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We consider the notion of χ-completness of the locally finite graph and we approach this geometric hypothesis for the weighted magnetic graph. Moreover, we establish a link between the magnetic adjacency matrix on line graph and the magnetic discrete Laplacian on 1-forms.

Introduction

Spectral graph theory represents an active area of research. In the past few year, the question of essential self-adjointness of the discrete magnetic Laplacian on magnetic graph has attracted a lot of interests. For the reference to the literature on this topic, see [START_REF] Golénia | Hardy inequality and asymptotic eigenvalue distribution for discrete Laplacians[END_REF][START_REF] Milatovic | Essential self-adjointness of magnetic Schrödinger operators on locally finite graphs[END_REF][START_REF] Schmidt | On the existence and uniqueness of self-adjoint realizations of discrete (magnetic) Schroödinger operators[END_REF][START_REF] Milatovic | A Sears-type self-adjointness result for discrete magnetic Schrödinger operators[END_REF] and reference therein. In [START_REF] Anné | The Gauss-Bonnet operator of an infinite graph[END_REF], in the case of non-magnetic graph, the authors have addressed this question using the notion of the χ-completeness. This notion is related to [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators II: geometrically non complete graphs[END_REF][START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators III-Magnetic fields[END_REF] and to the one of intrinsic metric, e.g.g, [START_REF] Anné | The Gauss-Bonnet operator of an infinite graph[END_REF][START_REF] Huang | A note on selfadjoint extensions of the Laplacian on weighted graphs[END_REF]. In particular, they show that the Hodge Laplacian is essentially self-adjoint, when the graph is χ-complete. This method was more recently adapted in the case of weighted triangulation in [START_REF] Chebbi | The Discrete Laplacian of a 2-Simplicial Complex[END_REF]. In the present study, the graphs are considered as one-dimensional simplicial complexes. If the graph contains cycles of length 3, we can consider it as two dimensional simplicial complex, see [START_REF] Danijela | Spectra of combinatorial Laplace operators on simplicial complexes[END_REF][START_REF] Duval | Critical groups of simplicial complexes[END_REF].

The current study has two major aims. The first aim is to consider the notion of χ-completeness and we approach this geometric hypothesis for the weighted magnetic graph. More precisely, we introduce the notion of χ θ -completeness where θ stands for the notion for the magnetic potential acting on edges. We start with showing that this notion covers many situations, we turn to see Theorem 4.4. In particular, in the case of a simple increasing arithmetic graph, we refer to Section 4.3 for a precise definition, we prove that G is χ-complete. In contrast, if we define the magnetic potential to be θ x,y := 1 d(x)d(y)

, where d(.) is the degree of vertices we refer to Section 2 for the definition, we have G is not χ θ -complete. Then, we study the question of essential self-adjointness of the discrete magnetic Laplacian via the notion of χ θ -completeness. More precisely, we prove that the discrete magnetic Laplacian is essentially self-adjoint when the magnetic graph is χ θ -complete. The technique of the proof is inspired from [START_REF] Anné | The Gauss-Bonnet operator of an infinite graph[END_REF]. At the end of this part, we deal with the question of essentially self-adjointness via Nelson' Lemma and quasi-analytic vectors approach. These two techniques are explained in [START_REF] Baloudi | The adjacency matrix and the discrete Laplacian acting on forms[END_REF] in the case of non magnetic graphs. Our remark is that these two criteria remain applicable for a magnetic graphs and are independent of the magnetic factor on the graph.

The second aim of this paper is to study the magnetic adjacency matrix acting on graph. First, we define the difference magnetic operators d θ acting on 0-forms. We denote by δ θ it formal adjoint. This permits to define two different types of discrete operators associated to a locally finite magnetic graph: ∆ 0,θ = δ θ d θ and ∆ 1,θ = d θ δ θ . In the case of non-magnetic graphs (i.e., θ = 0), the expression of ∆ 1,0 is different from that obtained in [START_REF] Baloudi | The adjacency matrix and the discrete Laplacian acting on forms[END_REF]. Indeed, the discrete operator obtained in [START_REF] Baloudi | The adjacency matrix and the discrete Laplacian acting on forms[END_REF] was built by choosing a skew-symmetric statistic, namely fermionic one. Second, we study the link between the magnetic adjacency matrix A θ acting on line graph and the operator ∆ skew 1,θ = ∆ 1,θ | D(∆ 1,θ )∩C skew (E) where D(∆ 1,θ ) denotes the domain of ∆ 1,θ and C skew (E) denotes the set of 1-cochains corresponds to fermionic statistics. In the case of bi-partite graph, by analysing the structure of ∆ skew 1,θ , we prove the existence of a multiplication operator Q(R) such that A θ + Q(R) and ∆ skew 1,θ are unitarily equivalent.

The paper is structured as follows: The next Section is devoted to some definitions and notations for graph theory. In the third section, we define two discrete magnetic Laplacians operators ∆ 0,θ associated to vertices and ∆ 1,θ associated to edges. In the fourth section, we discuss the notion of χ θ -completeness and we give some examples. In the last section, we establish a link between the magnetic adjacency matrix acting on vertices on line graph and the discrete magnetic Laplacian action on edges. Acknowledgment. The authors thank Echi Nadhem for the useful discussions and comments on the paper.

Generalities about graphs

We start with some definitions and fix our notations for graphs. We refer to [START_REF] Chung | Spectral graph theory[END_REF][START_REF] Mohar | A survey on spectra of infinite graphs[END_REF][START_REF] Jeribi | Spectral theory and applications of linear operators and block operator matrices[END_REF] for surveys on the matter. A weighted graph G is a triple (V, E, m) where V is a set at most countable (vertices), E : V × V -→ [0, +∞) symmetric (edges) and m : V -→ (0, +∞). We say that two vertices x, y ∈ V are neighbors if E(x, y) = 0. In this case, we write x ∼ y. We say that there is a loop in x ∈ V, if x ∼ x. The set of neighbors of x ∈ V is denoted by

N G (x) := {y ∈ V : x ∼ y}.
A graph is locally finite if ♯N G (x) for all x ∈ V. The weighted degree of vertices is given by

d V (x) := 1 m(x) y∈V E(x, y).
A graph G is connected, if for all x, y ∈ V, there exists an xy-path, i.e., there is a finite set (x 0 , ..., x n ) ∈ V n such that x 0 = x, x n = y and E(x i , x i+1 ) > 0 for all i ∈ {0, ..., n -1}. The minimal possible n is denoted by ρ V (x, y) and called the distance between x and y. If no edges appear more than once in (x 1 , ..., x n ), the path is called a simple path. The path is called a cycle or closed when the origin and the end are identical, i.e., x 1 = x n . An n-cycle is a cycle with n vertices. Finally, as we are dealing with magnetic fields, we fix the magnetic potential:

θ : V × V -→ [-π, π], such that θ(x, y) = -θ(x, y).
We denote θ(x, y) by θ x,y . We say that G := (V, E, m, θ) is an unoriented weighted magnetic graph. A magnetic graph G is simple if m = 1, E ∈ {0, 1} and θ = 0. When G is simple, we have d V (x) = ♯N (x) for all x ∈ V.

In the sequel, we assume that all graphs are locally finite, connected and have no loop.

The discrete magnetic Laplacian

In this section, we will always consider a weighted magnetic graph G = (V, E, m, θ). We define the set of 0-cochains (or 0-forms)

C(V) := f : V -→ C .
We denote by C c (V) the 0-cochains with finite support in V. Let us define the Hilbert space ℓ 2 (V) as the sets of 0-cochains with finite norm, i.e.,

ℓ 2 (V) := f ∈ C(V) : f 2 := x∈V m(x)|f (x)| 2 < ∞ .
The associated scalar product is given by

f, g := x∈V m(x)f (x)g(x)
for all f, g ∈ ℓ 2 (V). Concerning the set of edges, we define:

C(E) := f : V × V -→ C . Set C sym (E) := f : V × V -→ C : f (x, y) = f (y, x) and C skew (E) := f : V × V -→ C : f (x, y) = -f (y, x) .
where C skew (E) corresponds to fermionic statistics and C sym (E) corresponds to bosanic statistics. The set of functions in C(E) with finite support is denoted by C c (E). We turn to the Hilbert structure on the set of edges:

ℓ 2 (E) := f ∈ C(E) :
1 2

x,y∈V

E(x, y)|f (x, y)| 2 < ∞ .
The associated scalar product is given by f, g := 1 2

x,y∈V E(x, y)f (x, y)g(x, y) for all f, g ∈ ℓ 2 (E). The difference magnetic operator is the operator

d θ : C c (V) -→ C c (E)
given by

d θ f (x, y) := f (y) -e iθx,y f (x).
The magnetic coboundary operator is the formal adjoint of d θ . It is the operator

δ θ : C c (E) -→ C c (V)
given by

δ θ g(x) := 1 2m(x) y E(x, y)(g(y, x) -e iθy,x g(x, y))
for all g ∈ C c (E) and x ∈ V. Thus it satisfies

d θ f, g = f, δ θ g
for all f ∈ C c (V) and g ∈ C c (E). The operators δ θ and d δ are closable. Indeed,

δ θ : ℓ 2 (E) -→ ℓ 2 (V) (resp. d θ : ℓ 2 (V) -→ ℓ 2 (E)) is with dense domain then δ θ ( resp. d) is closable.
The magnetic discrete Laplacian operator acting on 0-form is given by

∆ 0,θ (f )(x) := δ θ d θ (f )(x) = 1 m(x) y E(x, y)(f (x) -e iθy,x f (y)),
for all f ∈ C c (V) and x ∈ V. The case ∆ 0,0 is so-called physical Laplacian and ∆ 0,π is the t he singless Laplacian, see [START_REF] Cvetković | Towards a spectral theory of graphs based on the signless Laplacian, II[END_REF]. If G is bi-partite, i.e, is a graph whose vertices can be divided into disjoint sets

V 1 and V 2 such that V = V 1 ∪ V 2 and E(x, y) = 0 for all (x, y) ∈ V 2 1 ∪ V 2 2
, then ∆ 0,0 and ∆ 0,π are unitarily equivalent, see [START_REF] Baloudi | The adjacency matrix and the discrete Laplacian acting on forms[END_REF]. If G is simple, the discrete Laplacian ∆ 0,0 is essentially self-adjoint on C c (V), see [START_REF] Wojciechowski | Stochastic compactetness of graph[END_REF]. The magnetic discrete Laplacian operator acting on C c (E) is given by

∆ 1,θ (f )(x, y) := d θ δ θ (f )(x, y) = 1 2m(y) z E(z, y)(f (z, y) -e iθz,y f (y, z)) - e iθxy 2m(x) z E(x, z)(f (z, x) -e iθz,x f (x, z)),
for all f ∈ C c (E) and x ∼ y. Both operators are symmetric and thus closable. We denote the closure by the same symbol ∆ 0,θ (resp. ∆ 1,θ , its domain by D(∆ 0,θ ) (resp. D(∆ 0,θ ), and its adjoint by ∆ * 0,θ (resp.

∆ * 1,θ ). In this paper, the graphs are considered as one-dimensional simplicial complexes. If the graph contains cycles of length 3, we can consider it as two dimensional simplicial complex. In this case, the expression of ∆ 1,0 is different because contains a part acting on the triangular faces, see [START_REF] Baloudi | The discrete laplacian acting on 2-forms and application[END_REF][START_REF] Chebbi | The Discrete Laplacian of a 2-Simplicial Complex[END_REF][START_REF] Lim | Hodge Laplacians on graphs, Geometry and Topology in Statistical Inference[END_REF]. The magnetic Gauβ-operator is defined on C c (V) ⊕ C c (E) by:

D θ := d θ + δ θ ∼ = 0 δ θ d θ 0 .
This operator is of Dirac type and is motived by the Hodge Laplacian:

∆ θ,HL := ∆ θ := (d θ + δ θ ) 2 ≃ ∆ 0,θ ⊕ ∆ 1,θ .
We refer to [START_REF] Anné | The Gauss-Bonnet operator of an infinite graph[END_REF] for the case of non magnetic field. Notation: We denote by N the non-negative integer. In particular, 0 ∈ N. For x ∈ V, we set d(x) := ♯N G (x) and by N * the one of positive integers.

Essential self-adjointness

In this section, we discuss the question of essential self-adjointness via the notion of χ-completeness which was introduced and investigated by Torki in [START_REF] Anné | The Gauss-Bonnet operator of an infinite graph[END_REF]. We approach this geometric notion and we discuss some examples.

Geometric Hypothesis.

We first recall the notion of χ-completeness in the case of non-magnetic graph obtained in [START_REF] Anné | The Gauss-Bonnet operator of an infinite graph[END_REF]:

Definition 4.1. The graph G := (V, E, m) is χ-complete if
there exists an increasing sequence of finite set S n such that V = ∪ n S n and there exist related functions χ n satisfying:

1) χ n ∈ C c (V), 0 ≤ χ n ≤ 1, 2) χ n (x) = 1 for all x ∈ S n . 3) ∃M > 0, ∀n ∈ N, x ∈ V, such that 1 m(x) y E(x, y) | dχ n (x, y) | 2 ≤ M.
In [START_REF] Anné | The Gauss-Bonnet operator of an infinite graph[END_REF], in the case of non-magnetic graph, the authors schow that the two discrete Laplacian operators are essentially self-adjoint, when the graph is χ-complete. In the case of magnetic graph, we do no know that if the χ-completeness hypothesis implis that ∆ 0,θ and ∆ 1,θ are essentially self-adjoint. We introduce the following definition: Definition 4.2. Let G := (V, E, m, θ) be a magnetic weighted graph and let (O n ) n be an increasing sequence of finite sets such that V = ∪ n O n and there exists

(η n ) n and φ n with i) η n ∈ C c (V), 0 ≤ η n ≤ 1 and η n (x) = 1 for all x ∈ O n , ii) φ n ∈ C(V) such that φ n converge to 0, Let χ n = η n e iφn .
We say that G is χ θ -complete if the exist is a non-negative c such that for all x ∈ V and n ∈ N we have

(1) 1 m(x) y E(x, y) | d θ χ n (x, y) | 2 < c. Remark 4.3. Let G := (V, E, m, θ) be a weighted magnetic graph. If G is χ θ -complete then (2) 1 m(x) y E(x, y) | sin θ xy 2 | 2 < c.
Now, we ask the following question: Is there a graph that must χ-complete if it is without magnetic potential and not χ θ -complete if with nonzero magnetic potential? We recall that the graph is assumed connected. For x 0 , x ∈ V and n ∈ N, we set

B n (x 0 ) := {y ∈ V : ρ V (x 0 , y) ≤ n}, |x| := ρ V (x 0 , x) and d Bn(x0) := d V | Bn(x0) .
Theorem 4.4. Let G := (V, E, m, θ) be a magnetic graph with the phase 4 ).

θ x,y =      1 d 2 (x) -d 2 (y) , if d(x) = d(y), 0, otherwise. Let x 0 ∈ V. Suppose that sup x∈V y E(x, y) m(x)d(x)d(y) < ∞ and d Bn(x0) = O(n 1 
Then G is χ θ -complete.

Proof. Let n ∈ N * , x ∈ V and set

η n (x) :=                n |x| - n|x| -n 2 n 8 -n 5 + 2n 4 -n + 1 , if n ≤ |x| ≤ n 4 + 1, 1, if x ∈ B n (x 0 ), 0, otherwise and 
φ n (x) := |x| n .
We note that n 4 + 1 satisfies the following equation

(3) -nX 2 + n 2 X + n 9 -n 6 + 2n 5 -n 2 + n = 0. Let J(x) = 1 m(x) y E(x, y) | d θ χ n,θ (x, y) | 2 .
The fist case: If x ∈ B n (x 0 ), we take into account the equation ( 3), then for some c, C > 0 independent from x and n, we obtain

J(x) ≤ 4 m(x) y∈Bn(x0) E(x, y) | sin φ n(y) -φ n (x) + θ x,y 2 | 2 + 2 m(x) |y|=n+1 E(x, y) n 8 -n 5 + 2n 4 + n 2 + 1 (n + 1)(n 8 -n 5 + 2n 4 -n + 1) 2 + 8 m(x) |y|=n+1 E(x, y) n 9 -n 6 + 2n 5 -2n 2 (n + 1)(n 8 -n 5 + 2n 4 -n + 1) sin( φ n (y) -φ n (x) + θ y,x 2 ) 2 ≤ c m(x) y∈Bn+1(x0) E(x, y) 1 n 2 + 1 d(x)d(y) ≤ C.
The second case: |x| = n 4 + 1, we take into account the equation (3) then, for some C > 0 independent from x and n, we obtain

J(x) = |y|=n 4 E(x, y) 2n 4 -n + 1 n 11 -n 8 + 2n 7 -n 4 + n 3 ≤ C m(x) y∈B n 4 (x) E(x, y) n 7 .
The thirst case: If x ∈ B n 4 \B n , then

J(x) ≤ c m(x) |y|=|x| E(x, y) | sin( φ n (y) -φ n (x) + θ y,x 2 ) | 2 + c m(x) |y|=|x|-1 E(x, y) | sin( φ n (y) -φ n (x) + θ y,x 2 ) | 2 + c m(x) |y|=|x|-1 E(x, y) | (n 8 -n 5 + 2n 4 -n + 1) + n|x|(|x| -1) |x|(|x| -1)(n 8 -n 5 + 2n 4 -n + 1) | 2 + c m(x) |y|=|x|+1 E(x, y) | sin( φ n (y) -φ n (x) + θ y,x 2 ) | 2 + c m(x) |y|=|x|+1 E(x, y) | (n 8 -n 5 + 2n 4 -n + 1) + n|x|(|x| + 1) |x|(|x| + 1)(n 8 -n 5 + 2n 4 -n + 1) | 2 ≤ C m(x) y∈B n 4 +1 E(x, y) 1 n 2 + 1 d(x)d(y)
.

the fourth case: If |x| > n 4 + 1, we take into account the equation (3), we obtain J(x) = 0.

Remark 4.5. Let G := (V, E, m, θ) be a magnetic graph with the phase

θ x,y =      1 d 2p (x) -d 2p (y) , if d(x) = d(y), 0, otherwise.
By repeating the proof of Theorem 4.4, we obtain that if

sup x∈V y E(x, y) m(x)d p (x)d p (y) < ∞ and d Bn(x0) = O(n 1 4 ), then G is χ θ -complete.
Example 4.6. Let α > 1. Let G := (V, E, m, θ) be a magnetic graph with the phase given in Theorem 4.4 and

E(x, y) := m(x)m(y)d(x)d(y) (m(x) + m(y))(|x| + |y|) α and d(x) ≤ n 1 4 for all x ∈ B n . Then, G is χ θ -complete.
We construct an example of graph that is χ-complete and not χ θ -complete.

Case of the class of anti-tree.

Let x 0 ∈ V and set S n (x 0 ) := {y ∈ V : ρ V (x 0 , y 0 ) ≤ n} the sphere of radius n ∈ N around x 0 . Definition 4.7. Let G := (V, E, m, θ) be a magnetic graph. We say that G is anti-tree if there is x 0 ∈ V such that

N G (x) = S n-1 (x 0 ) ∪ S n+1 (x 0 ) for all n ∈ N * and x ∈ S n (x 0 ). S 0 S 1 S 2
An anti-tree with sphere S 0 , S 1 , S 2 of cardinal 1, 17, 4.

Let G := (V, E, m, θ) be a magnetic anti-tree graph with m = 1, E ∈ {0, 1} and

θ x,y := |x| -|y| 2 π. If d(.) is unbounded, then G is not χ θ -complete. Indeed, y∼x sin 2 ( θ x,y 2 ) = d 2 (x) 2 ,
for all x ∈ V. Using Remark 4.3, we have G is not χ θ -complete. In contrast, In [START_REF] Baloudi | The adjacency matrix and the discrete Laplacian acting on forms[END_REF], the authors prove that if

n∈N 1 ♯S n + ♯S n+1 = +∞,
then G is χ-complete.

Case of increasing arithmetic graph.

We now strengthen the previous example and follow the ideas of [START_REF] Bonnefont | Essential spectrum and Weyl asymptotics for discrete Laplacians[END_REF].

Definition 4.8. A 1-dimensional decomposition of the graph G is a family of finite sets (S n ) n≥0 which forms a partition of V, that is V = ⊔ n≥0 S n , and such that for all x ∈ S n , y ∈ S m ,

x ∼ y =⇒ |n -m| ≤ 1.

We now introduce an example of 1-dimensional decomposition:

Definition 4.9. Let G := (V, E, m) be a weighted locally finite graph and let (S n ) n be a 1-dimensional decomposition of the graph G. We say that G is increasing arithmetic graph if 1) x, y ∈ S n =⇒ E(x, y) = 0 2) There are two integer a, k ∈ N such that d(x) = a + nk for all x ∈ S n .

Let G := (V, E, m, θ) be a magnetic anti-tree graph with m = 1, E ∈ {0, 1} and

θ x,y := 1 d(x) -d(y) . If d(.) is unbounded then G is not χ θ -complete. Indeed, y∼x sin 2 ( θ x,y 2 ) = d(x) sin 2 1 2k .
for all x ∈ V.

Remark 4.10. Let G be a simple increasing arithmetic graph. Then

∞ n=1 1 a + n + a - n = ∞ n=1 1 √ a + nk = ∞, when a + n = sup x∈Sn ♯N G(x)) ∩ S n+1 and a - n = sup x∈Sn ♯N G(x)) ∩ S n-1 . Using [4, Theorem 3.20],
we infer that G is χ-complete.

For f, h ∈ C c (V) and g ∈ C(E), we set:

(f + g)(x, y) = f (y)g(x, y), (h + f -)(x, y) = h(y)f (x), (f -g)(x, y) = f (x)g(x, y). and f (x, y) = f (x) + f (y) 2 .
Remark 4.11. 1) For g ∈ C c (E) and f ∈ C c (V), we have

δ θ ( f g)(x) = f (x)δ θ g(x) 2 + 1 4m(x) y E(x, y)f (y) g(y, x
)e iθy,x g(x, y) .

2) For f, g ∈ C c (V), we have

d θ (f g)(x, y) = f (y)d θ (g)(x, y) + g(x)d θ (f )(x, y) + (e iθy,x -1)f (y)g(x)
.

3)

If d θ = δ * θ and δ θ = d * θ , then D δ is essentially self-adjoint. Theorem 4.12. Let G := (V, E, m, θ) be a χ θ -complete graph, then D θ is essentially self-adjoint.
Proof. Let f ∈ D(δ * ). By using Remark 4.3, we have

(4) (1 -χ n )f 2 ≤ 4 f 2 , (1 -χ n ) + d θ f 2 ≤ 4 d θ f 2 , (5) f + d θ (1 -χ n ) 2 ≤ x∈V m(x)|f (x)| 2 1 m(x) y E(x, y)|d θ (1 -χ n )(x, y)| 2 ≤ 2c f 2 and (6) (e iθ.,. -1)(1 -χ n ) -f + 2 ≤ x,y E(x, y) sin 2 θ y,x 2 |1 -χ n (y)| 2 |f (x)| 2 ≤ c f 2 .
On the other hand, we have

(7) d θ (f -χ n f ) = f (y)d θ (1 -χ n )(x, y) + (1 -χ n )(x)d θ f (x, y) + (e iθx,y -1)f (y)(1 -χ n )(x).
Taking into account Eqs(4-7) and the Dominated convergence theorem, we obtain

lim n (f -χ n f ) + d θ (f -χ n f ) = 0.
This proves that

d θ = δ * θ . Now, let f ∈ D(d * ), then (1 -χ n )δ θ f ≤ 2 δ θ f 2 and 1 4m(.) y E(., y)(1 -χ n )(y)(f (y, .
)e iθ.,y y(., y)) 2 ≤ 1 4

x∈V y

E(x, y) | f (y, x) -e iθy,x f (x, y) | 2 ≤ δ θ f 2 .
By the following equality

δ θ ((1 -χ n )f )(x) = (1 -χ n )(x)δ θ f (x) 2 + 1 4m(x) y E(x, y)(1 -χ n )(y)(f (y, x) -e iθy,x f (x, y)) we deduce that lim n (f -χ n f ) + δ θ (f -χ n f ) = 0.
So, δ θ = d * θ . Using Remark 4.11, we infer that D θ is essentially self-adjoint

Inspired from [START_REF] Anné | The Gauss-Bonnet operator of an infinite graph[END_REF]Proposition13] and [30, Theorem VIII], we obtain the following consequence: 

d G (x) -1 2n = ∞.
The technique of the proof is based on the quasi-analytic vectors approach. We can adapt this approach for ∆ 1,θ . Indeed, let

g ∈ C c (E), k ∈ N, then 1 B 2 k (0) g, ∆ 1,θ 1 B 2 k (0) g = x∈V 1 4m(x) | y E(x, y) (1 B 2 k (o) g)(y, x) -e iθy,x (1 B 2 k (o) g)(x, y) | 2 ≤ x∈V 1 4m(x) t E(x, t) y E(x, y) | (1 B k (o) 2 g)(y, x) -e iθy,x (1 B k (o) 2 g)(x, y) | 2 ≤ x∈V 1 2m(x) t E(x, t) y E(x, y) | (1 B 2 k (o) g)(y, x) | 2 + | (1 B 2 k (o) g)(x, y) | 2 ≤ sup x∈B 2 k (o) d G (x) 1 B 2 k (o) g 2 .
This proves that if the hypothesis (8) is satisfied, then ∆ 1,θ is essentially self-adjoint on C c (E). We turn to the Nelson criterion, we recall [4, Theorem 5.13]: 

Suppose that sup

x,y∈V,x∼y z∈V

1 m(x) E(x, z)|M(x, y) -M(x, z)| 2 < ∞. Then, ∆ 1,0 | C c skew (E) is essentially self-adjoint on C c skew (E) and ∆ 1,0 | C c sym (E) is essentially self-adjoint on C c sym (E).
This criterion remains applicable for a magnetic graphs. Indeed, the terms f (x, y) in the proof of [4, Theorem 5.13] are replaced by f (y, x)e iθy,x g(x, y). Remark 4.15. the Stieltjes and Nelson criterium are independent of the magnetic factor on the graph. On the contrary, the χ θ depends on the choice of the phase on the edges. 4.5. Some remarks on the spectrum. Let X be a Banach space. We denote by C(X) the set of all closed densely defined linear operators on X. For A ∈ C(X), we write σ(A) (resp. ρ(A)) for the spectrum (resp. the resolvent set ) of A. We denote by K(X) the set of all compact operators on X to itself. We define the essential spectrum of the operator A by

σ ess (A) = K∈K(X) σ(A + K).
In [START_REF] Ayadi | Spectra of Laplacians on forms an infinite graph[END_REF], the author studies the relationship between σ(∆ 0,0 ) and σ(∆ 1,0 | C c (E) ). More precisely, the author proves that the nonzero spectrum of σ(∆ 0,0 ) and σ(∆ 1,0 | C c (E) ) is the same when d V (.) is bounded by using the Weyl's criterion. This result remains true under the influence of magnetic potential on the edges of G. Indeed, ∆ 0,θ and ∆ 1,θ are non-negative operator, then ρ(∆ 0,θ ) and ρ(∆ 1,θ ) are non empty. By using [20, Theorem 1.1], we have

σ(∆ 0,θ )\{0} = σ(∆ 1,θ )\{0}.
Going over the same techniques of the proof of [START_REF] Ayadi | Spectra of Laplacians on forms an infinite graph[END_REF], we obtain

σ ess (∆ 0,θ )\{0} = σ ess (∆ 1,θ )\{0} when d V (.) is bounded.

Application to the magnetic adjacency matrix

The spectral theory of adjacency matrices acting on graphs is useful for the study of some gelling polymers, of some electrical networks, and number theory, e.g., [START_REF] Doyle | Random walks and electric networks[END_REF][START_REF] Davidoff | Elementary number theory, group theory, and Ramanujan graphs[END_REF][START_REF] Mohar | The spectrum of infinite graphs with bounded vertex degrees, Graphs, hypergraphs and applications[END_REF]. In this section, we investigate the relationship between the magnetic adjacency matrix and the magnetic discrete laplacian acting on pseudo-cochains. Let G := (V, E, m, θ) be a weighted magnetic graph. The magnetic adjacency matrix is given by

A θ G (f )(x) := 1 m(x) y E(x, y)f (y)e iθy,x
with f ∈ C c (V) and x ∈ V. It is symmetric and thus closable. We denote it closure by the same symbol. When G is simple, A 0 G is unbounded if and only if it is unbounded from above and if and only if the degree is unbounded see [START_REF] Golénia | Unboundedness of adjacency matrices of locally finite graphs[END_REF]. To achieve this goal, we analyze the structure of ∆ 1,θ . Note that

∆ 1,θ | C c skew (E) := Q(∆ skew 1,θ )
Where Q is the operator multiplication by the function (x, y) -→ e i θx,y 

+ e i θx,y 2 m(x) z E(x, z)e i θz,x 2 cos θ zx 2 f (x, z).
Concerning the symmetric choice, we set:

d + θ : C c (V) ⊂ ℓ 2 (V) -→ C c (E) ⊂ ℓ 2 (E) d + θ (f )(x, y) := f (y) + e iθx,y f (x). The formal adjoint of d + θ is given by δ + θ : C c (E) ⊂ ℓ 2 (E) -→ C c (V) ⊂ ℓ 2 (V) δ + θ (f )(x) := 1 2m(x) y E(x, y)(f (y, x) + e iθy,x f (x, y)).
We start with new and direct remarks: In this case, we say that

G is χ + θ -complete. Remark 5.2. If G is χ + θ -complete, then there is c > 0 such that 1 m(x) y E(x, y) cos 2 θ x,y 2 < c
for all x ∈ V. Now, set

D + θ := 0 δ + θ d + θ 0 .
By going through the same technique of the proof of Theorem 4.12, we have D + θ is essentially self-adjoint when G is χ + θ -complete. Remark 5.3. The proof of Theorem 4.4 does not apply line by line in the χ + θ -completeness case. As above, d + θ and δ + θ are both closable. We keep the same symbol for the closure. A direct computation gives that:

(∆ + 1,θ f )(x, y) := d + θ δ + θ (f )(x, y) = 1 2m(y) z E(z, y)(f (z, y) + e iθz,y f (y, z)) + e iθxy 2m(x) z E(x, z)(f (z, x) + e iθz,x f (x, z))
We set:

∆ sym 1,θ (f )(x, y) := e i θy,x 2 ∆ 1,θ | C c sym (E) (f )(x, y) = e i θy,x 2 m(y) z E(z, y)e i θz,y 2 cos θ y,z 2 f (z, y) + e i θx,y 2 m(x) z E(x, z)e i θz,x 2 cos θ z,x 2 f (x, z).
We have that ∆ sym 1,θ and ∆ skew 1,θ have the same expression. However, they do not act on the same space. In the case of a bi-partite graph, we prove that the two operators are unitarily equivalent. Proof. We consider the bi-partite decomposition {V 1 , V 2 }. Let F : ℓ 2 skew (E) -→ ℓ 2 sym (E) be the unitarily map given by

F (f )(x, y) := S(x, y)f (x, y) where S(x, y) :=    1, if (x, y) ∈ V 1 × V 2 , -1, if (x, y) ∈ V 2 × V 1 .
Let H be the following mapping from ℓ 2 sym (E) into ℓ 2 skew (E) given by:

H(f )(x, y) := S(x, y)f (x, y).
Then, F f, g = f, Hg , F H(g) = g and HF (f ) = f for all f ∈ ℓ 2 sym (E) and g ∈ ℓ 2 skew (E). So, we have Corollary 5.8. Let G := (V, E, m, θ) be a weighted magnetic bi-partite graph. If G is χ θ -complete then A θ G is essentially self-adjoint.

H(f ) = F -1 (f ) = F * (f ) For all f ∈ ℓ 2 sym (E). Therefore, F ∆ skew 1,θ F -1 (f )(x,
In [START_REF] Golénia | The magnetic Laplacian acting on discrete cusps[END_REF], they introduce the definition of the flux of a magnetic potential:

Definition 5.9. The space of cycles of G, denoted by Z 1 (G), is the Z-module with a basis of geometric cycles γ := (x 0 , x 1 ) + (x 1 , x 2 ) + .... + (x N -1 , x N ) with i=0,...,N-1, x i ∼ x i+1 , and x N = x 0 . A holonomy map is the map

Hol θ : Z 1 (G) -→ R/2πZ
given by Hol θ (x 0 , x 1 ) + (x 1 , x 2 ) + .... + (x N -1 , x N ) := θ x0,x1 + ... + θ xN ,x0 .

We denote by ∆ G 0, θ the magnetic physical discrete Laplacian acting on line graph.

Proposition 5.10. Let G := (V, E, m, θ) be a magnetic tree, i.e., a magnetic graph with no closed path. Then, ∆ G 0, θ is unitarily equivalent to ∆ G 0,0 .

Proof. Let γ ∈ Z 1 (G). Since G is tree, then there is γ 1 ∈ Z 1 (G) on the form 
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 414 Let G := (E, V, m) be a locally finite graph. Set M(x, y) := 1 + deg G (x) + deg G (y).

2 cos θ zy 2 f

 22 (f )(x, y) := e i θy,x 2 m(y) z E(z, y)e i θz,y (z, y)

Remark 5 . 1 .

 51 The geometric hypothesis given in Section 4.1 can be adapted in the context of d + . Indeed, we replace (ii) in the Definition 4.2 by φ n converge to π and we replace Eq.(2) by 1 m(x) y E(x, y) | χ n (y) + e iθx,y χ n (x) | 2 < c.
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 54 Let G := (V, E, m, θ) be a weighted magnetic bi-partite graph. Then, ∆ sym 1,θ and ∆ skew 1,θ are unitarily equivalent.
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 222222551257 y) = S(x, y) e i θy,x (y) z E(z, y)S(z, y)e i θz,y (z, y)+ S(x, y) e i θx,y (x) z E(x, z)S(x, z)e i θz,x (x, z)Moreover, noting that S(x, y)S(z, y) = S(x, y)S(x, t) = 1 when E(z, y) > 0 and E(x, t) > 0. We get F ∆ skew 1,θ F -1 = ∆ sym 1,θ . Let G := (V, E, m, θ) be a weighted magnetic graph with the phase θ :E -→]π, π[. Set V = E/ ∼, where (x, y) ∼ (y, x). The magnetic line graph of G is the magnetic graph G := ( V, E, m, θ) where m = 1, E((x, y), (s, t)) := E(x, y)E(s, t) cos θ y=t )1 (x,y) =(s,t)and θ((x, y), (s, t)) := 1 2 (θ xyθ st )(1 x=s + 1 x=t ) + (θ tsθ yx )(1 y=t + 1 y=s ) A graph G A line graph GTheorem 5.6. Let G := (V, E, m, θ) be a weighted magnetic graph. Then, ∆ sym 1,θ is unitarily equivalent toA θ G + Q(R) where R(x, y) := E(x, y) cos θ and Q(R)is the operator of multiplication by R.Proof. Set F : ℓ 2 sym (E) -→ ℓ 2 ( V ) as the function given byF (f )(x, y) := E(x, y) cos θ x,y 2 f (x, y).It is clear thatF -1 (f )(x, y) = F * (f )(x, y) = 1 E(x, y) cos θx,(x, y) for all f ∈ ℓ 2 ( V). Notice now that on C c ( V): F ∆ 1,θ F -1 (f )(x, y) = z E(x,y)E(z, y) cos Let G := (V, E, m, θ) be a weighted magnetic bi-partite graph. If R is bounded, then A θ G ≥sup (x,y)∈E R(x, y).
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 11511 = ((x, x 0 ), (x, x 1 )) + ((x, x 1 ), (x,x 2 )) + ... + ((x, x n-1 ), (x, x n )) such that Hol θ (γ) : = Hol θ (γ 1 ) = nθ x,xiθ x,xi+1 ) = 0.Applying [19, Proposition 2.1], the result follows. Let G := (V, E, m, θ) be a magnetic tree. Then, ∆ skew 1,θ is unitarily equivalent to ∆ skew 1,0Proof. Combine Proposition 5.10, Theorem 5.6 and Lemma 5.4.