Science of the Total Environment, 360(1-3): 450 
246-253. 10.1016/j.scitotenv.2005.08.038 451 

Jarvie, H.P. et al., 2012. Within-River Phosphorus Retention: Accounting for a Missing Piece in the 452 
Watershed Phosphorus Puzzle. Environmental Science & Technology, 46(24): 13284-13292. 453 
10.1021/es303562y 454 

Jarvie, H.P. et al., 2013a. Water Quality Remediation Faces Unprecedented Challenges from "Legacy 455 
Phosphorus". Environmental Science & Technology, 47(16): 8997-8998. 10.1021/es403160a 456 

Jarvie, H.P. et al., 2013b. Phosphorus Mitigation to Control River Eutrophication: Murky Waters, 457 
Inconvenient Truths, and "Postnormal" Science. Journal of Environmental Quality, 42(2): 295-458 
304. 10.2134/jeq2012.0085 459 

Jarvie, H.P. et al., 2010. Streamwater phosphorus and nitrogen across a gradient in rural-agricultural 460 
land use intensity. Agriculture Ecosystems & Environment, 135(4): 238-252. 461 
10.1016/j.agee.2009.10.002 462 

Jordan, P., Arnscheidt, A., McGrogan, H., McCormick, S., 2007. Characterising phosphorus transfers in 463 
rural catchments using a continuous bank-side analyser. Hydrology and Earth System 464 
Sciences, 11(1): 372-381 465 

Jordan, P., Melland, A.R., Mellander, P.E., Shortle, G., Wall, D., 2012. The seasonality of phosphorus 466 
transfers from land to water: implications for trophic impacts and policy evaluation. Sci Total 467 
Environ, 434: 101-9. 10.1016/j.scitotenv.2011.12.070 468 

Kamjunke, N. et al., 2013. Biogeochemical patterns in a river network along a land use gradient. 469 
Environmental Monitoring and Assessment, 185(11): 9221-9236. 10.1007/s10661-013-3247-470 
7 471 

Li, Y.C., Yu, S., Strong, J., Wang, H.L., 2012. Are the biogeochemical cycles of carbon, nitrogen, sulfur, 472 
and phosphorus driven by the "Fe-III-Fe-II redox wheel" in dynamic redox environments? 473 
Journal of Soils and Sediments, 12(5): 683-693. 10.1007/s11368-012-0507-z 474 

Martin, C. et al., 2004. Seasonal and interannual variations of nitrate and chloride in stream waters 475 
related to spatial and temporal patterns of groundwater concentrations in agricultural 476 
catchments. Hydrol. Process., 18(7): 1237-1254. 10.1002/hyp.1395 477 

Mellander, P.-E. et al., 2012. Quantifying nutrient transfer pathways in agricultural catchments using 478 
high temporal resolution data. Environmental Science & Policy, 24: 44-57. 479 
10.1016/j.envsci.2012.06.004 480 

Minaudo, C. et al., 2017. Nonlinear empirical modeling to estimate phosphorus exports using 481 
continuous records of turbidity and discharge. Water Resour. Res. 482 



23 
 

Moatar, F., Abbott, B.W., Minaudo, C., Curie, F., Pinay, G., 2017. Elemental properties, hydrology, and 483 
biology interact to shape concentration-discharge curves for carbon, nutrients, sediment, 484 
and major ions. Water Resour. Res., 53(2): 1270-1287. 485 

Musolff, A., Selle, B., Buettner, O., Opitz, M., Tittel, J., 2016. Unexpected release of phosphate and 486 
organic carbon to streams linked to declining nitrogen depositions. Global Change Biology: 1-487 
11. 10.1111/gcb.13498 488 

Neal, C., Jarvie, H.P., Withers, P.J.A., Whitton, B.A., Neal, M., 2010. The strategic significance of 489 
wastewater sources to pollutant phosphorus levels in English rivers and to environmental 490 
management for rural, agricultural and urban catchments. Science of the Total Environment, 491 
408(7): 1485-1500. 10.1016/j.scitotenv.2009.12.020 492 

Ockenden, M.C. et al., 2016. Changing climate and nutrient transfers: Evidence from high temporal 493 
resolution concentration-flow dynamics in headwater catchments. Science of the Total 494 
Environment, 548: 325-339. 10.1016/j.scitotenv.2015.12.086 495 

Oehler, F., Durand, P., Bordenave, P., Saadi, Z., Salmon-Monviola, J., 2009. Modelling denitrification 496 
at the catchment scale. Science of the Total Environment, 407(5): 1726-1737. 497 
10.1016/j.scitotenv.2008.10.069 498 

Pinay, G. et al., 2015. Upscaling Nitrogen Removal Capacity from Local Hotspots to Low Stream 499 
Orders' Drainage Basins. Ecosystems, 18(6): 1101-1120. 10.1007/s10021-015-9878-5 500 

R Development Core Team 2008. R: A language and environment for statistical computing. R 501 
Foundation for Statistical Computing,  Vienna, Austria. ISBN 3-900051-07-0, URL 502 
http://www.R-project.org. 503 

 504 
Records, R.M., Wohl, E., Arabi, M., 2016. Phosphorus in the river corridor. Earth-Science Reviews, 505 

158: 65-88. 10.1016/j.earscirev.2016.04.010 506 
Richards, S., Withers, P., Patersona, E., C.W., M., Stutter, M., 2016. Temporal variability in domestic 507 

point source discharges and their associated impact on receiving waters. Science of the Total 508 
Environment, 571: 1275–1283 509 

Serrano, T. et al., 2015. Geographical modeling of exposure risk to cyanobacteria for epidemiological 510 
purposes. Environment International, 81: 18-25. 10.1016/j.envint.2015.04.007 511 

Sharpley, A.N., Kleinman, P.J.A., Jordan, P., Bergstrom, L., Allen, A.L., 2009. Evaluating the Success of 512 
Phosphorus Management from Field to Watershed. Journal of Environmental Quality, 38(5): 513 
1981-1988. 10.2134/jeq2008.0056 514 

Shore, M. et al., 2017. Influence of stormflow and baseflow phosphorus pressures on stream ecology 515 
in agricultural catchments. Science of the Total Environment, in press. 516 
10.1016/j.scitotenv.2017.02.100 517 

Sinaj, S. et al., 1998. Interference of colloidal particles in the determination of orthophosphate 518 
concentrations in soil water extracts. Communications in Soil Science and Plant Analysis, 519 
29(9-10): 1091-1105. 10.1080/00103629809370011 520 

Smith, V.H., Schindler, D.W., 2009. Eutrophication science: where do we go from here? Trends in 521 
Ecology & Evolution, 24(4): 201-207. 10.1016/j.tree.2008.11.009 522 

Smolders, E. et al., 2017. Internal Loading and Redox Cycling of Sediment Iron Explain Reactive 523 
Phosphorus Concentrations in Lowland Rivers. Environmental Science & Technology 524 

Stamm, C., Jarvie, H.P., Scott, T., 2014. What's More Important for Managing Phosphorus: Loads, 525 
Concentrations or Both? Environmental Science & Technology, 48(1): 23-24. 526 
10.1021/es405148c 527 

Sucker, C., von Wilpert, K., Puhlmann, H., 2011. Acidification reversal in low mountain range streams 528 
of Germany. Environmental Monitoring and Assessment, 174(1-4): 65-89. 10.1007/s10661-529 
010-1758-z 530 

Surridge, B.W.J., Heathwaite, A.L., Baird, A.J., 2007. The release of phosphorus to porewater and 531 
surface water from river riparian sediments. Journal of Environmental Quality, 36(5): 1534-532 
1544. 10.2134/jeq2006.0490 533 

http://www.r-project.org./


24 
 

Thomas, Z., Abbott, B., Troccaz, O., Baudry, J., Pinay, G., 2016. Proximate and ultimate controls on 534 
carbon and nutrient dynamics of small agricultural catchments. Biogeosciences, 13(6): 1863-535 
1875. 10.5194/bg-13-1863-2016 536 

van der Grift, B., Rozemeijer, J.C., Griffioen, J., van der Velde, Y., 2014. Iron oxidation kinetics and 537 
phosphate immobilization along the flow-path from groundwater into surface water. 538 
Hydrology and Earth System Sciences, 18(11): 4687-4702. 10.5194/hess-18-4687-2014 539 

Van Moorleghem, C., Six, L., Degryse, F., Smolders, E., Merckx, R., 2011. Effect of Organic P Forms 540 
and P Present in Inorganic Colloids on the Determination of Dissolved P in Environmental 541 
Samples by the Diffusive Gradient in Thin Films Technique, Ion Chromatography, and 542 
Colorimetry. Analytical Chemistry, 83(13): 5317-5323. 10.1021/ac200748e 543 

Withers, P.J.A., Jarvie, H.P., 2008. Delivery and cycling of phosphorus in rivers: A review. Science of 544 
the Total Environment, 400(1-3): 379-395. 10.1016/j.scitotenv.2008.08.002 545 

Withers, P.J.A., Jordan, P., May, L., Jarvie, H.P., Deal, N.E., 2014a. Do septic tank systems pose a 546 
hidden threat to water quality? Frontiers in Ecology and the Environment, 12(2): 123-130. 547 
10.1890/130131 548 

Withers, P.J.A., Neal, C., Jarvie, H.P., Doody, D.G., 2014b. Agriculture and Eutrophication: Where Do 549 
We Go from Here? Sustainability, 6(9): 5853-5875. 10.3390/su6095853 550 

Wood, S.N., 2006. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC. 551 
Woodward, S.J.R., Stenger, R., Bidwell, V.J., 2013. Dynamic analysis of stream flow and water 552 

chemistry to infer subsurface water and nitrate fluxes in a lowland dairying catchment. 553 
Journal of Hydrology, 505: 299-311. 10.1016/j.jhydrol.2013.07.044 554 

Zhang, Q., Ball, W.P., 2017. Improving riverine constituent concentration and flux estimation by 555 
accounting for antecedent discharge conditions. Journal of Hydrology, 547: 387-402. 556 



930

920

940
950

960

910

970

910

940

950

960

920

93
0

950
940

950

950

920

940

910

Legend

¯

0 0.5 10.25 Kilometers

stream network
well-drained soils
poorly drained soils
isolines (m)Carlsfeld reservoir

Carlsfeld 1

Carlsfeld 2

Carlsfeld 3

Figure1



0
10

20
30

40
50

60

Carlsfeld1
S
R
P
(
g
l−1
)

Carlsfeld2 Carlsfeld3

−1
0

−5
0

5
10

Seasonal component

S
R
P
(
g
l−1
)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

di
ss
ol
ve
d
Fe
(m
g
l−1
)

−0
.4

−0
.2

0.
0

0.
2

0.
4

di
ss
ol
ve
d
Fe
(m
g
l−1
)

1995 2000 2005 2010 2015

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
−N
O
3
(m
g
l−1
)

1995 2000 2005 2010 2015 1995 2000 2005 2010 2015

−0
.1
5

−0
.0
5

0.
05

0.
15

N
−N
O
3
(m
g
l−1
)

1 3 5 7 9 11

1990 2000 2010

0
2

4
6

8
10

Total catchment

Q
(m
m
d−
1 )

−2
−1

0
1

2

Q
(m
m
d−
1 )

1 3 5 7 9 11
MonthYear

a) b)

µµ
Figure2



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

20
30

40

dissolved Fe (mg l−1) 

SR
P 

(µ
g 

l−1
) 

R² = 0.59

R² = 0.55

R² = 0.58

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

N −NO3 (mg l−1) 

di
ss

ol
ve

d 
Fe

 (m
g 

l−1
) 

R² = 0.32

R² = 0.15

R² = 0.37

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

N −NO3 (mg l−1) 

SR
P 

(µ
g 

l−1
) 

R² = 0.33

R² = 0.17

R² = 0.33

Figure3



0 5 10 15

0
10

20
30

40

Carlsfeld 1 before 2005

Q (mm d−1) 

SR
P 

(µ
g 

l−1
) 

SRP load = 0.11  kg P ha−1 yr−1
Point source contribution = 10.03 % load
Point source dominant = 70.24 % time

0 5 10 15

0
10

20
30

40

Carlsfeld 1 after 2005

Q (mm d−1) 

SR
P 

(µ
g 

l−1
) 

SRP load = 0.13  kg P ha−1 yr−1
Point source contribution = 20.57 % load
Point source dominant = 83.73 % time

0 5 10 15

0
10

20
30

40

Carlsfeld 2 before 2005

Q (mm d−1) 

SR
P 

(µ
g 

l−1
) 

SRP load = 0.07  kg P ha−1 yr−1
Point source contribution = 7.47 % load
Point source dominant = 62.38 % time

0 5 10 15

0
10

20
30

40

Carlsfeld 2 after 2005

Q (mm d−1) 

SR
P 

(µ
g 

l−1
) 

SRP load = 0.06  kg P ha−1 yr−1
Point source contribution = 13.25 % load
Point source dominant = 72.51 % time

0 5 10 15

0
10

20
30

40

Carlsfeld 3 before 2005

Q (mm d−1) 

SR
P 

(µ
g 

l−1
) 

SRP load = 0.15  kg P ha−1 yr−1
Point source contribution = 10.14 % load
Point source dominant = 69.36 % time

0 5 10 15

0
10

20
30

40

Carlsfeld 3 after 2005

Q (mm d−1) 

SR
P 

(µ
g 

l−1
) 

SRP load = 0.13  kg P ha−1 yr−1
Point source contribution = 20.57 % load
Point source dominant = 83.59 % time

Figure4



  

Supplementary material for on-line publication only
Click here to download Supplementary material for on-line publication only: Supplementary material.docx


