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NEW EXAMPLES OF PROBABILISTIC WELL-POSEDNESS FOR

NONLINEAR WAVE EQUATIONS

CHENMIN SUN, NIKOLAY TZVETKOV

Abstract. We consider fractional wave equations with exponential or arbitrary poly-
nomial nonlinearities. We prove the global well-posedness on the support of the cor-
responding Gibbs measures. We provide ill-posedness constructions showing that the
results are truly super-critical in the considered functional setting. We also present a
result in the case of a general randomisation in the spirit of the work by N. Burq and
the second author.

1. Introduction

Our goal in this work is to give new examples of probabilistic well-posedness for non-
linear wave equations with data of super-critical regularity. More precisely, we consider
fractional wave equations with exponential or arbitrary polynomial nonlinearities. We will
prove the global well-posedness on the support of the corresponding Gibbs measures (and
also a result for more general random initial data). We will also provide ill-posedness
constructions showing that the considered problem is super-critical in the sense that the
obtained solutions crucially depend on the particular regularisations of the initial data.
Let us recall that in the case of a deterministic low regularity well-posedness for dispersive
PDE’s, the obtained solutions can be seen as limits of approximated smooth solutions,
independently of the choice of the approximation of the low regularity initial data (see e.g.
[13, 19, 20]).

1.1. The case of exponential nonlinearity. Let (M,g) be a compact smooth riemann-
ian manifold of dimension d without boundary. Let ∆g be the associated Laplace-Beltrami

operator. For σ ∈ R, we set Dσ = (1 −∆g)
σ/2. Consider the following (fractional) wave

equation

(1.1) ∂2t u+D2αu+ eu = 0 ,

where u : R ×M → R. The case α = 1 corresponds to the usual wave (or Klein-Gordon)
equation posed on M . Let u be a smooth solution of (1.1). If we multiply (1.1) by ∂tu
and integrate over M , we get

d

dt

[ ∫

M

(1
2
(∂tu)

2 +
1

2
(Dαu)2 + eu

)]
= 0 .

Let (ϕn)n≥0 be an orthonormal basis of L2(M) of eigenfunctions of −∆g associated with

increasing eigenvalues (λ2n)n≥0. By the Weyl asymptotics λn ≈ n
1
d . With v = ∂tu, we

rewrite (1.1) as the following first order system:

(1.2) ∂tu = v, ∂tv = −D2αu− eu.
1
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The system (1.2) is a Hamiltonian system of PDEs with the Hamiltonian:

(1.3) H(u, v) =
1

2

∫

M

(
(Dαu)2 + v2

)
+

∫

M
eu.

The Hamiltonian H(u, v) controls the Hα norm of (u, v), where we denote

Hs ≡ Hs(M)×Hs−α(M)

for any s ∈ R, and Hs(M) is the classical Sobolev space of order s. For α ≥ d
2 ,

(1.4)
∣∣∣
∫

M
eu
∣∣∣ ≤ Ce

C‖u‖2
Hα(M)

and therefore for these values of α the potential energy can be seen as a perturbation. In
particular we can show the global well-posedness of (1.2) for data in Hα.

Theorem 1.1. Let α ≥ d
2 . The Cauchy problem associated with (1.2) is (deterministically)

globally well-posed for data in Hs, s ≥ α.

We omit the proof of Theorem 1.1. It follows from a standard fix point argument, based
on (1.4).

Let (gn, hn)n≥0 be a family of independent standard gaussians on the probability space
(Ω,F ,P). The gaussian measure µ is the image measure under the map ω 7→ (uω, vω)
defined by

(1.5) uω(x) =

∞∑

n=0

gn(ω)

〈λn〉α
ϕn(x) , vω(x) =

∞∑

n=0

hn(ω)ϕn(x) .

We can see µ as a probability measure on Hσ, σ < α − d/2. One has the following key
property of µ.

Proposition 1.2. Let α > d/2. For θ < α− d/2, ‖Dθu‖L∞(M) is finite µ-almost surely.
More precisely

µ{u : ‖Dθu‖L∞(M) > λ} ≤ C e−cλ
2

for some C, c > 0 independent of λ ≥ 1.

The proof of Proposition 1.2 follows directly from the same argument as in the proof of
Proposition 3.3, in particular from (3.10). Applying Proposition 1.2 with θ = 0 we obtain
that

∫
M eu is finite µ almost surely and we can define the Gibbs measure ρ associated with

(1.2) as

dρ(u, v) = e−
∫

M eudµ(u, v) .

Indeed, using that if u =
∑

n cnϕn then

1

2

∫

M
(Dαu)2 =

∞∑

n=0

〈λn〉2αc2n,

we deduce that one may interpret µ as a renormalisation of the formal measure

Z−1 e−
1
2

∫

M
((Dαu)2+v2) du dv

and therefore ρ becomes Z−1e−H(u,v)dudv which reminds the Gibbs measure for finite
dimensional systems. We have the following result.
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Theorem 1.3. Let α > d
2 and 0 < σ < α − d

2 . The problem (1.2) is µ almost surely
globally well-posed. Moreover ρ is invariant under the resulting flow Φ(t) in the following
sense. There exists a measurable set Σ ⊂ Hσ with full µ measure, such that Φ(t)(Σ) = Σ
and for any measurable set A ⊂ Σ, we have ρ(A) = ρ(Φ(t)A) for all t ∈ R.

The main difficulty in Theorem 1.3 comes from the fact that the random data (1.5) is
not in the scope of applicability of the deterministic well-posedness result of Theorem 1.1.
We however have the following connection between Theorem 1.1 and Theorem 1.3.

Theorem 1.4. Let (uωN (t, x), v
ω
N (t, x)) be the solution of (1.2) given by Theorem 1.1 with

smooth data

uωN (x) =
∑

λn≤N

gn(ω)

〈λn〉α
ϕn(x) , vωN (x) =

∑

λn≤N
hn(ω)ϕn(x) .

Then almost surely in ω, (uωN (t, x), v
ω
N (t, x)) converges to the solution (u, v) of (1.2) con-

structed in Theorem 1.3, in C(R;Hσ) (and uωN converges to u in L∞
loc(R ×M)).

The restriction α > d/2 in Theorem 1.3 and Theorem 1.4 is optimal in the sense that for
α = d/2 the construction of the measure ρ fails because

∫
eu is ill defined on the support

of µ. However, for d = 2 one may suitably renormalise
∫
eu. Such a renormalisation would

unfortunately lead to a change of the equation. In the case of the renormalisation used in
[17, 14, 15] one would obtain the wave equation, without the mass term, but with a source
term, related to the curvature of M . One can also use a renormalisation as in [11] which
would avoid the source term in the equation but the mass term should be kept. In the case
of both renormalisations we have just mentioned, one can apply compactness techniques
as employed in [11, 23]. The obtained solutions would however be non unique and an
approximation result as the one of Theorem 1.4 is completely out of reach of the scope of
the applicability of these weak solution techniques. We believe that obtaining a result as
Theorem 1.4 in the case α = 1 (d = 2) for the above mentioned renormalised equations is
an interesting and challenging problem. It is worth mentioning that the relevant parabolic
equations have been recently studied in [16].

A novelty in the proof of Theorem 1.3 and Theorem 1.4 compared to [3, 4, 9, 10, 28]
is that because of the exponential nonlinearity, we need to prove probabilistic Strichartz
estimates involving L∞ norms with respect to the time variables.

1.2. The case of arbitrary polynomial nonlinearity. The strategy to prove Theo-
rem 1.3 and Theorem 1.4 works equally well for power type nonlinearity of an arbitrary
degree, as follows

(1.6) ∂2t u+D2αu+ u2k+1 = 0.

We have the following statement in the context of (1.6).

Theorem 1.5. Let α > d
2 and 0 < σ < α − d

2 . Then (1.6) is µ almost surely globally
well-posed.

Note that from the scaling consideration: u(t, x) 7→ λ
α
k u(λαt, λx), the critical index

is sc = d
2 − α

k . Therefore, if s <
d
2 − α

k , (1.6) is super-critical with respect to Hs. As a
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consequence, we have an ill-posedness result, Proposition 6.1, proved in Section 6.

We underline that Theorem 1.5 is really a super-critical result, in the sense that the
way to approximate the solution in C(R;Hσ) by smooth solutions is very sensitive. More
precisely, as a consequence of Theorem 1.5 and Proposition 6.1, we have the following
remarkable statement.

Corollary 1.6. Assume that 0 < σ < α− d

2
. Let k ∈ N such that

(2k − 1)d

2k + 1
< α <

kd

2
, k ∈ N, and

d

2
− 2α

2k − 1
≤ σ <

d

2
− α

k
.

• For almost every (uω0 , u
ω
1 ) ∈ Hσ, there exists a sequence

uωN (t, x) ∈ C(R;C∞(M)), N = 1, 2, · · ·

of global solutions to (1.6) such that

lim
N→∞

‖(uωN (0), ∂tuωN (0)) − (uω0 , u
ω
1 )‖Hσ → 0,

while for every T > 0,

lim
N→∞

‖uωn(t)‖L∞([0,T ];Hσ(M)) → ∞.

• Let (uωN (t, x), v
ω
N (t, x)) be the solution of (1.6) with smooth data

uωN (x) =
∑

λn≤N

gn(ω)

〈λn〉α
ϕn(x) , vωN (x) =

∑

λn≤N
hn(ω)ϕn(x) .

Then almost surely in ω, (uωN (t, x), v
ω
N (t, x)) converges to the solution (u, v) of

(1.6) constructed in Theorem 1.5 in C(R;Hσ).

Remark 1.7. For fixed k ∈ N, if

(2k − 1)d

2k + 1
< α <

kd

2
,

then (
d

2
− 2α

2k − 1
,
d

2
− α

k

)
∩
(
0, α− d

2

)
6= ∅.

Remark 1.8. The first assertion of this corollary will follow from the strong ill-posedness
result of Proposition 6.1. Unlike usual ill-posedness construction near the zero initial
data, we prove norm-inflation near any smooth data of arbitrary size. The restriction

α > (2k−1)d
2k+1 here is only a technical assumption (see case 2 in the proof of Lemma 6.5 for

detailed discussion). It would be interesting to decide whther the same conclusion holds
for the full range d

2 < α < kd
2 .
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1.3. General randomisations. We remark that for the polynomial nonlinearity, if the
underlying manifold is M = T

d, we could also treat the general randomisation introduced
in [9]. More precisely, for any (u0, v0) ∈ Hs(Td)×Hs−1(Td),

u0(x) = a0 +
∑

n∈Zd\{0}
(an,1 cos(n · x) + an,2 sin(n · x)),

v0(x) = b0 +
∑

n∈Zd\{0}
(bn,1 cos(n · x)x+ bn,2 sin(n · x)),

we consider the randomisation around (u0, v0):

uω0 (x) = a0g0(ω) +
∑

n∈Zd\{0}
(an,1gn,1(ω) cos(n · x) + an,2gn,2(ω) sin(n · x)),

vω0 (x) = b0h0(ω) +
∑

n∈Zd\{0}
(bn,1hn,1(ω) cos(n · x)x+ bn,2hn,2(ω) sin(n · x)),

(1.7)

where {g0(ω), gn,j(ω), h0(ω), hn,j(ω) : n ∈ Z
d \ {0}, j = 1, 2} are independent standard

Gaussian variables. Denote by

uω0,N (x) = a0g0(ω) +
∑

|n|≤N,n 6=0

(an,1gn,1(ω) cos(n · x) + an,2gn,2(ω) sin(n · x)),

vω0,N (x) = b0h0(ω) +
∑

|n|≤N,n 6=0

(bn,1hn,1(ω) cos(n · x)x+ bn,2hn,2(ω) sin(n · x)),

We have the following almost surely global existence as well as uniqueness theorem:

Theorem 1.9. Assume that M = T
d, α > d

2 . Let (u0, v0) ∈ Hs with (k−1)α
k < s <

α. Then almost surely in ω ∈ Ω, (1.6) with initial data (uω0 , v
ω
0 ) is globally well-posed.

Moreover, the sequence of smooth solutions uN (t) to (1.6) with initial datum (uω0,N , v
ω
0,N )

converges in C(R;Hs(Td)×Hs−1(Td)) to the solution uω(t) with initial data (uω0 , v
ω
0 ).

We will sketch the proof in Section 7. The only additional ingredient in the proof of
Theorem 1.9 is an energy a priori estimate, following the method of Oh-Pocovnicu [24]
(see also [26]). The crucial fact we use to prove the energy estimate is the almost sure
L∞ bound for the linear evolution of the Gaussian random initial data. This is the reason
to restrict our consideration to M = T

d in Theorem 1.9. For general randomisations on
arbitrary manifold, the almost sure L∞ bound does not always hold true (see for example
[1]). However, as in [25], using the idea of Burq-Lebeau [6], such an L∞ bound can be
achieved by imposing some assumptions on the variations of the Fourier coefficients of
(u0, v0).

It is worth mentioning that there are many situations when the energy method of Oh-
Pocovnicu does not cover the results obtained by exploiting the Gibbs measure. Indeed,
for general randomisations, we need s→ α as k → ∞ while for data on the support of the
Gibbs measure we need 0 < s < α− d

2 , independently of k.
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2. Construction of the Gibbs measure

2.1. Notations. Denote by ΠN the sharp spectral projector on EN = span{ϕn : λn ≤ N}.
Let πN be a smooth projector where

πN
( ∞∑

n=0

cnϕn
)
:=

∞∑

n=0

ψ(λn/N)cnϕn,

where ψ ∈ C∞
0 (R) ψ(r) ≥ 0 and ψ(r) ≡ 1 if r ≤ 1/2, ψ(r) ≡ 0 if r > 1. By convention

π∞ = Id. Clearly, we have

πNΠN = πN , πNΠN/2 = ΠN/2.

We will also use the notations:

π⊥N := Id− πN , Π⊥
N := Id−ΠN .

2.2. Definition of Gibbs measure. Denote by µ̃N the distribution of the EN × EN
valued random variable

ω 7→
( ∑

λn≤N

gn(ω)

〈λn〉α
ϕn(x),

∑

λn≤N
hn(ω)ϕn(x)

)
.

Consider the Gaussian measure µ̃N induced by this map, which is the probability measure
on R

2 dim(EN ) defined by

dµ̃N =
∏

λn≤N

〈λn〉α
2π

e−
(λ2n+1)αa2n

2
− b2n

2 dandbn =
1

ZN
e−H0(an,bn)

∏

λn≤N
dandbn ,

where H0 is the free Hamiltonian

H0(u, v) =
1

2

∫

M
(|Dαu|2 + |v|2).

Now we define a Gaussian measure on Hσ(M)(σ < α − d/2) be the induced probability
measure by the map

ω 7→
( ∞∑

n=0

gn(ω)

〈λn〉α
ϕn(x),

∞∑

n=0

hn(ω)ϕn(x)
)
.

The measure µ can be decomposed into µ = µN⊗µ̃N for all N , where µN is the distribution
of the random variable on E⊥

N × E⊥
N . Now we define the Gibbs measure ρ by

dρ(u) = exp
(
−
∫

M
eu
)
dµ(u).

We denote by

FN (u) =

∫

M
eπNu, F (u) =

∫

M
eu
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and

G(u) = exp
(
−
∫

M
eu
)
, GN (u) = exp

(
−
∫

M
eπNu

)
.

To be precise, we firstly define its finite dimensional approximations

(2.1) dρ̃N (u) = GN (u)dµ̃N (u), dρN (u) = GN (u)dµ(u) = dµN ⊗ dρ̃N .

The following proposition justifies our definition of dρ(u).

Proposition 2.1. We have the following statements :

(1) The sequences (FN (u))N≥1 and (GN (u))N≥1 converge to the limits F (u), G(u) in
Lp(dµ(u)), 2 ≤ p < ∞, respectively. In particular, G(u) exists almost surely with
respect to µ.

(2) G(u)−1 = exp
(∫
M eu

)
is almost surely finite with repsect to µ.

(3) limN→∞ ρN (A) = ρ(A), for every Borel set A ⊂ Hσ.

Proof of Proposition 2.1. (1) As mentioned in Remark 3.8 of [27], in order to prove that
FN (u), GN (u) converge to F (u), G(u) in Lp(dµ), it will be sufficient to show that

• ‖FN (u)‖Lp(dµ), ‖GN (u)‖Lp(dµ) are uniformly bounded.
• FN (u), GN (u) converge to F (u), G(u) in measure.

Now we verify the boundeness in Lp(dµ). Note that GN (u) ≤ 1, we only need to check for
FN (u). We write

|FN (u)| ≤ vol(M)e‖πNu‖L∞(M) .

Therefore using Proposition 1.2, we write for λ ≥ 1,

µ(u : |FN (u)| > λ) ≤ µ
(
u : ‖πNu‖L∞(M) >

log(λ)

C

)
≤ C ′ e−C(log(λ))2 ≤ Clλ

−l,

for every l ≥ 1. This proves the uniform in N boundedness of ‖FN (u)‖Lp(dµ) for every
p < ∞. Next, we claim that FN (u) converges in measure to F (u). Once this is justified,
the convergence in measure for GN (u) would follow automatically since GN = e−FN . For
N1 ≥ N2, we observe that

|FN1(u)− FN2(u)| ≤
∫

M
|πN1u− πN2u| · e|πN1

u|+|πN2
u|

≤C‖πN1u− πN2u‖L2(M) exp
(
‖πN1u‖L∞(M) + ‖πN2u‖L∞(M)

)
.

Therefore by Cauchy-Schwarz, ‖FN1(u)− FN2(u)‖L1(dµ) is bounded by

C
∥∥‖πN1u− πN2u‖L2(M)

∥∥
L2(dµ)

‖ exp
(
‖πN1u‖L∞(M) + ‖πN2u‖L∞(M)

)
‖L2(dµ) .

The first factor is clearly going to zero as N1, N2 go to infinity. One can show that the
second factor is uniformly bounded, exactly as in the proof of the uniform boundedness
of ‖FN (u)‖Lp(dµ) . Therefore (FN (u)) is a Cauchy sequence in L1(dµ) which implies its
convergence in mesure. This in turn implies the convergence in measure of the sequence
(GN (u)) (GN is a continuous function of FN ).

(2) To show that
∫
M eu is almost surely finite, it will be sufficient to verify that

Eµ

[∫

M
eu
]
<∞.
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From the proof of (1), Eµ[e
‖πNu‖L∞(M) ] is uniformly bounded in N . Thus we conclude by

the dominated convergence.

(3) It will be sufficient to check that, for all Borel set A ⊂ Hσ(M), we have

lim
N→∞

∫

Hσ(M)
1u∈A|GN (u)−G(u)|dµ(u) = 0.

This is a simple consequence of L2(dµ(u)) convergence, since
∫

Hσ(M)
1u∈A|GN (u)−G(u)|dµ(u) ≤ ‖GN (u)−G(u)‖L2(dµ)µ(A)

1/2 → 0,

as N → ∞. This completes the proof of Proposition 2.1. �

3. Probabilistic local well posedness

3.1. Deterministic local well-posedness result. Consider the following truncated ver-
sion of (1.2)

(3.1) ∂tu = v, ∂tv = −D2αu− πN (e
πNu),

with initial data

(3.2) u|t=t0 = u0, v|t=t0 = v0.

Let us next define the free evolution. The solution of

∂tu = v, ∂tv = −D2αu,

subject to initial data
u(0, x) = u0(x), v(0, x) = v0(x)

is given by
S̄(t)(u0, v0) = (S(t)(u0, v0), ∂tS(t)(u0, v0)),

where
S(t)(u0, v0) = cos(tDα)u0 +D−α sin(tDα)v0

and
∂tS(t)(u0, v0) = −Dα sin(tDα)u0 + cos(tDα)v0 .

Assume that ǫ0 ≪ 1, 1 ≪ r0 <∞ such that

d

r0
< ǫ0 < α− d

2
,

which is possible since α > d
2 . In order to establish the probabilistic local well-posednesss

as well as globalising the dynamics, we need some auxillary functional spaces X s,β,Yβ,Zβ ,
defined via the norms

‖(u, v)‖Yβ :=
∑

l∈Z
(1 + |l|)−β sup

l≤t<l+1
‖S(t)(u, v)‖W ǫ0 ,r0 (M),

‖(u, v)‖X s,β := ‖(u, v)‖Hs + ‖(u, v)‖Yβ

and
‖(u, v)‖Zβ :=

∑

l∈Z
(1 + |l|)−β sup

l≤t≤l+1
‖S(t)(u, v)‖L∞(M).
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Note that
α− s0
d

=
1

2
− 1

r0
with s0 = α− d

2
+
d

r0
> ǫ0,

thus Hα(M) ⊂ W ǫ0,r0(M) ⊂ L∞(M) (with continuous inclusions). Moreover, Yβ ⊂ Zβ.
The definition of these weighted in time spaces Yβ ,Zβ is inspired by the work of N. Burq
and the second author (a similar definition appears in [9]). The weight β > 1 will be fixed
in the sequel to ensure the l1 summation, without other importance. These norms are
only designed to treat the linear evolution part of the solution, since unlike [10], the linear
evolution is not periodic in time.

Denote by ΦN (t) the flow of the truncated equation (3.1)-(3.2). In components, we
write

ΦN (t)(u0, v0) = (Φ1
N (t)(u0, v0),Φ

2
N (t)(u0, v0))

with Φ1
N (t)(u0, v0) = uN (t),Φ

2
N (t)(u0, v0) = ∂tuN (t). Similarly, we denote by

Φ(t)(u0, v0) = (Φ1(t)(u0, v0),Φ
2(t)(u0, v0)),

where Φ1(t)(u0, v0) = u(t),Φ2(t)(u0, v0) = ∂tu(t) for solutions of the non truncated equa-
tion

∂2t u+D2αu+ eu = 0, (u, ∂tu)|t=0 = (u0, v0).

We also denote the nonlinear evolution part by

W (t)(u0, v0) := Φ1(t)(u0, v0)− S(t)(u0, v0),

WN (t)(u0,N , v0,N ) := Φ1
N (t)(u0,N , v0,N )− S(t)(u0,N , v0,N ).

The next proposition contains the local theory for (3.1) and the original system (1.2).

Proposition 3.1. Let N ∈ N∪{∞} and β > 1. There exist c > 0 and κ > 0 such that the
following holds true. The Cauchy problems (3.1)-(3.2) and (1.2) are locally well-posed for
data (u0, v0) such that S(t)(u0, v0) ∈ L∞(M). More precisely for every R ≥ 1 if (u0, v0)
satisfies

(3.3) ‖(u0, v0)‖Zβ < R,

then there is a unique solution of (3.1)-(3.2) on [t0 − τ, t0 + τ ], where

(3.4) τ = ce−κR

which can be written as

(u, v) = S̄(t− t0)(u0, v0) + (ũ, ṽ),

with

‖(ũ, ṽ)‖Hα ≤ C .

In particular, the Cauchy problems (3.1)-(3.2) and (1.2) are locally well-posed for data
(u0, v0) ∈ X σ,β , for all t ∈ [t0 − τ, t0 + τ ], provided that σ < α− d

2 .

Proof. We can write (3.1)-(3.2) as

(u(t), v(t)) = S̄(t− t0)(u0, v0) +
(
F1(u), F2(u)

)
,
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where

F1(u) = −
∫ t

t0

D−α sin((t− τ)Dα)πN
(
eπNu(τ)

)
dτ,

F2(u) = −
∫ t

t0

cos((t− τ)Dα)πN
(
eπNu(τ)

)
dτ.

If we write (u, v) = S̄(t− t0)(u0, v0) + (ũ, ṽ), we obtain that (ũ, ṽ) solves

∂tũ = ṽ, ∂tṽ = −D2αũ− πN (e
πN (ũ+S(t)(u0,v0)))

with zero initial data. Therefore ũ solves

(3.5) ũ(t) = F1(ũ+ S(t− t0)(u0, v0)) .

Once we solve (3.5), we recover ṽ by ṽ = ∂tũ. Define the map Φu0,v0 by

Φu0,v0(u) := F1(u+ S(t− t0)(u0, v0)) .

It follows from the definition that

‖Φu0,v0(u)‖L∞([t0,t0+T ];Hα(M)) ≤CT‖eπN (u+S(t−t0)(u0,v0))‖L∞(I;L2(M))

≤CT (vol(M))
1
2 ‖eπN (u+S(t−t0)(u0,v0))‖L∞(I;L∞(M))

(3.6)

where I = [t0, t0 + T ]. Since πN is bounded on L∞ (see e.g. [5]), a use of the Sobolev
embedding Hα(M) ⊂ L∞(M) yields the estimate

‖Φu0,v0(u)‖L∞([I;Hα(M)) ≤ CTeC‖S(t−t0)(u0,v0))‖L∞(I×M)e‖u‖L∞(I;Hα(M)) .

Note that

‖S(t− t0)(u0, v0)‖L∞(I×M) ≤ C‖(u0, v0)‖Zβ ,

hence under (3.3) we deduce that

(3.7) ‖Φu0,v0(u)‖L∞(I;Hα(M)) ≤ CTeCRe‖u‖L∞(I;Hα(M)) .

Similarly we obtains that

‖Φu0,v0(u)− Φu0,v0(v)‖L∞(I;Hα(M))

≤CTeCR exp
(
‖u‖L∞(I;Hα(M)) + ‖v‖L∞(I;Hα(M))

)
‖u− v‖L∞(I;Hα(M)) .

(3.8)

Define the space XT as

XT = {u ∈ C(I;Hα(M)) : ‖u‖L∞(I;Hα(M)) ≤ 1}.
Using (3.7), we obtain that for T as in (3.4) the map Φu0,v0 enjoys the property

Φu0,v0(XT ) ⊂ XT .

Under the same restriction on T , thanks to (3.8), we obtain that the map Φu0,v0 is a
contraction on XT . The fixed point of this contraction is the solution of (3.5). This
completes the proof of Proposition 3.1. �

In the same spirit of the proof, we establish a local convergence result, which will be
needed to construct global dynamics in Section 4.
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Lemma 3.2. Assume that 0 < σ < α − d
2 and β > 1. There exist R0 > 0, c > 0, κ > 0

such that the following holds true. Consider a sequence (u0,Np , v0,Np) ∈ ENp × ENp and
(u0, v0) ∈ X σ, with Np → ∞. Assume that there exists R > R0 such that

‖(u0,Np , v0,Np)‖Xσ,β ≤ R, ‖(u0, v0)‖Xσ,β ≤ R,

and

lim
p→∞

‖πNp(u0,Np , v0,Np)− (u0, v0)‖Hσ = 0.

Then if we set τ = ce−κR, the flow ΦNp(t)(u0,N0 , v0,Np),Φ(t)(u0, v0) exist for t ∈ [−τ, τ ]
and satisfy

‖ΦNp(t)(u0,Np , v0,Np)‖L∞([−τ,τ ];Xσ,β) ≤ R+ 1, ‖Φ(t)(u0, v0,)‖L∞([−τ,τ ];Xσ,β) ≤ R+ 1.

Furthermore,

lim
p→∞

‖πNpΦNp(t)(u0,Np , v0,Np)− Φ(t)(u0, v0)‖L∞([−τ,τ ];Hσ) = 0,

and

lim
p→∞

‖πNpWNp(t)(u0,Np , v0,Np)−W (t)(u0, v0)‖L∞([−τ,τ ];Hα(M)) = 0.

Proof. The existence of ΦNp(t)(u0,Np , v0,Np) and Φ(t)(u0, v0) as well as the bound on [−τ, τ ]
are guaranteed by the local well-posedness result, Proposition 3.1. We only need to prove
the convergence.

Denote by

(up(t), ∂tup(t)) = ΦNp(t)(u0,Np , v0,Np), (u(t), ∂tu(t)) = Φ(t)(u0, v0).

From local theory, we can write

up(t) = S(t)(u0,Np , v0,Np) + wp(t), u(t) = S(t)(u0, v0) +w(t),

such that

‖(wp, ∂twp)‖L∞([0,τ ];Hα) ≤ R+ 1, ‖(w, ∂tw)‖L∞([0,τ ];Hα) ≤ R+ 1.

The convergence of the linear part

‖πNpS(t)(u0,Np , v0,Np)− S(t)(u0, v0)‖L∞([0,τ ];Hα) = 0

follows from the assumption and the boundedness of πNp on W ǫ0,r0(M).
Next we estimate the nonlinear part

‖πNpwp(t)− w(t)‖Hα(M).

Writing wp, w by the Duhamel formula and using triangle inequality, we can bound the
quantity above by the three contributions:

I(t) :=

∫ t

0

∥∥∥eπNp(wp(t′)+S(t′)(u0,Np ,v0,Np )) − eπNp(w(t
′)+S(t′)(u0,v0))

∥∥∥
L2(M)

dt′,

II(t) :=

∫ t

0

∥∥∥ew(t
′)+S(t′)(u0,v0) − eπNp (w(t

′)+S(t′)(u0,v0))
∥∥∥
L2(M)

dt′,

III(t) :=

∫ t

0

∥∥∥π⊥New(t
′)+S(t′)(u0,v0)

∥∥∥
L2(M)

dt′.
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Since

ew(t)+S(t)(u0 ,v0) ∈ L∞([−τ, τ ]×M),

we have that

‖III‖L∞([−τ,τ ]) = op→∞(1).

For I(t) and II(t), we can bound them by

C(R, τ)

(
op→∞(1) +

∫ t

0
‖πNpwp(t

′)−w(t′)‖L2(M)dt
′
)
.

By applying Gronwall inequality, the proof of Lemma 3.2 is complete. �

3.2. Large deviation estimate for linear evolutions. Proposition 3.1 is deterministic.
The probabilistic part of the analysis comes from the following statement.

Proposition 3.3. Assume that β > 1. There are positive constants C and c such that for
every R ≥ 1,

µ
(
(u0, v0) : ‖(u0, v0)‖Yβ ≥ R

)
≤ C e−cR

2
.

As a consequence, we also have a similar bound for the Gibbs measure

ρ
(
(u0, v0) : ‖(u0, v0)‖Yβ ≥ R

)
≤ C e−cR

2
.

Observe that in the case of an exponential nonlinearity, we need a large deviation
estimate for L∞ norms in time (in [9] only Lp in time for a finite p were established).

Proof of Proposition 3.3. Let η ∈ C∞
0 be a bump function localising in the interval [−2, 2].

Denote by ηl(t) := η(t− l) for l ∈ Z. We need to show
∥∥∥
∑

l∈Z
〈l〉−β‖ηl(t)S(t)(u0, v0)‖L∞(R;W ǫ0,r0(M)

∥∥∥
Lp(dµ)

≤ C
√
p .

Coming back to the definition of S(t), we observe that it suffices to prove the bound

∥∥∥
∑

l∈Z
〈l〉−β

∥∥∥ηl(t)
∞∑

n=0

cngn(ω)

〈λn〉α
eitλ

α
nϕn(x)

∥∥∥
L∞(R;W ǫ0,r0 (M)

∥∥∥
Lp(Ω)

≤ C
√
p ,

where |cn| is bounded. Thanks to β > 1, we have
∑

l〈l〉−β < ∞, thus it suffices to prove
the bound ∥∥∥∥∥∥

∥∥∥∥∥ηl(t)
∞∑

n=0

cngn(ω)

〈λn〉α
eitλ

α
nϕn(x)

∥∥∥∥∥
L∞(R;W ǫ0,r0(M))

∥∥∥∥∥∥
Lp(Ω)

≤ C
√
p,

uniformly in l ∈ Z.
To simplify the notation, we only write down the case where l = 0. For other l, the

arguments are exactly the same. Using the Sobolev embedding with a large q and a small
δ (depending on q) we obtain that its is sufficient to obtain

∥∥∥
∥∥∥Dδ

tD
ǫ0
(
η(t)

∞∑

n=0

cngn(ω)

〈λn〉α
eitλ

α
nϕn(x)

)∥∥∥
Lq(R;Lr0 (M)

∥∥∥
Lp(Ω)

≤ C
√
p ,
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where Dδ
t = (1− ∂2t )

δ/2. Since Dǫ0ϕn = 〈λn〉ǫ0ϕn, we are reduced to prove the bound

∥∥∥
∥∥∥

∞∑

n=0

cngn(ω)

〈λn〉α−ǫ0
αn(t)ϕn(x)

∥∥∥
Lq(R;Lr0 (M)

∥∥∥
Lp(Ω)

≤ C
√
p ,

where αn(t) = Dδ
t (η(t) exp(itλ

α
n)). Applying the Minkowski inequality, we deduce that it

suffices to prove that for p ≥ q ≥ r0,

∥∥∥
∥∥∥

∞∑

n=0

cngn(ω)

〈λn〉α−ǫ0
αn(t)ϕn(x)

∥∥∥
Lp(Ω)

∥∥∥
Lr0(M ;Lq(R))

≤ C
√
p .

Observe that in this discussion q is large but fixed and p goes to ∞. Now for a fixed (t, x),
we can apply the Khinchin inequality and write

∥∥∥
∞∑

n=0

cngn(ω)

〈λn〉α−ǫ0
αn(t)ϕn(x)

∥∥∥
Lp(Ω)

≤ C
√
p
( ∞∑

n=0

|αn(t)|2 |ϕn(x)|2
〈λn〉2(α−ǫ0)

) 1
2
.

Therefore, we reduce the matters to the deterministic bound

∥∥∥
∞∑

n=0

|αn(t)|2 |ϕn(x)|2
〈λn〉2(α−ǫ0)

∥∥∥
Lr0/2(M ;Lq/2(R)

≤ C .

For a fixed x, we apply the triangle inequality to obtain that

(3.9)
∥∥∥

∞∑

n=0

|αn(t)|2 |ϕn(x)|2
〈λn〉2(α−ǫ0)

∥∥∥
Lq/2(R)

≤
∞∑

n=0

|ϕn(x)|2
〈λn〉2(α−ǫ0)

‖αn‖2Lq(R) .

Lemma 3.4. There is C such that for every n ≥ 1, ‖αn‖Lq(R) ≤ Cλαδn .

Proof. Let β(t) = η(t)eitλ
α
n , we have that

‖αn‖Lq(R) ≤ C‖β‖Lq(R) + C‖β‖Ḃδ
q,2(R)

.

From the characterisation of Besov spaces (see [2]), we have that

‖β‖2
Ḃδ

q,2
∼
∫

R

(∫

R

|β(t+ τ)− β(t)|qdt
) 2

q dτ

|τ |1+2δ
.

We write

η(t) exp(itλαn)− η(τ) exp(iτλαn) = exp(itλαn)(η(t) − η(τ)) + η(τ)(exp(itλαn)− exp(iτλαn))

which yields two contributions. The first one is again uniformly bounded. Therefore the
issue is to check that

∫

R

(∫

R

|η(t)(ei(t+τ)λαn − eitλ
α
n )|qdt

) 2
q dτ

|τ |1+2δ
≤ (Cλαδn )2.

For |τ | ≤ cλ−αn , we use

|eiτλαn − 1| ≤ |τ |λαn,
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and thus
∫

|τ |<cλ−α
n

1

|τ |1+2δ

(∫

R

|η(t)(ei(t+τ)λαn − eitλ
α
n )|qdt

) 2
q

dτ

≤
∫

|τ |<cλ−α
n

1

|τ |1+2δ

(∫

R

|η(t)|q|τ |qλαqn
) 2

q

dτ ≤ Cλ2αδn .

The other contribution for |τ | > cλ−αn can be bounded by
∫

|τ |>cλ−α
n

(∫

R

|2η(t)|qdt
) 2

q

dτ ≤ Cλ2αδn .

This completes the proof of Lemma 3.4.
�

Coming back to (3.9) and using Lemma 3.4, we deduce that it suffices to majorize

∥∥∥
∞∑

n=0

|ϕn(x)|2
〈λn〉2(α−ǫ0−αδ)

∥∥∥
Lr0/2(M)

.

Using the compactness of M , it suffices to get the following estimate

sup
x∈M

∞∑

n=0

|ϕn(x)|2
〈λn〉2(α−ǫ0−αδ)

<∞.

Fix δ sufficiently small such that β := 2(α − ǫ0 − αδ) > d (here we fix the value of q as
well). Therefore we need to show that

(3.10) sup
x∈M

∞∑

n=0

|ϕn(x)|2
〈λn〉β

<∞, β > d .

Estimate (3.10) is direct if |ϕn(x)| are uniformly bounded (this is the case of the torus). In
the case of a general manifold, it is not true that |ϕn(x)| are uniformly bounded. However
(3.10) is true thanks to [18]. More precisely for a dyadic N , we can write

∑

N≤〈λn〉≤2N

|ϕn(x)|2
〈λn〉β

≤ CN−β ∑

N≤〈λn〉≤2N

|ϕn(x)|2 .

Thanks to [18] there is C such that for every dyadic N ≥ 1 and every x ∈M ,

(3.11)
∑

N≤〈λn〉≤2N

|ϕn(x)|2 ≤ CNd.

This readily implies (3.10). The proof of Proposition 3.3 is completed. �

We complete this section by proving following probabilistic bound for the tails of sharp
spectral truncation, which will be used in the proof of Theorem 1.4.

Proposition 3.5. Assume that 2 ≤ r0 < ∞, ǫ0 < α − d
2 , 0 < s < α− d

2 − ǫ0 and β > 1.
Then there exist C > 0, c > 0, such that for any R > 0, we have

µ
(
(u0, v0) : N

s‖Π⊥
N (u0, v0)‖Yβ > R

)
≤ Ce−cR

2
.



SUPER-CRITICAL WAVE EQUATIONS 15

Proof. Following the same notations as in the proof of the Proposition 3.3. It suffices to
prove that

(3.12)

∥∥∥∥∥∥∥

∥∥∥∥∥∥
η(t)

∑

λn≥N

cngn(ω)

〈λn〉α
eitλ

α
nϕn(x)

∥∥∥∥∥∥
L∞(R;W ǫ0,r0 (M))

∥∥∥∥∥∥∥
Lp(Ω)

≤ CN−s√p,

for p large enough. From Sobolev embedding, we are reduced to prove the bound

(3.13)

∥∥∥∥∥∥∥

∥∥∥∥∥∥

∑

λn≥N

cngn(ω)

〈λn〉α−ǫ0
αn(t)ϕn(x)

∥∥∥∥∥∥
Lq(R;Lr0 (M))

∥∥∥∥∥∥∥
Lp(Ω)

≤ CN−s√p,

where αn(t) = Dδ
t (η(t)e

itλαn ). From Minkowski inequality, it will be sufficient to prove that
for p ≥ q, p ≥ r0,

(3.14)

∥∥∥∥∥∥∥

∥∥∥∥∥∥

∑

λn≥N

cngn(ω)

〈λn〉α−ǫ0
αn(t)ϕn(x)

∥∥∥∥∥∥
Lp(Ω)

∥∥∥∥∥∥∥
Lq(R;Lr0 (M))

≤ CN−s√p

We can apply the Khinchin inequality and write
∥∥∥
∑

λn≥N

cngn(ω)

〈λn〉α−ǫ0
αn(t)ϕn(x)

∥∥∥
Lp(Ω)

≤ C
√
p
( ∑

λn≥N

|αn(t)|2 |ϕn(x)|2
〈λn〉2(α−ǫ0)

) 1
2
.

By taking δ > 0 small and q ≥ r0 to be large enough and using Minkowski inequality
again, we are reduced to prove the bound

∥∥∥∥∥∥

∑

λn≥N

|αn(t)|2|ϕn(x)|2
〈λn〉2(α−ǫ0)

∥∥∥∥∥∥
Lr0/2(M ;Lq/2(R))

≤ CN−s.

Using the bound ‖αn(t)‖Lq(t) ≤ Cλαδn and (3.11), we have for each x ∈M ,

∑

λn≥N

|ϕn(x)|2
〈λn〉2(α−ǫ0−αδ)

=

∞∑

k=0

∑

2kN≤λn≤2k+1N

|ϕn(x)|2
〈λn〉2(α−ǫ0−αδ)

≤C
∞∑

k=0

(2kN)d

(2kN)2(α−ǫ0−αδ)

≤C ′N−2(α−ǫ0−αδ−d/2),

provided that α− ǫ0 − αδ > d
2 . This completes the proof of Proposition 3.5. �

4. Global existence and measure invariance

4.1. Hamiltonian structure for the truncated equation. We consider here the trun-
cated problem

(4.1) ∂tu = v, ∂tv = −D2αu− πNe
πNu; (u, v)|t=0 = (u0, v0) = πN (u0, v0) ∈ EN × EN .
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For (u, v) ∈ EN × EN , we write

(u, v) =



∑

λn≤N
ψ

(
λn
N

)
anϕn,

∑

λn≤N
ψ

(
λn
N

)
bnϕn


 , an, bn ∈ R.

Consider the Hamiltonian

J(a1, · · · , aN ; b1, · · · ; bN ) :=
1

2

∑

λn≤N
ψ

(
λn
N

)2

(〈λn〉2αa2n + b2n) +

∫

M
e
∑

λn≤N ψ(λn
N )anϕn(x).

One easily verifies that (4.1) is just the Hamiltonian ODE

dan
dt

=
∂J

∂bn
,

dbn
dt

= − ∂J

∂an
.

Recall that ΦN (t) denotes the flow map associated with (4.1). Thus from Liouville theo-
rem, the measure µN is invariant under the flow ΦN (t).

4.2. Construction of global solution.

Proposition 4.1. Fix 0 < σ < α− d
2 and β > 1. There exists a constant C > 0 such that

for all m ∈ N, there exists a ρN measurable set Σ̃mN ⊂ EN × EN so that

ρN (EN \ Σ̃mN ) ≤ 2−m.

For all (f, g) ∈ Σ̃mN , t ∈ R,

(4.2) ‖ΦN (t)(f, g)‖Xσ,β ≤ C
√
m+ log(1 + |t|).

Moreover, there exists c > 0 such that for all t0 ∈ R, m ∈ N, N ≥ 1,

(4.3) ΦN (t0)(Σ̃
m
N ) ⊂ Σ̃

m+
⌊

log(1+|t0|)
log 2

⌋

+2

N .

Proof. We follow closely [10]. Define the set

Bm,k
N (D) := {(u0, v0) ∈ EN ×EN : ‖(u0, v0)‖Yβ ≤ D

√
m+ k},

where D ≫ 1 is to be chosen later. From Proposition 3.1, the time for local existence is

τm,k := ce−CD
√
m+k on Bm,k

N (D).

Then for any |t| ≤ τm,k,
(4.4)

ΦN(t)(B
m,k
N (D)) ⊂ {(u0, v0) ∈ EN × EN : sup

|t|≤τm,k

‖ΦN (t)(u0, v0)‖Xσ,β ≤ D
√
m+ k + 1}.

Moreover,

ρN (EN × EN \Bm,k
N (D)) ≤ µ(EN × EN \Bm,k

N (D)) ≤ Ce−cD
2(m+k),

thanks to Proposition 3.3 and Proposition 3.5 with N = 0 there.
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Now we set

Σ̃m,kN (D) :=

⌊

2k

τm,k

⌋

⋂

j=−
⌊

2k

τm,k

⌋

ΦN (−jτm,k)(Bm,k
N (D)).

Thanks to (4.4), we obtain that the for any (u0, v0) ∈ Σ̃m,kN (D), |t| ≤ 2k,

‖ΦN (t)(u0, v0)‖Xσ,β ≤ D
√
m+ k + 1.

Since the measure ρN is invariant by the flow ΦN (t), we obtain that

ρN (EN × EN \ Σ̃m,kN (D)) ≤
∑

|j|≤⌊2kτ−1
m,k⌋

ρN (EN × EN \ΦN (−jτm,k)(Bm,k
N (D)))

≤2k+2

τm,k
ρN (EN ×EN \Bm,k

N (D))

≤1

c
2k+2eCD

√
m+k−cD2(m+k) ≤ 2−(m+k),

(4.5)

provided that D large enough, independent of m,k and N .
Next, we set

Σ̃mN :=

∞⋂

k=1

Σ̃m,kN (D).

Thanks to (4.5), we have

ρN (EN × EN \ Σ̃mN ) ≤ 2−m.

Moreover, we have for any t ∈ R, (u0, v0) ∈ Σ̃mN ,

‖ΦN (t)(u0, v0)‖Xσ,β ≤ C
√
m+ 2 + log(1 + |t|).

Let us turn to the proof of (4.3). The point is that the indices m,k are symmetric in the

definition of Bm,k
N (D). Fix (u0, v0) ∈ Σ̃mN , and let k0 ∈ Z so that 2k0−1 ≤ |t| ≤ 2k0 . From

(4.2) , we know that for any k ≥ k0,

‖ΦN (t)ΦN (t0)(u0, v0)‖Xσ,β ≤ D
√
m+ k + k0 + 1,

which by definition means that ΦN (t)ΦN (t0)(u0, v0) ∈ Bm+k0+1,k
N (D). This implies that

ΦN (t0)(u0, v0) ∈ Σ̃m+k0+1,k
N , ∀k ∈ Z.

Thus

ΦN(t0)(u0, v0) ∈ Σ̃m+k0+1
N ⊂ Σ̃

m+2+
⌊

log(1+|t0|)
log 2

⌋

N .

This completes the proof of Proposition 4.1. �

In what follows, we always fix β > 1. For integers m ≥ 1 and N ≥ 1, define the
cylindrical sets

ΣmN := {(u, v) ∈ X σ,β : πN (u, v) ∈ Σ̃mN}.
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For each m ≥ 1, we set

Σm :=

{
(f, g) ∈ X σ,β : ∃Np → ∞,∃(fp, gp) ∈ ΣmNp

, lim
p→∞

‖πNp(fp, gp)− (f, g)‖Hσ = 0

}
.

Lemma 4.2. Σm is a closed subset of Hσ and

lim sup
N→∞

ΣmN =
∞⋂

N=1

∞⋃

N ′=N

ΣmN ′ ⊂ Σm.

Moreover,

(4.6) ρ(Σm) ≥ ρ(Hσ)− 2−m.

Remark 4.3. Due to the lack of periodicity of the linear evolution, the definition of
Σm and the proof given below is a little different, compared to [10]. Indeed, the strong
convergence in Hσ and the weak convergence in X σ,β will fullfil our need.

Proof. For the closeness, take a sequence (fk, gk) ∈ Σm, such that (fk, gk) → (f, g),
strongly in Hσ. By definition, for each k, there exists a sequence (fkpk , g

k
pk
) ∈ ΣmNk

, such
that

‖πNk
(fkpk , g

k
pk
)− (fk, gk)‖Xσ,β < 2−k.

In particular, (fkpk , g
k
pk
) → (f, g), strongly in Hσ. Hence (f, g) ∈ Σm.

Next, for any (f, g) ∈ lim supN→∞ΣmN , there exists Np → ∞, such that πNp(f, g) ∈ Σ̃mNp
.

Denote by (fp, gp) := πNp(f, g). Obviously we have ‖(fp, gp) − (f, g)‖Hσ → 0 as p → ∞.

The next goal is to show that (f, g) ∈ Yβ . First we claim that from
∑

l∈Z
〈l〉−β sup

l≤t<l+1
‖πNpS(t)(f, g)‖W ǫ0,r0(M) ≤ C

√
m,

and the fact that ‖πN‖W ǫ0,r0(M)→W ǫ0,r0 (M) ≤ C, we have ‖(f, g)‖Yβ ≤ C
√
m.

Indeed, for any fixed l ∈ Z, πNpS(t)(f, g) → S(t)(f, g), strongly in L∞([l, l + 1];Hσ).
From Banach-Alaoglu theorem, πNpS(t)(f, g) converges in weak* topology of the space
L∞([l, l + 1];W ǫ0,r0(M)), up to a subsequence. Thus πNpS(t)(f, g)∗ ⇀ S(t)(f, g) in
L∞([l, l + 1];W ǫ0,r0(M)). Moreover, we obtain that

‖S(t)(f, g)‖L∞([l,l+1];W ǫ0,r0(M)) ≤ lim inf
p→∞

sup
l≤t<l+1

‖πNpS(t)(f, g)‖W ǫ0,r0 (M).

Applying Fatou’s lemma to the summation over l ∈ Z, we conclude that
∑

l∈Z
〈l〉−β sup

l≤t<l+1
‖S(t)(f, g)‖W ǫ0 ,r0(M) ≤ C

√
m.

To prove (4.6), we use Fatou’s lemma to get

ρ(Σm) = ρ

(
lim sup
N→∞

ΣmN

)
≥ lim sup

N→∞
ρ(ΣmN ).

By definition,

ρ(ΣmN ) =

∫

Σm
N

G(u)dµ(u), ρN (Σ
m
N ) =

∫

Σm
N

GN (u)dµN (u).
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From Lemma 2.1, we know that

lim
N→∞

(ρ(ΣmN )− ρN (Σ
m
N )) = 0.

Thanks to Proposition 4.1, ρN (Σ
m
N ) ≥ ρN (Hσ)− 2−m, thus

lim sup
N→∞

ρ(ΣmN ) ≥ lim sup
N→∞

(ρN (Hσ)− 2−m) = ρ(Hσ)− 2−m.

This completes the proof of Lemma 4.2. �

As a consequence, thet set

(4.7) Σ :=

∞⋃

m=1

Σm,

has the full ρ measure. Following similar argument in [10], we have the following global
existence results for the Cauchy problem (1.2) with any initial condition (u0, v0) ∈ Σ.

Proposition 4.4. For every integer m ∈ N, the local solution u of (1.2) with initial
condition (u0, v0) ∈ Σm is globally defined and we will denote it by (u, ∂tu) = Φ(t)(u0, v0).
Moreover, there exists C > 0 such that for every (u0, v0) ∈ Σm and every t ∈ R, we have

‖Φ(t)(u0, v0)‖Xσ,β ≤ C
√
m+ log(1 + |t|).

Furthermore, there exists (u0,k, v0,k) ∈ Σ̃mNk
, Nk → ∞, such that

lim
k→∞

‖πNk
ΦNk

(t)(u0,k, v0,k)− Φ(t)(u0, v0)‖Hσ = 0,

and for every t ∈ R,

(4.8) lim
k→∞

‖W (t)(u0, v0)− πNk
WNk

(t)(u0,k, v0,k)‖Hα(M) = 0.

Finally, for every t ∈ R,Φ(t)(Σ) = Σ.

Remark 4.5. Unlike [10], here we only have the strong convergence for the norm Hσ for
linear evolution instead of the norm X σ,β , a counterpart of the norm Y s in [10]. However,
weak convergence holds true in the functional space X σ,β , which allows us to get the desired
bound of the X σ,β for the limit.

Proof. By assumption, there exist sequences Nk → ∞, (u0,k, v0,k) ∈ Σ̃mNk
such that

lim
k→∞

‖πNk
(u0,k, v0,k)− (u0, v0)‖Hσ = 0.

From Proposition 4.1, we know that for any t ∈ R,

(4.9) ‖πNk
ΦNk

(t)(u0,k, v0,k)‖Xσ,β ≤ C
√
m+ log(1 + |t|).

Denote by ΛT = C
√
m+ log(1 + |T |) for any given T > 0. In order to apply Lemma 3.2,

we need show that there exists a uniform constant C ′ > 0, such that

(4.10) ‖Φ(t)(u0, v0)‖L∞([−T,T ];Xσ,β) ≤ C ′ΛT .

Note that we could not obtain (4.10) by passing to the limit of (4.9), since we do not know
the whether ‖(u0,k, v0,k)− (u0, v0)‖L∞([−T,T ];Yβ) converges to zero.
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Since (u0,k, v0,k) → (u0, v0) strongly in Hσ and ‖S(t)‖Hσ→Hσ ≤ 1, we have that
S(t)(u0,k, v0,k) → S(t)(u0, v0) in C(R;Hσ(M)). From

∑

l∈Z
〈l〉−β sup

l≤s<l+1
‖S(t+ s)(u0,k, v0,k)‖W ǫ0,r0 (M) ≤ ΛT ,

Banach-Alaoglu theorem implies that S(t)(u0,k, v0,k)
∗ ⇀ S(t)(u0, v0), in the weak* topol-

ogy of L∞([l, l + 1];W ǫ0,r0(M)), up to a subsequence in priori. Note that the conver-
gence indeed takes place for the full sequence, since it converges in the strong topology of
L∞([l, l + 1];Hσ(M)). Consequently, we have

‖S(t)(u0, v0)‖L∞([l,l+1];W ǫ0,r0(M)) ≤ lim inf
k→∞

‖S(t)(u0,k, v0,k)‖L∞([l,l+1];W ǫ0,r0(M)).

Multiply by 〈l〉−β in both sides of the inequality above and sum over l ∈ Z, we have that

‖(u0, v0)‖Yβ ≤ ΛT ,

thanks to Fatou’s lemma .
Now, we are in a position to apply Lemma 3.2 from for |t| ≤ τ = τm,T := ce−κΛT . The

outputs are

lim
k→∞

‖WNk
(t)(u0,k, v0,k)−W (t)(u0, v0)‖L∞([−τ,τ ];Hα(M)) = 0,

lim
k→∞

‖πNk
ΦNk

(τ)(u0,k, v0,k)− Φ(τ)(u0, v0)‖L∞([−τ,τ ];Hσ) = 0.

The same weak convergence argument yields

‖Φ(t)(u0, v0)‖Yβ ≤ 2ΛT , ∀|t| ≤ τ.

We can then apply Lemma 3.2 successively with the same constant ΛT , to continue the
flow map Φ(t)(u0, v0) to |t| ≤ 2τ, 3τ, · · · up to T . The key point is that at each iteration
step, the argument above does not increase the constant ΛT , hence the length of local
existence can be always chosen as τ .

In order to check the invariance of the set Σ, note that from Proposition 4.1,

ΦNk
(t0)(Σ̃

m
Nk

) ⊂ Σ̃
m+l(t0)
Nk

, l(t0) =

⌊
log(1 + |t0|)

log 2

⌋
+ 2.

Thus for any (u0, v0) ∈ Σm, there exists a seuqence (u0,Nk
, v0,Nk

) ∈ Σ̃mNk
, such that

lim
k→∞

‖πNk
Φ(t0)(u0,k, v0,k)− Φ(t0)(u0, v0)‖Hσ = 0.

By definition, this implies that Φ(t0)(u0, v0) ∈ Σm+l(t0). Thus Φ(Σ) ⊂ Σ. From the
reversibility of Φ(t), we have Φ(t)(Σ) = Σ. This completes the proof of Proposition
4.4. �
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4.3. Measure invariance. The proof follows from several reductions and an approxima-
tion lemma. One should pay attention to the topology used here.

By reversibility, it suffices to show that

(4.11) ρ(A) ≤ ρ(Φ(t)A)

for all t ∈ R and every measurable set A ⊂ Σ ⊂ X σ,β. Note that the flow Φ(t) is well-
defined on Σ ⊂ X σ,β. By inner regularity of the measure µ (hence for ρ ), there exists a
sequence of closed set Fn ⊂ A, with respect to the topology of Hσ, such that

ρ(A) = lim
n→∞

ρ(Fn).

Note that Σ and X σ,β both have the full ρ measure, hence it is reduced to prove (4.11) for
all F ⊂ Σ, closed in Hσ. Indeed, Fn ⊂ A implies that Φ(t)Fn ⊂ Φ(t)A, thus

ρ(A) = lim
n→∞

ρ(Fn) ≤ lim
n→∞

ρ(Φ(t)Fn) ≤ ρ(Φ(t)A).

Next we reduce the matter to prove (4.11) for all B ⊂ Σ, closed in Hσ, while bounded in

X σ,β . Given F ⊂ Σ, closed in Hσ, we set FR := F ∩ BXσ,β

R , where we use the notation
BY
R to denote the ball of radius R with respect to the norm of the specified Banach space

Y . From the large deviation bound ρ(F cR) ≤ Ce−cR
2
, we have that ρ(F ) = lim

R→∞
ρ(FR).

Therefore, if (4.11) is true for all such FR, we immediately have

ρ(F ) = lim
n→∞

ρ(FR) ≤ lim
n→∞

ρ(Φ(t)FR) ≤ ρ(Φ(t)F ).

For the third step, we reduce to prove (4.11) for all K ⊂ Σ, compact with respect to the
Hσ topology, while bounded in the norm of X σ,β by R.

Indeed, given B ⊂ Σ ∩BXσ

R , we define the set

Kn := {(u, v) ∈ B : ‖(u, v)‖Hσ′ ≤ n}, σ < σ′ < α− d

2
.

From Rellich theorem, we know that Kn are compact sets in Hσ. From the large deviation

bound of of the type ρ(Kc
n) ≤ Ce−cn

2
, we know that

ρ(F ) = lim
n→∞

ρ(Kn).

Thus the same argument as above yields

ρ(B) = lim
n→∞

ρ(Kn) ≤ lim
n→∞

ρ(Φ(t)Kn) ≤ ρ(Φ(t)B).

Finally we assume thatK ⊂ Σ is a compact set with respect to the topology ofHσ, which
is bounded by R in the norm of X σ,β. To prove (4.11) for K, we need an approximation
lemma:

Lemma 4.6. There exists C0 > 0 such that the following holds true. For every R > 1,

ǫ > 0, every set K ⊂ BXσ,β

R , compact with resepct to the topology of Hσ, there exists
N0 ≥ 1 such that for all N ≥ N0 (u0, v0) ∈ K, and all |t| ≤ τC0R = ce−κC0R, we have

‖Φ(t)(u0, v0)−ΦN (t)πN (u0, v0)‖Hσ < ǫ.
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Proof. The proof is just a refinement of the proof of Lemma 3.2. Denote by πN (u0, v0) =
(u0,N , v0,N ), and write

ΦN(t)(u0,N , v0,N ) = S(t)(u0,N , v0,N ) + (wN (t), ∂twN (t)),

Φ(t)(u0, v0) = S(t)(u0, v0) + (w(t), ∂tw(t)).

Note that

‖S(t)(1 − πN )(u0, v0)‖Hσ = ‖(1− πN )(u0, v0)‖Hσ → 0, as N → ∞.

From compactness of K, this convergence is uniform. It remains to prove the uniform
convergence of the nonlinear part ‖(wN (t), ∂twN (t))− (w(t), ∂tw(t))‖Hσ .

First note that

sup
|t|≤ 1

2

‖S(t)(u0, v0)‖W ǫ0,r0 (M) ≤ R, sup
|t|≤ 1

2

‖S(t)(u0,N , v0,N )‖W ǫ0,r0(M) ≤ C0R,

with C0 = supN ‖π‖W ǫ0,r0→∞W ǫ0,r0 . From local existence theory, for all (u0, v0) ∈ K ⊂
BXσ

R , for any N , we have

‖(wN (t), ∂twN (t))‖L∞([−τC0R
,τC0R

];Hα) ≤ C0R+1, ‖(w(t), ∂tw(t))‖L∞([−τR,τR];Hα) ≤ R+1.

To boung ‖wN (t)−w(t)‖Hα(M), as in the proof of Lemma 3.2, we have to estimate three
contributions

I(t) :=

∫ t

0

∥∥∥eπN (wN (t′)+S(t′)(u0,N ,v0,N )) − eπN (w(t′)+S(t′)(u0,v0))
∥∥∥
L2(M)

dt′,

II(t) :=

∫ t

0

∥∥∥ew(t′)+S(t′)(u0,v0) − eπN (w(t′)+S(t′)(u0,v0))
∥∥∥
L2(M)

dt′,

III(t) :=

∫ t

0

∥∥∥π⊥New(t
′)+S(t′)(u0,v0)

∥∥∥
L2(M)

dt′.

The sum of the three contributions can be bounded by

C(R, τC0R)

(∫ t

0
‖wN (t′)− w(t)‖L2(M)dt

′ + oN→∞(1)

)
,

It is not enough to conclude. We note the oN→∞(1) consists of the expressions of the form

‖π⊥N exp(w(t) + S(t)(u0, v0))‖L∞([−τC0R
,τC0R

];L2(M))

+‖S(t)(u0 − u0,N , v0 − v0,N )‖L∞([−τC0R
,τC0R

];L2(M)),

and the second term above converges unifromly to 0 since (u0, v0) varies in a compact set
K. The first term above can be bounded by

N−σ‖ew(t)+S(t)(u0 ,v0)‖Hσ(M) ≤ CN−σe‖w(t)+S(t)(u0 ,v0)‖L∞(M)‖w(t) + S(t)(u0, v0)‖Hσ(M),

which converges to 0 uniformly. The proof of Lemma 4.6 is complete. �
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Now we can complete the proof of (4.11) for K. From local well-posedness, there exists
A > 0, such that for all ǫ > 0, and |t| ≤ τR, we have

ΦN (t)(K +BXσ,β

ǫ ) ⊂ ΦN (t)K +BHσ

Aǫ .

Thus

ρ(Φ(t)(K) +BHσ

2ǫ ) ≥ lim sup
N→∞

ρN (Φ(t)(K) +BHσ

2ǫ ) Fatou’s lemma

≥ lim sup
N→∞

ρN (ΦN (t)((K +BXσ,β

A−1ǫ) ∩ EN )) Lemma 4.6

≥ lim sup
N→∞

ρN (ΦN (t)(K ∩ EN ))

≥ lim sup
N→∞

ρN (K ∩ EN ) invariance for finite dimensional system

≥ρ(K).

By taking ǫ → 0, we have that ρ(Φ(t)K) ≥ ρ(K), for all |t| ≤ τR. Finally, for any t ∈ R,
we can conclude by iteration.

5. unique limit for smooth approximation: Proof of Theorem 1.4

Fix β > 1 in this section. Take s > 0, δ > 0 such that 0 < s+ δ < α− d
2 − ǫ0, as in the

Proposition 3.5. Define the set

KN = {(u0, v0) : N s‖Π⊥
N (u0, v0)‖Yβ ≤ 1}, K :=

∞⋃

N=1

⋂

N ′=N

KN ′ .

Thanks to Proposition 3.5, we have

µ(Kc
N ) ≤ Ce−cN

2δ
.

Hence the convergence of the series
∞∑

N=1

µ(Kc
N ) <∞

implies that µ(K) = 1. Recall that Σ defined as (4.7) in section 4 has full ρ measure. It
also has full µ measure, thanks to the fact that exp

(∫
M eu

)
is µ almost surely finite. Set

G := K ∩ Σ, Ω0 = j−1(G),
where j : Ω → Hσ is the canonical mapping defining the Gaussian measure µ on Hσ. Note
that P[Ω0] = 1, our goal is to show that for all ω ∈ Ω0, the sequence of smooth solutions
to (1.2) with initial datum

ΠN (uω0 (x), v
ω
0 (x)) :=



∑

λn≤N

gn(ω)

〈λn〉α
ϕn(x),

∑

λn≤N
hn(ω)ϕn(ω)




converges to the global solution constructed through Proposition 4.4 with initial data

(uω0 (x), v
ω
0 (x)) :=

( ∞∑

n=0

gn(ω)

〈λn〉α
ϕn(x),

∞∑

n=0

hn(ω)ϕn(ω)

)
.
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We first show that the convergence holds on a small time interval.

Lemma 5.1. There exist c > 0, κ > 0, such that for all R > 0, if

‖(u0, v0)‖Xσ,β ≤ R, and lim
N→∞

‖Π⊥
N (u0, v0)‖Yβ = 0,

then
lim
N→∞

sup
t∈I

‖Φ(t)ΠN (u0, v0)− Φ(t)(u0, v0)‖Xσ,β = 0,

where I = [−ce−κR, ce−κR].
Proof. The proof is very similar as in the proof of Lemma 3.2. Denote by

Φ(t)ΠN (u0, v0) = (uN (t), ∂tuN (t)), Φ(t)(u0, v0) = (u(t), ∂tu(t)),

and write

uN (t) = S(t)ΠN (u0, v0) + wN (t), u(t) = S(t)(u0, v0) + w(t).

The existence and uniqueness of the flow Φ(t) on I is guaranteed by Proposition 3.1, pro-
vided that we take the same constants c > 0, κ > 0 as in that proposition. Consequently,
we have

(5.1) ‖(wN , ∂twN )‖L∞(I;Hα) + ‖(w, ∂tw)‖L∞(I;Hα) ≤ 2C.

We first show that the convergence for the linear evolution part. Obviously,

lim
N→∞

‖S(t)Π⊥
N (u0, v0)‖L∞(I;Hσ) = 0.

For the Yβ norm, by definition,

sup
t∈I

‖S(t)Π⊥
N (u0, v0)‖Yβ ≤ 2‖Π⊥

N (u0, v0)‖Yβ ,

hence it converges to zero. For the nonlinear part, using Duhamel, we write

wN (t)− w(t) =

∫ t

0

sin((t− t′)Dα)

Dα

(
eS(t

′)ΠN (u0,v0)+wN (t′) − eS(t
′)(u0,v0)+w(t′)

)
dt′.

As in the proof of Lemma 3.2, we have

‖wN (t)−w(t)‖Hα(M)

≤
∫ t

0
e‖S(t

′)ΠN (u0,v0)‖L∞(M)+‖S(t′)(u0,v0)‖L∞(M) · e‖wN (t′)‖L∞(M)‖S(t′)Π⊥
N (u0, v0)‖L2(M)dt

′

+

∫ t

0
e‖S(t

′)(u0,v0)‖L∞(M) · e‖wN (t′)‖L∞(M)+‖w(t′)‖L∞(M)‖wN (t′)− w(t)‖L2(M)dt
′.

From Sobolev embedding W ǫ0,r0 ⊂ L∞, Hα ⊂ L∞, we have the bounds

‖S(t)ΠN (u0, v0)‖L∞(M) ≤ 2‖ΠN (u0, v0)‖Yβ ≤ 2R, ‖wN (t)‖L∞(M) ≤ ‖wN (t)‖Hα(M) ≤ C,

‖S(t)(u0, v0)‖L∞(M) ≤ 2R, ‖w(t)‖L∞(M) ≤ C,

thus

‖wN (t)− w(t)‖Hα(M) ≤C1(R)‖S(t)Π⊥
N (u0, v0)‖L∞(I;L2(M))

+C2(R)

∫ t

0
‖wN (t)− w(t)‖Hα(M)dt.
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This implies that
lim
N→∞

‖wN (t)− w(t)‖L∞(I;Hα(M)) = 0,

thanks to Grwonwall inequality. Applying similar argument to ∂twN − ∂tw, we complete
the proof of Lemma 5.1. �

The next lemma is the convergence on successive intervals.

Lemma 5.2. With the same c, κ > 0 in Lemma 5.1, the following holds true. For any
R > 0, if

sup
t0≤|t|≤t0+1

‖Φ(t)(u0, v0)‖Xσ,β ≤ R,

and
lim
N→∞

‖Φ(t0)ΠN (u0, v0)− Φ(t0)(u0, v0)‖Xσ,β = 0,

then for I = [t0 − ce−κR, t0 + ce−κR], we have

lim
N→∞

sup
t∈I

‖Φ(t)ΠN (u0, v0)− Φ(t)(u0, v0)‖Xσ,β = 0.

Proof. The proof is similar. Denote by

Φ(t)ΠN (u0, v0) = (uN (t), ∂tuN (t)), Φ(t)(u0, v0) = (u(t), ∂tu(t)).

We write

uN (t) = S(t− t0)Φ(t0)ΠN (u0, v0) + wN (t), u(t) = S(t− t0)Φ(t0)(u0, v0) + w(t).

For the linear evolution part, we observe that

sup
t∈I

‖S(t− t0)(Φ(t0)ΠN (u0, v0)− Φ(t0)(u0, v0))‖Yβ

=sup
t∈I

∑

l∈Z
(1 + |l|)−β sup

s∈[l,l+1]
‖S(s+ t− t0)(Φ(t0)ΠN (u0, v0)− Φ(t0)(u0, v0))‖W ǫ0,r0(M)

≤2‖Φ(t0)ΠN (u0, v0)− Φ(t0)(u0, v0)‖Yβ ,

which converges to 0 by assumption. Next, from local Cauchy theory, the solution
Φ(t)ΠN (u0, v0) concides with the solution construced by Proposition 3.1 with initial data
Φ(t0)ΠN (u0, v0) for t ∈ I, thus

sup
t∈I

‖Φ(t)ΠN (u0, v0)‖Xσ,β ≤ 2R

for N large enough. Now the convergence for the nonlinear part can be obtained in the
same way as in the proof of Lemma 5.1. This ends the proof of Lemma 5.2. �

Now we finish the proof of Theorem 1.4.

Proof of Theorem 1.4. Fix T > 0, and (u0, v0) ∈ Σk∩K for some k ∈ N, it will be sufficient
to show that

(5.2) lim
N→∞

sup
|t|≤T

‖Φ(t)ΠN (u0, v0)− Φ(t)(u0, v0)‖Xσ,β = 0.

By definition of Σk and Proposition 4.4, for all |t| ≤ T ,

(5.3) ‖Φ(t)(u0, v0)‖Xσ,β ≤ C
√
k + log(1 + T ).
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Set

Rk,t := C
√
k + log(1 + |t|), τ = τk,T := ce−κRk,2T

as in the Lemma 5.1 and Lemma 5.1. Applying Lemma 5.1 from [0, τ ], we obtain that

lim
N→∞

‖Φ(t)ΠN (u0, v0)− Φ(t)(u0, v0)‖L∞([0,τ ];Xσ,β) = 0.

We can then successively apply Lemma 5.2 with R = Rk,2T on

[τ, 2τ ], [2τ, 3τ ], · · · , [(m0 − 1)τ,m0τ ]

for T ≤ m0τ ≤ T + τ . The key point here is that we have a uniform bound for
‖Φ(t)(u0, v0)‖Xσ,β on each interval. Once we prove the convergence on [mτ, (m + 1)τ ],
the initial convergence condition holds for the successive interval. Finally, we conclude

lim
N→∞

sup
0≤t≤T

‖Φ(t)ΠN (u0, v0)− Φ(t)(u0, v0)‖Xσ,β = 0.

Using the same argument for the negative time t ∈ [0,−T ], we conclude the proof of
Theorem refthm3.

�

6. Ill posedness for power type nonlinearity

Here we consider the ill posedness of the equation

∂2t u+D2αu+ u2k+1 = 0,

for x ∈ T
d and α ≥ d

2 . We are going to prove the following ill-posedness result.

Proposition 6.1. (1) If 0 < s < d
2 − α

k , then there exist a seqeunce un(t, x) ∈
C(R;C∞(M)), solutions to

∂2t un +D2αun + u2k+1
n = 0, (un, ∂tun)|t=0 = (un,0, un,1),

and a sequence tn tending to zero, such that

‖(un,0, un,1)‖Hs → 0,

while

‖un(tn)‖Hs(M) → ∞.

(2) In addition, if d
2 − 2α

2k−1 ≤ s < d
2 − α

k , then for any (u0, u1) ∈ C∞(M) × C∞(M),

there exists a seqeunce un(t, x) ∈ C(R;C∞(M)), solutions to

∂2t un +D2αun + u2k+1
n = 0, (un, ∂tun)|t=0 = (un,0, un,1),

and a sequence tn tending to zero, such that

‖(un,0, un,1)− (u0, u1)‖Hs → 0,

while

‖un(tn)‖Hs(M) → ∞.
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Note that to pass from (u0, u1) ∈ Hs(M), one can use the diagonal argument as in [28].
We refer to [7, 12, 21, 22, 29] for similar ill-posedness results of dispersive equations. The
novelty for the present proposition is that under the additional assumption: d

2 − 2α
2k−1 ≤ s,

we obtain norm inflation near any smooth data (u0, u1) ∈ C∞(M)×C∞(M).
Before proving Proposition 6.1, we remark that our construction is purely local, hence

we may assume that M = T
d to avoid needless complications in the argument. The proof

of Proposition 6.1 will be divided into several lemmas which we will establish in the rest
of this section.

6.1. Unstable ODE profile. Before constructing unstable profile, we need a lemma.

Lemma 6.2. Assume that F ∈ C2(R;R+), F
′(v) = f(v) and f(0) = 0, f

′
(v) ≥ 0. Then

the solution V of the ordinary differential equation

(6.1)

{
V ′′ + f(V ) = 0,

V (0) = V0 > 0, F (V0) > F (0), V ′(0) = 0

is a globally defined smooth function. Moreover, t 7→ V (t) is periodic.

Proof. The proof is standard, and the key points are the following facts:

• v 7→ F (v) is decreasing for v < 0 and increasing for v > 0. For any a > F (0),
there are exactly two roots v− < 0, v+ > 0 such that F (v±) = a.

• First integral:

|V ′(t)|2 = 2(F (V0)− F (V (t)).

From the V ′′ = −f(V ), we know that V ′′(0) < 0, hence V ′(t) < 0 for t > 0 small.
Thus there exists t0 > 0 such that V (t0) = 0, and V ′(t0) < 0, V ′′(t0) = 0. For t slightly
larger than t0, t 7→ V ′(t) is increasing while remaining negative. Therefore, there exists
T1 ∈ (t0,+∞], such that

V ′(T1) = 0, V ′(t) < 0, ∀t < T1.

Moreover, we have

V (T1) < 0, F (V (T1)) = F (V0) > F (0).

From the first integral of V , we have

T1 =

∫ V0

V (T1)

dv√
2(F (V0)− F (v))

.

Using the fact that |f(V0)| 6= 0, we deduce that the integral above is finite, thus T1 <∞.
Then from the same argument, one conclude that there exists T ∈ (T1,+∞), such that
V ′(T ) = 0, V (T1) = V0. Moreover,

T − T1 =

∫ V0

V (T1)

dV√
2(F (V0)− F (v))

= T1.

This implies that the function V (t) is periodic with period T = 2T1. This completes the
proof of Lemma 6.2. �
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We will use Lemma 6.1 to the special case f(v) = v2k+1, F (v) = 1
2k+2v

2k+2. Denote by

V (t) the global periodic solution of the ODE

(6.2) V ′′ + V 2k+1 = 0, V (0) = 1, V ′(0) = 0.

We construct nonlinear profiles

∂2t vn + v2k+1
n = 0, (vn, ∂tvn)|t=0 = (κnn

d
2
−sϕ(nx), 0),

with

κn = (log n)−δ1

to be chosen later. From a scaling property, we have

(6.3) vn(t, x) =
(
κnn

d
2
−sϕ(nx)

)
V

(
t
(
κnn

d
2
−sϕ(nx)

)k)
,

Moreover, we have

∇xvn(t, x) =
(
κnn

d
2
−sn(∇ϕ)(nx)

) [
ktλnϕ(nx)

kV ′(λntϕ(nx)
k) + V (λntϕ(nx)

k)
]
.

where

λn =
(
κnn

d
2
−s
)k
.

We now estimate various Sobolev norms of vn.

Lemma 6.3. Let

tn =
(
(log n)δ2n−(d

2
−s)
)k

for some δ2 > δ1, then we have for all t ∈ [0, tn],

(1)

‖vn(tn)‖Hs ≥ cκn(λntn)
s.

(2)

‖vn(t)‖Hσ ≤ Cκn(λntn)
σnσ−s,∀σ = 0, 1, 2, · · · .

(3)

‖vn(t)‖L∞ ≤ Cλ
1
k
n = C(log n)−δ1n

d
2
−s.

Proof. We only prove (1), since the upper bounds follow directly.
Case A: 1 < s < sc =

d
2 − α

k : From

‖vn(t)‖H1 ≤ ‖vn(t)‖
1− 1

s

L2 ‖vn(t)‖
1
s
Hs ,

we need majorize ‖vn(t)‖L2 and minorize ‖vn(t)‖H1 . For the upper bound, from the
construction of vn, we have

‖vn(t)‖L2 . κnn
−s, ‖∇vn(t)‖L2 . λntκnn

1−s.

For the lower bound, it would be sufficient to minorize the dominant part in ∇vn (up to
some constant)

λntκnn
1−s · n d

2

(
ϕk∇ϕV ′(λntϕ

k)
)
(nx).

To bound it from below, unlike in [28], we present a geometric argument.
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Lemma 6.4. Assume that ψ ∈ C∞
c (Rd) and ψ(x) > 0 for all |x| < 1. Let W be a periodic

continuous function, W 6= 0. Then there exist c0 > 0, λ0 > 0, such that for all λ ≥ λ0, we
have

‖ψ(x)W (λψ(x))‖L2(Rd) ≥ c0 > 0.

Proof. The proof of this lemma can be found in [28]. Here we present a different proof.
From the support property of ψ, there exist 0 < a < b < 1, such that

Ca,b := {x ∈ R
d : a ≤ |x| ≤ b} ⊂ {x ∈ R

d : |∇ψ(x)| ≥ c1}
for some uniform constant c1 > 0. Denote by Σs := {x : ψ(x) = s}. After shrinking a, b if
necessary, we may assume that ψ(Ca,b) is foliated by Σs, s ∈ [a, b]. Assume that

max
x∈Ca,b

ψ(x) = B, min
x∈Ca,b

ψ(x) = A,

By co-aera formula, we have for any continuous function F ,
∫

Ca,b
F (ψ(x))dx =

∫

s∈[A,B]
F (s)ds

∫

Σs

dσΣs

|∇ψ(x)| .

Therefore,

‖ψ(x)W (λψ(x))‖L2(Rd) ≥
∫

Ca,b
|ψ(x)|2|W (λψ(x))|2dx

≥
∫

s∈[A,B]
s2|W (λs)|2ds

∫

Σs

dσΣs(x)

|∇ψ(x)|

≥ c

∫

s∈[A,B]
s2|W (λs)|2dx,

(6.4)

where to the last inequality, we have used the continuity of the map

s ∈ [a, b] 7→ Md−1(Σs),

and Md−1 denotes the d − 1 dimensional Hausdorff measure. Finally, by changing of
variable, we obtain that

∫

s∈[A,B]
s2W (λs)2ds ≥ c′0

λ3

∫

w∈[λA,λB]
w2W (w)dw ≥ c0 > 0.

This completes the proof of Lemma 6.4. �

Lemma 6.4 is sufficient to finish the analysis in Case A.
Case B: 0 < s < 1: By definition, we have the trivial bound

‖vn(t)‖H2 ≤ Cκn(λnt)
2n2−s.

From interpolation, we get

‖vn(t)‖H1 ≤ C‖vn(t)‖
1

2−s

Hs ‖vn(t)‖
1−s
2−s

H2 .

Thus

‖vn(tn)‖Hs ≥ cκn(λntn)
s.

This completes the proof of Lemma 6.3. �



30 CHENMIN SUN, NIKOLAY TZVETKOV

6.2. Energy estimate. Denote by (un, ∂tun) the solution to

∂2t u+D2αu+ u2k+1 = 0,

subject to the initial data

(u, ∂tu)|t=0 = (u0, u1) + (vn(0), 0).

Lemma 6.5. Fix k ∈ N and α > d
2 . There exists δ2 > δ1 > 0 and ǫ > 0 such that for

tn = (log n)kδ2n−k(
d
2
−s), the following holds true.

(1) If d
2 − 2α

2k−1 ≤ s < d
2 − α

k , then for any (u0, u1) ∈ C∞(Td)× C∞(Td),

sup
t∈[0,tn]

‖un(t)− S(t)(u0, u1)− vn(t)‖Hs(M) ≤ n−ǫ.

(2) If s < d
2 − 2α

2k−1 , and (u0, u1) = (0, 0), we have

sup
t∈[0,tn]

‖un(t)− vn(t)‖Hs(M) ≤ n−ǫ.

Proof. Denote by

wn = un − S(t)(u0, u1)− vn, (wn, ∂twn)|t=0 = (0, 0).

Define the semi-classical energy

En(w)(t) :=
1

n2(α−s)
‖∂tw(t)‖2L2 +

1

n2(α−s)
‖Dαw(t)‖2L2 .

We have that wn satisfies the equation:

∂2t wn +D2αwn = −D2αvn − (f(vn + uL + wn)− f(vn)),

where
uL(t) = S(t)(u0, u1).

Multiplying by ∂twn and integrating over Td to both side, we obtain that

1

2

d

dt

(
‖∂twn(t)‖2L2 + ‖Dαwn(t)‖2L2

)
≤
∣∣∣∣
∫

Td

∂twn · Fn(t)dx
∣∣∣∣

≤‖∂twn‖L2‖Fn(t)‖L2 ,

(6.5)

where Fn(t) = D2αvn + (f(vn + uL + wn)− f(vn)). Thus∣∣∣∣
d

dt
En(wn(t))

∣∣∣∣ ≤
C

nα−s
(En(wn(t)))

1/2‖Fn(t)‖L2 .

To simplify the notation, we denote by

en(t) := sup
0≤τ≤t

En(wn(τ))
1/2.

From Lemma 6.3, for all 0 ≤ t ≤ tn,

‖Fn(t)‖L2 ≤ Cκn(λntn)
2αn2α−s + ‖Gn(t)‖L2 ≤ C(log n)

k
α
δ2−( k

α
+1)δ1n2α−s + ‖Gn(t)‖L2 ,

with Gn = f(vn + uL + wn)− f(vn). Thanks to uL ∈ C∞(R× T
d), we have

(6.6) |Gn| ≤ C|wn|(|vn|2k + |wn|2k + 1) + C|uL||vn|2k.
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By writing (using wn(0, x) = 0)

wn(t, x) =

∫ t

0
∂twn(τ, x)dτ,

we obtain that

‖Gn(t)‖L2 ≤C
∫ t

0
‖∂twn(τ)‖L2dτ

(
‖vn(t)‖2kL∞ + ‖wn(t)‖2kL∞

)
+ n(2k−1)( d

2
−s)−s

≤Cnα−sten(t)
(
‖vn(t)‖2kL∞ + ‖wn(t)‖2kL∞

)
+ n(2k−1)( d

2
−s)−s.

(6.7)

From Lemma 6.3, we majorize the terms involving vn by

Cnα−sten(t)(log n)
−2kδ1n2k(

d
2
−s).

For the terms involving wn, using the assumption that α > d
2 , we have

‖wn(t)‖L∞ ≤ ‖wn(t)‖
d
2α
Hα‖wn(t)‖

1− d
2α

L2 ≤ C(nα−sen(t))
d
2α
(
nα−sten(t)

)1− d
2α .

Therefore,

n−(α−s)‖Gn(t)‖L2 ≤Cn(2k−1)( d
2
−s)−α

+Cten(t)n
2k( d

2
−s) +Cten(t)(n

α−sen(t))
2kt2k(1−

d
2α)

Thus ∣∣∣∣
d

dt
(En(wn(t))

1/2)

∣∣∣∣ ≤C(log n)
k
α
δ2−( k

α
+1)δ1nα + Cn(2k−1)( d

2
−s)−α

+Ctnen(t)n
2k( d

2
−s) + Ct

1+2k(1− d
2α)

n en(t)
2k+1n2k(α−s).

(6.8)

By monotonicity and definition, we observe that

den(t)

dt
≤
∣∣∣∣
d

dt
En(wn(t))

1/2

∣∣∣∣ .

Thus

den
dt

≤C(log n)
k
α
δ2−( k

α
+1)δ1nα + Cn(2k−1)( d

2
−s)−α

+Ctnen(t)n
2k( d

2
−s) + Ct

1+2k(1− d
2α)

n en(t)
2k+1n2k(α−s).

(6.9)

Note that

tnn
2k( d

2
−s) ≤ Cnk(

d
2
−s), t

1+2k(1− d
2α)

n n2k(α−s) ≤ Cnk[(α−
d
2)+(α−s)− 2k

α (
d
2
−s)(α− d

2)]

and (
α− d

2

)
+ (α− s)− 2k

α

(
d

2
− s

)(
α− d

2

)

=2

(
1− k

α

(
d

2
− s

))(
α− d

2

)
+

(
d

2
− s

)
<

(
d

2
− s

)
,
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thanks to

s <
d

2
− α

k
, α >

d

2
.

Consequently, we obtain that

den
dt

≤C(log n)
k
α
δ2−( k

α
+1)δ1nα + Cn(2k−1)( d

2
−s)−α

+Cnk(
d
2
−s)(en(t) + en(t)

2k+1).

(6.10)

Case 1: d
2 − 2α

2k−1 ≤ s < d
2 − α

k .

In this case,

n(2k−1)( d
2
−s)−α < nα,

hence for all t ∈ [0, tn]

den
dt

≤ C(log n)
k
α
δ2−( k

α
+1)δ1nα + Cnk(

d
2
−s)(en(t) + en(t)

2k+1).(6.11)

Since en(0) = 0, we may assume that en(t) ≤ 1. Using Gronwall inequality and bootstrap
argument, we finally obtain that

en(t) ≤ C(log n)(kδ2−(
k
α
+1)δ1)nα−k(

d
2
−s)eCt(log n)

2kδ2 ≤ Cn−ǫ,

provided that δ2 is small enough, thanks to s < d
2 − α

k . The remaining part follows from
interpolation, since En(wn(t)) essentially controls the norm Hs(for high frequencies).

Case 2: s < d
2 − 2α

2k−1 .

Notice that under the additional assumption that (u0, u1) = 0, the term |uL||vn|2k in
(6.6) does not appear. Hence we have the same estimate (6.11). The rest of the arguments
are the same. The proof of Lemma 6.5 is now completed. �

As an immediate consequence of Lemma 6.5, the proof of Proposition 6.1 is also com-
pleted.

7. Polynomial nonlinearity in the case of a general randomisation

We study the fractional Klein-Gordon equation with polynomial nonlinearity:

(7.1) ∂2t u+D2αu+ u2k+1 = 0, (u, ∂tu)|t=0 = (uω0 , v
ω
0 ),

for general randomized initial data (1.7). We will sketch the proof of Theorem 1.9. Com-
paring to the previous situation where we globalize the solution via invariance of the Gibbs
measure, now we construct global dynamics by energy method, in the spirit of [9]. The
key point is to establish a probabilistic energy a priori estimate.

To state the key proposition, we decompose the solution into linear evolution part and
nonlinear part:

u(t) = z(t) + w(t), z(t) = S(t)(u0, v0).

Proposition 7.1. Assume that s > (k−1)α
k , then we have for some s1 < s, close enough

to s,

sup
0≤t≤T

E[w](t) ≤ Ck(1 + ‖Ds1z‖2k+2
L∞([0,T ]×Td)

) exp
(
T + ‖Ds1z‖2k+2

L∞([0,T ]×Td)
T
)
.(7.2)
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Note that when d = 3, α = 1, k = 2, the restriction s > 1
2 coincides with the one in [24].

Before giving a proof, we briefly recall the idea of Oh-Pocovnicu, which will give us the

restriction s > (k−1)α
k in Proposition 7.1. After integrating by part in t, the worst term in

the expression of E[w](t) is
∫ t

0

∫

Td

w2k+1∂tz =

∫ t

0

∫

Td

w2k+1Dαz.

We could then distribute Dα−s to the w2k+1 side. Then in principle, we need estimate

(7.3)

∫ t

0
‖w2k(t)Dα−sw(t)‖L1(M)dt.

Now we put Dα−sw ∈ Lk+1(Td) and w2k ∈ L
k+1
k (Td). Then by the Gagliardo-Nirenberg

inequality, we have

‖Dα−sw‖Lk+1 ≤ C‖Dαw‖θL2‖w‖1−θL2k+2 ,

with
1

k + 1
=
α− s

d
+

(
1

2
− α

d

)
θ +

1− θ

2(k + 1)
.

Thus we majorize (7.3) by

CTE[w]
k

k+1 · E[w]
θ
2
+ 1−θ

2k+2 .

To apply Grownwall, the restriction θ
2 + 1−θ

2k+2 ≤ 1
k+1 must hold, hence (modulo the end-

point issue) s > k−1
k α.

Proof of Proposition 7.1. We have that w satisfies the equation

∂2tw +D2αw + (z + w)2k+1 = 0.

Denote by the energy of w

E[w](t) =

∫

Td

1

2

(
|∂tw|2 + |Dαw|2

)
+

∫

Td

1

2k + 2
w2k+2,

and we have

(7.4)
dE

dt
= −

2k+2∑

m=1

(
2k + 2

m

)∫

Td

1

2k + 2−m
∂t(w

2k+2−m)zm.

This yields

E[w](t) =

2k+2∑

m=1

(2k+2
m

)

2k + 2−m

∫ t

0

∫

Td

w2k+2−m∂t(z
m)dxdt′

−
2k+2∑

m=1

(2k+2
m

)

2k + 2−m

∫

Td

zm(t, ·)w2k+2−m(t, ·)dx

=:I + II.

(7.5)

Each summation in the second term II can be bounded by Young’s inequality as:

ǫ

∫

Td

|w(t)|2k+2dx+C(ǫ)

∫

Td

|z(t)|2k+2dx ≤ ǫE[w](t) + C(ǫ)‖z(t)‖2k+2
L2k+2
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for any ǫ > 0. Thus

II ≤ C(ǫ) · CkE[w](t) + C(ǫ)Ck‖z(t)‖2k+2
L2k+2 .

Now we estimate I. Noticing that ∂t(z
m) = mzm−1∂tz, the term

∫
Td w

2k+2−m · ∂t(zm) is
of the form ∫

Td

wp+1−mZ ·DαU

with Z = zm−1, U = D−α∂tz, and p = 2k + 1. Note that if m > 1, for any σ1 > σ2

‖Dσ2Z‖L∞(Td) ≤ Cσ1,σ2‖Dσ1z‖L∞(Td)‖z‖m−2
L∞(Td)

,

and

‖Dσ1U‖L∞(Td) ≤ C‖Dσ1z‖L∞(Td).

From Littlewood-Paley decomposition, we could write
∫

Td

wp+1−mZ · Z ·DαU =
∑

N,N ′:N ′/2≤N≤2N ′

∫

Td

PN (w
p+1−m · Z) · PN (DαZ)

≤
∑

N≥1

Nα−s‖DsU‖L∞(Td)‖PN (wp+1−mZ)‖L1(Td).

We further decompose

PN
(
wp+1−mZ

)

:=
∑

N1≥N2≥···Np+1−m

p+1−m∑

j0=1

∑

M≤Nj0

PN

(
p+1−m∏

ν=1

PNνw · PMZ
)

+
∑

N1≥N2≥···Np+1−m

∑

M≥N1

PN

(
p+1−m∏

ν=1

PNνw · PMZ
)

= : I′ + II′.

Applying Hölder inequality, we obtain

‖I′‖L1(Td) ≤
∑

N1≥N2≥···Np+1−m;N1≥ N
2(p+1)

p+1−m∑

j0=1

∑

M≤Nj0

‖PN1w‖
L

p+1
m+1 (Td)

‖PMZ‖L∞(Td)

×

∥∥∥∥∥∥

p+1−m∏

j=2

PNνw

∥∥∥∥∥∥
L

p+1
p−m (Td)

.

(7.6)

From interpolation and Bernstein,

‖PN1w‖
L

p+1
m+1 (Td)

≤ N
− 2mα

p−1

1 ‖w‖
2m
p+1

Hα(Td)
‖w‖

p−1−2m
p−1

Lp+1(Td)
,
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we have

(7.6) ≤
∑

N1≥N2≥···Np+1−m;N1≥ N
2(p+1)

p+1−m∑

j0=1

∑

M≤Nj0

CN
− 2mα

p−1

1 ‖PMZ‖L∞(Td)‖w‖
2m
p−1

Hα(Td)
‖w‖p−m+ p−1−2m

p−1

Lp+1

≤CpE[w] ·N− 2mα
p−1 log(N)‖Z‖L∞(Td).

To ensure the convergence of the dyadic sum in N , we need

s >
(p− 2m− 1)α

p− 1
.

For the term II′, in a similar way, we have

‖II′‖L1(Td) ≤CpN−s0‖Ds0Z‖L∞(Td) log(N)E[w]
p+1−m

p+1 .

To ensure the summability in N , we need

s > s0 >
α

2
.

Therefore, if

s > max

{
(k − 1)α

k
,
α

2

}
,

we can find some s0 < s1 < s, close to s such that

2k+2∑

m=1

(2k+2
m

)

2k + 2−m

∣∣∣∣
∫ t

0

∫

Td

w2k+2−m∂t(z
m)dxdt′

∣∣∣∣

≤Ck
(
1 + ‖Ds1z‖2k+2

L∞([0,T ];L∞(Td))

)∫ t

0
E[w](t′)dt′.

(7.7)

Note that if k ≥ 2, we have automatically that (2k−2)α
2k ≥ α

2 . An extra argument for the
case k = 1 is much simpler, following from a direct use of the Sobolev inequality. The
proof of Proposition 7.1 is now complete. �

The almost sure boundedness of the linear evolution part is guaranteed by the following
lemma, see for example Proposition 2.7 in [26].

Lemma 7.2. For any 1 ≤ q ≤ ∞, 2 ≤ r ≤ ∞ and ǫ > 0, there exist C, c > 0 such that for
any T > 0,

P

[
‖S(t)(uω0 , vω0 )‖Lq

tL
r
x([0,T ]×Td) > λ

]
≤ C exp

(
− cλ2

max{1, T 2}‖(u0, v0)‖2Hǫ(Td)

)
.

Now the probabilistic estimate above, the local well-posedness result (analogue of Propo-
sition 3.1) and Proposition 7.1 yield the following almost almost sure global well-posedness
and the convergence result.

Proposition 7.3. Given (k−1)α
k < s < α, for any data (u0, v0) ∈ Hs(Td), let (uω0 , v

ω
0 ) be

the randomisation defined as (1.7). Then given any T > 0, ǫ > 0, there exists ΩT,ǫ ⊂ Ω
such that

(1) P[Ω \ ΩT,ǫ] < ǫ.
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(2) For any ω ∈ ΩT,ǫ, there exists a unique solution (uω(t), ∂tu
ω(t)) to (7.1) with initial

data (uω0 , v
ω
0 ) in the class:

(S(t)(uω0 , v
ω
0 ), ∂tS(t)(u

ω
0 , v

ω
0 )) + C([0, T ];Hα).

Moreover, the nonlinear part wω(t) = uω(t)−S(t)(uω0 , vω0 ) satisfies the probabilistic
energy bound:

(7.8) sup
0≤t≤T

‖(wω(t), ∂twω(t))‖Hα(M) ≤ C(T, ǫ, ‖(u0, v0)‖Hs).

(3) Denote by (uω0,N , v
ω
0,N ) = ΠN (u

ω
0 , v

ω
0 ), then for any ω ∈ ΩT,ǫ, the smooth solu-

tion (uωN , ∂tu
ω
N ) of (7.1) with initial data (uω0,N , v

ω
0,N ) converges to the solution

(uω(t), ∂tu
ω(t)) constructed in (2), in Hs.

The proof of (1) and (2) in this proposition is standard, see for example [24] or [26].
The proof of (3) follows from the similar argument as in Section 5. The key point is the
analogue of Lemma 5.1 which guarantees the convergence in a short time interval. Then
thanks to the global energy bound (7.8) of the nonlinear part w(t), the time interval of
the local convergence can be chosen to be uniform. Finally, we obtain the convergence up
to time t = T .

To pass to the global existence and convergence, we define the set

ΩT :=

∞⋃

k=1

ΩT,2−k .

We have that ΩT is of full probability. Now let Σ̃ := lim sup
T→∞

ΩT , then Σ̃ still has full

measure. Furthermore, for any ω ∈ Σ̃, the conclusions (2), (3) of Proposition 7.3 hold true
up to T = +∞.
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