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Repairing ABoxes through active integrity constraints

Christos Rantsoudis, Guillaume Feuillade, and Andreas Herzig

IRIT, CNRS, Univ. Toulouse

Abstract. In the literature of database repairing, active integrity constraints have

provided a means of restoring integrity through a set of preferred update actions.

While this is a known issue in the database community, it has not yet been directly

applied to description logics. In this paper, we extend description logic TBoxes

by a similar set of preferred actions and tackle the problem of ABox repairing by

taking into account the new “active” TBox. For this, a mainly syntactic approach

is explored and a further, dynamic logic oriented, semantic approach is suggested

and briefly previewed.

Keywords: active integrity constraints, description logic, ABox repair

1 Introduction

In the database literature integrity constraints are usually considered to be universal

conditions or rules that must hold in any situation. When a database fails to satisfy such

constraints it has to be repaired in order to restore integrity. On a similar note, TBoxes

in description logic are usually created by a long and careful procedure, rendering them

of the highest priority for the ABoxes to abide by. In case of inconsistencies between

an ABox and a TBox, the ABox is usually the one that should be updated to conform

with the rules of the TBox [4, 16].

As a next step, active integrity constraints were introduced more recently in an effort

to provide preferred ways for preserving integrity [11, 6, 7, 5, 8, 9]. This was done by

extending the static integrity constraints by additional update actions, indicating to each

constraint some preferred ways to repair out of all the possible ones. In this paper,

we integrate the same idea to the TBoxes of description logic and investigate ways in

which ABoxes could be repaired according to new “active” TBoxes. We do this by first

defining an extension of the usual TBox, taking into account the operations add(A) and

remove(A), where A is an atomic concept. The intuition is that whenever an inclusion

of the form A ⊓ B ⊑ ⊥ appears inside the TBox, for atomic concepts A and B, then

the TBox should also indicate the preferred way that this should be repaired when the

constraint is violated in the ABox. While the problem is easier when an assertion of the

form a : A⊓B has to be updated to the assertion a : A⊓¬B, difficulties start to arise when

the conjunction of two concepts appears inside the scope of a quantifier. An example

of the latter is when having to update the assertion a : ∀R.(A ⊓ B) to the assertion

a : ∀R.(A ⊓ ¬B). The direction we pursue is clearly different from previous attempts to

encode integrity constraints into TBoxes, which differentiate the Knowledge Base (the

TBox and the ABox as a single set) from the set of integrity constraints, treating the

latter with a closed-worlds assumption and using different dedicated semantics [19, 18].



Married ≡ Person ⊓ ∃hasSpouse.Person

Divorced ≡ Person ⊓ ∃hadSpouse.Person ⊓ ¬∃hasSpouse.Person

Bachelor ≡ Person ⊓ ¬∃hadSpouse.Person ⊓ ¬∃hasSpouse.Person

Widowed ≡ Person ⊓ ∃hadSpouse.Deceased ⊓ ¬∃hasSpouse.Person

Bachelor ⊓ Married ⊑ ⊥

Divorced ⊓ Widowed ⊑ ⊥

Person ⊑ Married ⊔ Divorced ⊔ Bachelor ⊔Widowed

Fig. 1. Example of a TBox

We give a simple example of a TBox in Figure 1, expressing the different defini-

tions of marital status. In this TBox it is clearly stated that someone cannot be identi-

fied as bachelor and married at the same time. Now an ABox containing the concept

Bachelor ⊓ Married in its assertions would clearly be inconsistent with respect to this

TBox and would have to be repaired. Dropping one of the two would solve this, howe-

ver one could argue that a person declared as both bachelor and married should only be

identified as married everywhere. Whereas one can achieve married status from being

a bachelor, a married person cannot ‘go back’ to being bachelor but can only become

divorced or widowed instead. Thus the dropping of the concept Bachelor whenever the

concept Bachelor⊓Married appears in an ABox should be the preferred update action.

In the same vein, since by the last constraint someone has to have a marital status, the

preferred update action would be to add the concept Bachelor to an individual invali-

dating this constraint, as in any other case the person would have to declare that he got

married, divorced or widowed. Finally, as a distinction between divorced and widowed

cannot be made without further information, the constraint Divorced ⊓ Widowed ⊑ ⊥

should not give any preference between the concepts Divorced and Widowed. The-

refore, as we witness by this example, there are sufficient logical reasons behind the

investigation on extensions of TBoxes, equipped with extra information on preferences

and ways to make use of them.

The paper will be presented as follows. In Section 2 we assume familiarity with

the basics of Description Logic and therefore only present a background on active inte-

grity constraints. Section 3 is where we present the ideas discussed above. We start by

defining the “active” TBox as an extension of the usual TBox in Section 3.1. We then

continue by first taking a syntactic approach in Section 3.2, exploring ways in which we

can reach a desired ABox that is repaired according to the preferences of the “active”

TBox. A somewhat brief semantic approach then follows in Section 3.3, using the pro-

grams of Dynamic Logic, based on the ideas that are previously explored. Finally, we

conclude in Section 4.

2 Background

We will use the basic description logic ALC and its extension ALCO with nominals

[1]. Furthermore, throughout the paper we impose the following conventions:

– we suppose that all ABoxes are consistent and that all TBoxes are consistent

– a TBox will contain only concept definitions and concept inclusions



– all TBoxes we talk about will be considered to be acyclic

– given a TBox, a constraint is any inclusion of concepts appearing inside the TBox

– we only work on a ‘simple’ kind of constraints, which we will call static constraints

and which will later be extended into active constraints

2.1 Active integrity constraints

In this subsection we present the basic notions around active integrity constraints mainly

as presented in [8]. In the database literature, databases are sets of propositional varia-

bles denoted by V . A static integrity constraint r is a formula L1 ∧ · · · ∧ Ln → ⊥ where

L1, . . . , Ln are literals (i.e., propositional variables or negations of propositional varia-

bles) denoting that when a database satisfies all literals in the conjunction then it has to

be repaired in order to satisfy r. A set of static integrity constraints is usually denoted

by C. An update action is an expression of the form +p or −p, where p is a propositi-

onal variable, denoting the insertion or deletion of p in a database V . A set of update

actions U is consistent if it is not the case that both +p ∈ U and −p ∈ U for some

propositional variable p. A consistent set of update actions U is called a weak repair of

V achieving C if the update of V by U satisfies all the static constraints in C, formally:

V ⋄ U |=
∧

C. Usually there are several ways to repair a database V in order to satisfy

a set of static integrity constraints C. A consistent set of update actions U is called a

repair or PMA repair of V achieving C if U is a weak repair of V achieving C that is

minimal with respect to set inclusion, i.e., there is no weak repair U′ of V achieving

C such that U′ ⊂ U. The term PMA repair indicates the close relation of repairs and

Winslett’s possible models approach to updating a database [20, 21, 15].

As a next step, active integrity constraints are an extension of static constraints by

additional update actions +p and −p for propositional variables p. They usually have

the form L1∧ · · · ∧ Ln → a1∨ · · · ∨am, where a1, . . . , am are update actions that indicate

which from the literals L1, . . . , Ln should change in case L1 ∧ · · · ∧ Ln is satisfied. Of

course in this form active integrity constraints are not formulas, as the right part of

the expression is a disjunction of update actions rather than literals or propositional

variables. If r is an active integrity constraint of this form, we denote by body(r) the

formula L1 ∧ · · · ∧ Ln → ⊥ and by head(r) the set of update actions {a1, . . . , am}. A set

of active integrity constraints is usually denoted by η.

Now let V be a database, η a set of active integrity constraints and U a consistent set

of update actions. An update action a ∈ U is founded if there is an active constraint r ∈ η

such that a ∈ head(r), V ⋄U |= body(r) and V ⋄ (U \ {a}) 6|= body(r). A consistent set of

update actions U is founded if every update action a ∈ U is founded. Intuitively, when

a set of update actions U is founded then each a ∈ U provides a unique repair action

for the database V to satisfy a constraint r. Finally, let body(η) = {body(r) | r ∈ η}.

A set of update actions U is a founded weak repair of V by η if U is a weak repair of

V achieving body(η) and U is founded. A set of update actions U is a founded repair

of V by η if U is a PMA repair of V achieving body(η) and U is founded. Although

founded weak repairs and founded repairs do not necessarily exist and other forms of

repairs have to be sought, they provide the basic means for repairing a database taking

into account a set of active integrity constraints.



3 A new kind of ABox repairing

3.1 Integrating active constraints to the TBox

Similarly to how the active integrity constraints of Section 2.1 extend static constraints

by adding additional update actions to the head of each constraint, we define “active”

TBoxes to contain preferred update actions of the form add(A) and remove(A) for ato-

mic concepts A. We start by defining what exactly is a static constraint in this setting.

Definition 1. Let T be a TBox. A conjunctive constraint is any inclusion of the form

C1 ⊓ · · · ⊓ Cn ⊑ ⊥ appearing inside the TBox, where C1, . . . ,Cn are either atomic or

negation of atomic concepts. A static constraint is any inclusion appearing inside the

TBox that is either a conjunctive constraint or equivalent to a conjunctive constraint.

For example, in the TBox of Figure 1, all three of the inclusions

Bachelor ⊓Married ⊑ ⊥, Divorced ⊓Widowed ⊑ ⊥

Person ⊑ Married ⊔ Divorced ⊔ Bachelor ⊔Widowed

are static constraints since the first two are conjunctive constraints whereas the third is

equivalent to the conjunctive constraint

Person ⊓ ¬Married ⊓ ¬Divorced ⊓ ¬Bachelor ⊓ ¬Widowed ⊑ ⊥.

We continue with the definition of an active constraint.

Definition 2. Let r be a static constraint. If r is not a conjunctive constraint, let r∗ be

the conjunctive constraint that is equivalent to r. An active constraint r′ is the extension

of r by either add(A) or remove(A) for some of the atomic concepts A appearing in r,

according to the following rules:

– add(A) can exist in r′ whenever ¬A is a literal on the conjunction of r (or r∗).

– remove(A) can exist in r′ whenever A is a literal on the conjunction of r (or r∗).

We use the symbol → (being part of the metalanguage) to differentiate between the

body(r′), which is r itself, and the head(r′), which is the set of update actions add(A)

and remove(A) for atomic concepts A. For instance, for a static constraint r of the form

¬A ⊓ B ⊑ ⊥, the following are the possible active constraints extending it:

r1 : ¬A ⊓ B ⊑ ⊥ → add(A)

r2 : ¬A ⊓ B ⊑ ⊥ → remove(B)

r3 : ¬A ⊓ B ⊑ ⊥ → add(A), remove(B)

The first two give a preference to one of the two concepts, while the third gives no

preference to any of them. We formalize all the above by the relation r  r′, where r is

a static constraint and r′ an active constraint extending it as described in Definition 2.

The next step is to generalize this construction to TBoxes. We extend the relation

and define “active” TBoxes as follows.



Married ≡ Person ⊓ ∃hasSpouse.Person

Divorced ≡ Person ⊓ ∃hadSpouse.Person ⊓ ¬∃hasSpouse.Person

Bachelor ≡ Person ⊓ ¬∃hadSpouse.Person ⊓ ¬∃hasSpouse.Person

Widowed ≡ Person ⊓ ∃hadSpouse.Deceased ⊓ ¬∃hasSpouse.Person

Bachelor ⊓ Married ⊑ ⊥ → remove(Bachelor)

Divorced ⊓ Widowed ⊑ ⊥ → remove(Divorced), remove(Widowed)

Person ⊑ Married ⊔ Divorced ⊔ Bachelor ⊔Widowed → add(Bachelor)

Fig. 2. Example of an active TBox, based on the TBox of Figure 1

Definition 3. Let T be a TBox. AT is an active TBox extending T , viz. T AT , iff

for each static constraint r in T there is an active constraint r′ inAT such that r r′.

In Figure 2 we see an example of an active TBox, based on the TBox of Figure 1

and the discussion about the preferred update actions in order to repair it. Finally, for

any active TBox AT we denote with static(AT ) the TBox T for which T  AT

and say that an ABox A is consistent (respectively inconsistent) with respect to AT iff

A is consistent (respectively inconsistent) with respect to static(AT ).

In what follows, we present a syntactic and briefly a semantic approach, based on

Dynamic Logic, for the difficult task of repairing an ABox, inconsistent with respect

to an active TBox, taking into account preferred update actions, especially when the

inconsistencies appear inside the scope of a quantifier.

3.2 A syntactic approach

While updating to a simple ABox (i.e., an ABox whose assertions consist only of con-

cept literals) is quite straightforward, the update to an ABox having complex concepts

may not be easy (or even impossible) [12, 13, 17]. Consider for instance the active con-

straint r : A ⊓ B ⊑ ⊥ → remove(B) and an ABox which includes only the assertions

a : ∀ r. (A⊓ B) and r(a, b) for two individuals a and b. We would then like to repair this

ABox with respect to r into the ABox having either a : ∀ r. A or a : ∀ r. (A ⊓ ¬B) as an

assertion for the individual a1. From a semantic point of view, however, it is not clear

what set of update actions would achieve this goal, especially when the update actions

are defined only on the atomic level. In this subsection we investigate the direction of

how we could transform an initial ABox, inconsistent with respect to the active TBox,

to a repaired one conforming to the active constraints of the TBox. We mainly focus

on the syntactic procedure that leads to a repaired ABox and what this resulting ABox

would look like.

Consider that AT is the active TBox we are working with. We start by defining a

relation between two ABoxes, so that the second ABox is the outcome of applying a

1 Whereas the former seems like a better candidate for a repair (taking into account the open-

world nature of DLs) we do not give a preference to any of them as long as the inconsistencies

are eliminated. Regarding minimality of change, this will be defined syntactically to be the least

amount of syntactic changes made in the ABox, once again providing no preference between

the two.



small change to the first ABox. Define the set SA to consist of all concept symbols in

the ABox A and TBox AT . For A ∈ SA define the following:

– A⊔ = {A ⊔ B | B ∈ SA}

– A⊓ = {A ⊓ B | B ∈ SA}

– A¬ = {¬A}

Furthermore, define:

– ΓA:A = A⊔ ∪ A⊓ ∪ A¬
– ΓA =

⋃

A∈SA
ΓA:A

Intuitively, ΓA denotes the set of concepts that can be reached with one step from SA

using the three boolean constructors. Next, we writeA [A |C] to denote the replacement

in A of some instances of the atomic concept A with the concept C. Then we define the

following relation.

Definition 4. Let A and A′ be ABoxes. Then A ∼1 A
′ iff:

1. there is an atomic concept A ∈ SA and a concept C ∈ ΓA:A such thatA′ = A [A |C]

or A = A′ [A |C].

2. A and A′ are semantically different from one another, i.e., there exists an interpre-

tation I such that I |= A and I 6|= A′.

The relation ∼1 is clearly symmetric and irreflexive. The next step is to generalize

this definition to an n-step relation between two ABoxes.

Definition 5. Let A and A′ be ABoxes and n > 0. Then A ∼n A
′ iff there are ABoxes

A1, ...,An+1 such that:

1. A = A1,An+1 = A
′ and Ai ∼1 Ai+1,∀i ∈ {1, . . . , n}.

2. A1, ...,An+1 are semantically different from one another, i.e., for any two Ai and

A j there exists an interpretation I such that I |= Ai and I 6|= A j.

3. there is no n′ < n with these two properties.

When A ∼n A
′ we say that at least n steps are needed in order to reach the ABox

A′ from the ABox A. Note that while we may have A2 = A1 [A1 |C1] and A3 =

A2 [A2 |C2] and therefore A1 ∼1 A2 ∼1 A3, we do not have A1 ∼3 A3 because of the

last constraint. Finally, let us define the relationA ∼ A′ to mean thatA′ can be reached

from A by an arbitrary number of steps.

Definition 6. Let A and A′ be ABoxes. Then A ∼ A′ iff there exists n > 0 such that

A ∼n A
′.

Note that by construction, ∼ is symmetric but it is neither reflexive (A cannot be

semantically different from A) nor transitive (A ∼ A′ and A′ ∼ A but A ≁ A).

So we have a way to change an ABox syntactically to another one with the use of

the set ΓA by applying a finite number of times one-step changes to concept symbols

on each subsequent ABox. Furthermore, by construction the two ABoxes are always



semantically different from each other and there is always a shortest path of n > 0 steps

between them.

We can now utilize this construction in our effort of repairing an ABox with respect

to an active TBox. Let A and AT be an ABox and an active TBox respectively such

that A is inconsistent with respect to AT and let RAn = {A′ | A ∼n A′} be the

set of ABoxes that can be reached from A by at least n steps. So for each n > 0

we have that the sets RA
1
,RA

2
,RA

3
, . . . are pairwise disjoint and their union is the set

RA = {A′ | A ∼ A′} of ABoxes that can be reached from A by an arbitrary number of

steps. The next propositions give some important properties on the cardinality of these

sets.

Proposition 1. Let A and AT be an ABox and an active TBox respectively. Then for

each n > 0 the set RAn is finite.

Proof. Let’s start by noticing that since the ABox and the TBox are always finite, the

set SA containing their concept symbols is also finite. As a result, for each A ∈ SA the

sets A⊔, A⊓ and A¬ are also finite, since they are made up of disjunctions, conjunctions

and negations between symbols of SA. Then the set ΓA:A which is the union of the finite

sets A⊔, A⊓ and A¬ is also finite, for all A ∈ SA. It follows that the set ΓA of concepts

that can be reached with one step from SA is finite, since it comprises a finite union of

finite sets.

Let’s look initially at the set RA
1

. It comprises the ABoxes that are semantically

different and can be reached with one step from A. So by the definition, A′ ∈ RA
1

iff

A′ = A [A |C] or A = A′ [A |C] for some A ∈ SA, where C ∈ ΓA:A. But as the A ∈ SA

are finite and for each A the set ΓA:A is also finite, there is a finite number of ABoxes

such that A′ = A [A |C] or A = A′ [A |C]. As a result the set RA
1

is also finite. Next,

consider that the set RAn is finite for an arbitrary n > 0. It suffices to show that the set

RA
n+1

is also finite. Let’s take an ABox A′ ∈ RAn and create the set RA
′

1
of ABoxes that

are semantically different and can be reached with one step from A′. We already know

that this set is finite. But by hypothesis, the set of ABoxes A′ ∈ RAn is also finite and

thus the union
⋃

A′∈RAn
RA

′

1
is finite as well. It’s easy to see that RA

n+1
⊆
⋃

A′∈RAn
RA

′

1

since for each ABox A′′ which is at least n+ 1 steps away from A there is an ABox A′

which is at least n steps away from A such that A ∼n A
′ and A′ ∼1 A

′′. Thus the set

RA
n+1

is also finite and the induction is complete.

Proposition 2. Let A and AT be an ABox and an active TBox respectively. Then the

set RA is finite.

Proof. We will only provide a sketch of the proof. It suffices to show that RA =
⋃m

n=1 R
A
n for some m > 0. Since we have a finite number of concept symbols, there

is only a finite number of semantically different concepts that can be expressed by these

symbols using the three boolean constructors. Furthermore, using these concepts in

combination with the role symbols of A there is a finite number of semantically dif-

ferent concepts that can reach a specific role depth. But since for all concepts the role

depth never changes between the ABox A and the ABoxes A′ ∈ RA, there will be a

set of ABoxes RAn for which each subsequent ABox constructed by the relation ∼1 will

have a semantically equivalent ABox belonging in a set RAm for m < n. In other words,

there is an m > 0 such that RAn = ∅ for all n > m and RA =
⋃m

n=1 R
A
n .



Next we define a syntactic modification to be the update action needed in order to

reach an ABox A′ from an ABox A in one step using the set ΓA.

Definition 7. Let A,A′ and AT be two ABoxes and an active TBox respectively such

that A ∼1 A
′. The syntactic modification from A to A′ is the singleton set

UA′

A = {A → C} if A′ = A [A |C]

UA′

A = {C → A} if A = A′ [A |C]

where C ∈ ΓA:A.

Using this definition we can now define an update sequence to be the sequence of

syntactic modifications needed in order to reach an ABox A′ from an ABox A in n

steps using the set ΓA.

Definition 8. Let A,A′ and AT be two ABoxes and an active TBox respectively such

that A ∼n A
′. The update sequence from A to A′ is the sequence

SA′

A =
(

U
A2

A1
,U

A3

A2
, . . . ,U

An

An−1
,U

An+1

An

)

where A1, . . . ,An+1 are the semantically different ABoxes as in Definition 5.

Finally, if an ABox A can be syntactically modified to the semantically different

ABox A′ in at least n steps (i.e., if A ∼n A
′) through the update sequence SA′

A
, we

write A ⋄ SA′

A
= A′.

Notice that up until now we have not made use of the ‘active’ part of the TBox

and only investigated the different ways to construct new ABoxes. The next step is to

indicate what it means for an ABox to be repaired with respect to the active TBox.

We will make use of similar notions that we already presented in Section 2.1 about

active integrity constraints to show the relation between the two settings. We start by

the definitions of weak repair and PMA repair.

Definition 9. Let A and T be an ABox and a TBox respectively such that A is incon-

sistent with respect to T .

1. A weak repair of A achieving T is an update sequence SA′

A
such that A ⋄ SA′

A
is

consistent with respect to T .

2. A PMA repair of A achieving T is a weak repair of A achieving T that is mini-

mal with respect to the number of steps needed, i.e., there is no weak repair of A

achieving T in fewer steps.

Next we define the notion of foundedness on the level of syntactic modifications

and on the level of update sequences.

Definition 10. Let A and AT be an ABox and an active TBox respectively such that

A is inconsistent with respect to AT . A syntactic modification UA′

A
is founded if there

is an active constraint r on AT such that:

1. A is not consistent with respect to body(r).



2. A′ is consistent with respect to body(r).

3. UA′

A
either adds or removes a concept according to the update actions in head(r).

Furthermore, an update sequence SA′

A
is founded if for every U ∈ SA′

A
there is an active

constraint r on AT such that U is founded.

Finally, using the above definitions, we define founded weak repairs and founded

repairs as follows.

Definition 11. Let A and AT be an ABox and an active TBox respectively such that

A is inconsistent with respect to AT .

1. An update sequence SA′

A
is a founded weak repair of A by AT if SA′

A
is a weak

repair of A achieving static(AT ) and SA′

A
is founded.

2. An update sequence SA′

A
is a founded repair of A by AT if SA′

A
is a PMA repair

of A achieving static(AT ) and SA′

A
is founded.

Summing up, letA be an ABox andAT an active TBox such thatA is inconsistent

with respect to AT . A repaired ABox with respect to AT is any ABox A′ ∈ RA such

that SA′

A
is a founded weak repair of A by AT . A minimally repaired ABox with

respect to AT is any ABox A′ ∈ RA such that SA′

A
is a founded repair of A by AT .

Since by Proposition 2 there is a finite number of ABoxes that we can construct step by

step from the initial ABox using the set ΓA, the sets of repaired and minimally repaired

ABoxes with respect to AT are also finite. This means that we can start from the set of

ABoxes RA
1

and continue searching all the sets RAn for n > 0 until we find a minimally

repaired ABox with respect to AT .

Remark 1. If we are working on ALCO, let S ∗
A

be the extension of SA such that it

also includes the nominals of the ABox A and TBox AT and define A∗⊔, A
∗
⊓, A

∗
¬, Γ

∗
A:A

and Γ∗
A

accordingly. We can then also extend all the definitions of this subsection to

incorporate nominals and Propositions 1 and 2 are still valid.

We now return to the original example of Figures 1 and 2 and examine an ABox

(which is inconsistent with respect to this TBox) and one of its possible repairs. Let

AT be the active TBox of Figure 2. Let the ABox A, written in the language of ALC,

consist of the following assertions:

John : Person ⊓Married ⊓ Bachelor ⊓ ∃ hasChild. (Divorced ⊓Widowed)

Mary : Person ⊓ ¬Married ⊓ ¬Divorced ⊓ ¬Bachelor ⊓ ¬Widowed

A minimally repaired ABox A′ with respect to AT is the following:

John : Person ⊓Married ⊓ ∃ hasChild.Divorced

Mary : Person ⊓ ¬Married ⊓ ¬Divorced ⊓ Bachelor ⊓ ¬Widowed

A founded repair of A by AT then is the update sequence SA′

A
= (U1,U2,U3)

where U1 = {Married ⊓ Bachelor → Married},U2 = {Divorced ⊓ Widowed →

Divorced} and U3 = {¬Bachelor → Bachelor}. Notice also that if we replace U1 by



U′
1
= {Bachelor → ¬Bachelor} and U2 by U′

2
= {Widowed → ¬Widowed} in SA′

A
, the

new update sequence SA′′

A
= (U′

1
,U′

2
,U3) is also a founded repair of A by AT .

Finally, let us note that it may not be possible to acquire a founded repair in cases

where a concept is defined in the TBox and does not explicitly appear inside the ABox

but is inferred, as shown in the table below. Using the active TBox of the first column

we would not be able to provide a founded repair of any of the two ABoxes in the last

row. Given a more precise active TBox, however, this would not pose a problem. We

can witness this with the active TBox of the second column, which provides a founded

repair for the second assertion, and even more with the active TBox of the third column,

which provides a founded repair for both assertions.

A ⊓ B ⊑ ⊥ → remove(B) A ⊓ B ⊑ ⊥ → remove(B) A ⊓ E ⊓ F ⊑ ⊥ → remove(E)

B ≡ E ⊓ F B ⊑ E ⊓ F → remove(B) A ⊓ B ⊑ ⊥ → remove(B)

E ⊓ F ⊑ B → remove(E) B ≡ E ⊓ F

α : A ⊓ E ⊓ F or α : A ⊓ B ⊓ E ⊓ F

3.3 A semantic approach

In Dynamic Logic the most prominent role is that of the programs, which are usually

denoted by π. Formulas of the form 〈π〉ϕ express the fact that “there is a possible exe-

cution of the program π after which ϕ is the case”. Many extensions and variants have

been proposed in the literature, with DL-PA (standing for Dynamic Logic of Propositi-

onal Assignments [14, 3, 2]) being recently utilised in the study of more dynamic ways

to repair databases taking into account a set of active integrity constraints [10]. In that

setting, atomic programs are update actions of the form p ← ⊤ and p ← ⊥ denoting

the insertion and the deletion of the propositional variable p.

Looking in a somewhat similar direction, but on the setting of Description Logic, a

logical next step would be to define the atomic programs to be of the form A(a) ← ⊤

and A(a) ← ⊥, where A is an atomic concept and a an individual. Similar to DL-PA,

the atomic program A(a) ← ⊤ denotes the update of an ABox with the assertion a : A,

while A(a) ← ⊥ denotes the update with the assertion a : ¬A. For an ABox A, we

denote by |A | the set of interpretations I such that I |= A. Note that, although an ABox

may have several different syntactic forms, all of them are semantically equivalent and

are represented by the unique set |A |.

We use the following grammar in order to define arbitrary programs and formulas:

ϕF C(a) | ⊤ | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ

π F α | π; π | π ∪ π | π∗ | π− | ϕ?

where C(a) is a concept assertion and α an atomic program of the form A(a) ← ⊤ or

A(a) ← ⊥ for atomic concepts A and individuals a. The operators ; ,∪,∗ ,− and ? are

considered familiar from Propositional Dynamic Logic. The semantics of these formu-

las and programs are once again equivalent to the semantics of Propositional Dynamic

Logic with exceptions being the following:

|A | ∈ ‖C(a)‖ iffA |= C(a)

|A | ∈ ‖〈π〉ϕ‖ iff there exists A′ such that 〈|A |, |A′|〉 ∈ ‖π‖ and A′ |= ϕ



〈|A |, |A′|〉 ∈ ‖α‖ iff |A′| = |A | ⋄ {α}

〈|A |, |A |〉 ∈ ‖ϕ?‖ iffA |= ϕ

where |A | ⋄ {α} = {I ⋄ {α} | I |= A} as defined in [17]. Using these semantics now

we can define the following programs, denoting the n-step and arbitrary-step syntactic

modifications of Section 3.2:

‖modn‖ =
{

< |A | , |A′| > such that A ∼n A
′}

‖mod‖ =
{

< |A | , |A′| > such that A ∼ A′}

In other words:

<
⋃

Ii,
⋃

I′i > ∈ ‖modn‖ iff
⋃

Ii |= A,
⋃

I′i |= A
′ and A ∼n A

′

<
⋃

Ii,
⋃

I′i > ∈ ‖mod‖ iff
⋃

Ii |= A,
⋃

I′i |= A
′ and A ∼ A′

Now, given a TBox T and an ABox A define le f t[r] to be the left side of the

constraint r in T , right[r] to be the right side of the constraint r in T and Ind(A) the

set of individuals in A. Then we define consistent(A,T ) to be the formula:
∧

r∈T
a∈Ind(A)

(

le f t[r](a) → right[r](a)
)

denoting the fact that A |= consistent(A,T ) iff the ABox A is consistent with respect

to the TBox T .

Finally, let T and A be a TBox and an ABox respectively such that A is inconsis-

tent with respect to T . A repaired ABox A′ satisfying the constraints r in T could be

computed by the following semantic procedure:

〈 |A |, |A′| 〉 ∈ ‖mod ; consistent(A′,T ) ? ‖

The next obvious step would be to continue this semantic investigation by taking

into account the active constraints of an active TBox and providing minimally repaired

ABoxes as well as their founded repairs through programs of Dynamic Logic.

4 Conclusion

In this paper we explored the ways in which active constraints, which originate from

the database community, could be integrated into the TBoxes of Description Logic.

Based on these “active” TBoxes, we then investigated a mainly syntactic approach of

transforming an ABox (inconsistent with an active TBox) step-by-step by syntactic

modifications to a repaired one, conforming to the preferred update actions found in the

active constraints of the extended TBox.

A semantic approach was also previewed, showing the ways in which programs

of Dynamic Logic could be useful in providing a semantic solution to this problem.

Although a brief one, it laid some foundations for future work, motivated by the way

DL-PA was utilised to provide new kinds of repairs in the database literature.

The most crucial thing though would be to make the landscape of active TBoxes and

the associated repairs more clear and intuitive. In this work, we provided a first (small)

step into this direction and believe that it is one that the description logic community

would find interesting enough to delve into.
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