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Abstract—This paper presents an original method for aligning
3D shapes modeled as NURBS based B-rep models, exploit-
ing partial symmetries of the shape. Aligning 3D shapes is
an important pre-processing step in 3D shape retrieval and
indexation: a reliable alignment of the shapes is necessary.
Given a 3D model, three canonical planes define the normalized
pose. We characterize the first canonical plane by an efficient
computation of the dominant partial symmetry, using an efficient
face matching approach. An algorithm based on minimizing the
projection area determines the two relative remaining planes. To
evaluate the robustness and the effectiveness of the alignment, this
technique is applied to 3D shape retrieval within a repository of
NURBS based B-Rep models.

I. INTRODUCTION

With the development of 3D applications in multiple fields
of science, the number of 3D objects is growing rapidly. As
a consequence, more and more 3D objects are available for
sharing. Reusing models is common way to increase the effi-
ciency of the product development process. Thus, 3D objects
repositories require efficient and robust techniques to support
the 3D object matching and retrieval. 3D shape indexing
takes the three consecutive steps: (1) object normalization,
(2) feature extraction and (3) object comparison [1]. The
first step is very important as its quality strongly affects the
final result. In fact, 3D objects are generated in arbitrary
orientations, scales and positions. Without normalization, it is
not feasible to get a reliable 3D objects comparison. Generally,
an alignment process consists in finding an orthogonal frame,
i.e, a canonical frame relative to the object. Classically, a
Principal Component Analysis (PCA) is used for aligning mesh
models, e.g. Vranić [2] aligns models along the three principal
axes. The PCA is fairly simple and efficient, but it is sensitive
to points distributions. As alignment techniques are derived for
mesh models, applying them to parametric models requires a
pre-processing sampling step in which case the sampling is
a saddle issue. Further techniques, like Continuous PCA or
Normal PCA [3], [4] avoid the dependence to sampling. Even
though, the principal axes are not always the good references
to align models. As shown by the alignment results in Figure
1, the irregular forms of the plane and the cup affect the
correctness of principal axes orientations. On these models,
the PCA is not a good candidate for 3D models alignment.

In [5], Ferguson et al. show that 2D vertical symmetries
corroborates the orientation based on human perception; based
on global symmetry of an object, they adjust the alternate
frame of reference. In addition, Minovic [6] et al. shows that
a plane of symmetry of a 3D body is always perpendicular to
one of the principal axis. Thus, symmetry information within
a given 3D object can help us identify an associated canonical

frame of alignment. Fortunately, similarity within a 3D shape
is a common phenomenon [7]. Many objects are composed
by similar parts up to a rotation, a translation or a symmetry.
Therefore, it is obvious that canonical frame of a 3D model
can be extracted from its partial symmetry information. It is
the main idea followed by our technique.

In our work, we are interested in parametric surfaces, in
particular Non-Uniform Rational B-Spline (NURBS) surfaces.
They provide a powerful tool for the academic and industrial
communities concerned with the design and analysis of ob-
jects [8]. Boundary Representations (B-Reps) are industrial
standards and NURBS-BReps are widely used in different
domains such as molecular chemistry [9], 3D geographical
information systems [10] and mechanical components design
[11]. We present a novel technique of aligning NURBS-BRep
models by determining three canonical planes and a canonical
orientation. By detecting the dominant partial symmetry of a
given NURBS-BRep model, the symmetry plane is defined
as the first canonical plane from which the remaining planes
are identified based on an area projection approach. Our
contributions are two-fold: we propose a robust algorithm to
detect partial symmetries within a NURBS-BRep model, and
deduce an alignment of NURBS-BRep models algorithm based
on their dominant partial symmetries.

The rest of this article is organized as follows. Section
II reviews related works on model alignment and symmetry
detection. Section III resumes the basic idea of our alignment
method. Section IV and V details the two algorithms of our
method. Section VI follows with experimental results in shape
retrieval to evaluate the proposed technique.

(a) A plane (b) A cup

Fig. 1: PCA based alignment. The canonical frame is defined by three
orthogonal planes (blue, green, red), corresponding to the principal axes in
descending order. For the plane, the blue plane is deviated due to the plane
tail (1a) and for the cup, the handle prevents the green plane from being
vertical (1b).



II. RELATED WORK

There exists different approaches for aligning 3D mesh
models. These methods can be classified into three categories:
PCA-based, Symmetry-based and Projection area-based. As
shown in the introduction, PCA has some drawbacks for 3D
object alignment. Variants have been developed to improve the
accuracy such as Continuous PCA [2] and Normal PCA [12].
Despite some relevant improvements, they are still not reliable
for all types of 3D objects [4]. An alternative technique is to
used the Minimum Volume Bounding Box (MBB) [13] which
is less sensitive to the points distribution. But it is only good
for objects whose MBB axes are aligned with the bilateral
symmetry plane [1]. In an other approach, Podolak et al. [14]
propose a planar-reflective symmetry transform in estimating
all possible planes of symmetry from which the normalized
coordinate system is extracted. However, they consider only
global symmetries (on the entire object) and ignore the partial
ones which may also give relevant information for alignment.
Chaouch et al. [15] estimate the normalized coordinate system
by testing the symmetry plane of a given 3D model based on
Continuous PCA associated with the local translational invari-
ance properties. Tedjokusumo et al. [1] developed an alignment
algorithm based on bilateral symmetry plane in association
with a 2D PCA. Again, they consider only the symmetry of
the whole object and the algorithm fails for non-symmetric
models. Recently, a new approach based on the projection area
was proposed. Lian et al. [16] use the PCA and a rectilinearity
metric to find out sets of candidate axes. The final set is one
that minimizes the projected area of silhouettes. Napoléon et al.
[17] define the minimum visual hull to identify the principal
axes from a set of candidates brought by a PCA approach.
Johan et al. [18] proposed a method that selects two axes
with minimum projection areas but does not rely on the PCA
approach. Despite these interesting insights and encouraging
results, the proposed algorithms do not consistently provide
results coherent with the human perception for all types of
objects; semantic information of the objects is missing.

From these works, we can see that considering only global
symmetries or the projection areas of 3D models is in general
not enough to align all objects. Here, we propose to investigate
the use of partial symmetries of 3D models in association with
2D area of the orthographic projection to develop a robust
alignment algorithm.

Symmetry detection for 3D meshes is a well known subject
with several approaches as geometric hashing, transformation
space voting, planar reflective symmetry transform, graph
based [19]. For free-form surfaces, Cuillière et al. [20] present
a method to detect the similarity and the dissimilarity between
NURBS-BRep models based on the inertia tensor and the con-
trol points net of NURBS surfaces. But they do not estimate the
transformation between similar surfaces and they consider only
the underlying surface that depends on the parameterization.
Thus, they do not identify the symmetric parts within a model.
Li [21] also proposes in his thesis an algorithm to detect the
symmetry between simple primitive surfaces within a B-Rep
model, their approach does not apply to free form. Recently,
by exploiting the isometry analysis, Dang et al. [7] introduces
a Hough-style algorithm to detect partial similarities within a
NURBS-BRep model. Whereas the results are interesting, this
algorithm may be time consuming when applied to complex

models. Here, we propose a face pairing approach which leads
to a more robust and more efficient algorithm. In addition to
considering partial symmetries of 3D models, our approach
offers a low complexity compared to considering sampling of
the parametric model in order to apply mesh models alignment
methods.

III. METHOD OVERVIEW

A. Basic Idea

Our method of 3D model alignment aims at aligning
NURBS-BRep models in a way consistent with human per-
ception. Given a model, it consists in first aligning with an
axis perpendicular to the partial dominant symmetry plane.
The remaining axes are identified according to the idea of
Projection Area-based alignment [16]–[18], i.e., the canonical
views are ones that contain the minimum 2D area under an
orthographic projection of the object. We only need to consider
projection plane containing the first axis. The process of our
method is divided in two separate algorithms:

• Symmetry detection identifies the dominant symmetry
plane (section IV).

• Axes generation estimates the three canonical axes
based on orthographic projection (section V).

B. Structure of NURBS based B-Rep Models

In the context of our research, a B-Rep object is composed
of multiple faces and a B-Rep model is composed of multiple
B-Rep objects. The violin model in Figure 2 is composed of
numerous B-Reps objects plotted in different colors (figure
2a). Similarly, the B-Rep object of the violin body (figure 2b)
contains multiple faces. A face, as in figure 2c, is a NURBS
surface (violet) bounded by some edges (green) and some
vertices (red). In other words, a model contains numerous
faces. The symmetry detection problem within a B-Rep model
is then reduced to the detection of symmetric faces within
this model. To ease the notation for the next sections, we
denote M = {F i}, i ∈ [0, nF ), the NURBS based B-Rep
model that composed of nF faces. Each face is defined by
F i = {Si, V i}, where Si is the NURBS surface used by this
face and V i = {vi0, ..., v

i
n−1} is the set of n vertices that bound

F i. We call the vertices V i the corners of face F i.

(a) (b) (c)

Fig. 2: B-Rep model decomposition. (a) B-Rep objects in a violin model. (b)
B-Rep object representing a violin body. (c) B-Rep entities within a face of
the violin body.



IV. SYMMETRY DETECTION

In this section, we present our algorithm for detecting the
similarities within a NURBS-BRep model. Our algorithm does
not only identify automatically repeated faces in the model but
also estimates the transformation between them. That is, if two
patches P i, P j are similar, there exists a transformation T ij

such that:

P j = T ij(P i). (1)

By benefiting from the loop closed form within B-Rep
objects, we propose a method for detecting similarity between
faces based on the vertices that bound these faces. Moreover,
loops in a B-Rep object must not intersect each other to
maintain the validity of the trimmed face. Generally, a B-
Rep object has an outer loop that may contain embedded
inner loops. In our work, we only take into account vertices
lying on the outer loop of the B-Rep faces. In addition, as
we are interested in symmetries, we can consider isometries
such that transformations that preserve the distances are kept.
Also, depending on the dimension of the space of fixed
points, symmetries may be characterized among isometries.
The following sections present the details of our approach.

A. Algorithm overview

Before entering into the algorithm details, let us introduce
a definition of similar faces based on their entities objects. Let
F i = {Si, V i} and F j = {Sj , V j} two different faces with
the same number of corners.

Definition 4.1: we say that F i and F j are similar up to
a transformation T ij iff their corners and their underlying
surfaces are similar up to this transformation.

V j = T ij(V i), Sj = T ij(Si). (2)

From this definition, given a B-Rep model M = {F i}, i ∈
[0, nF ), the algorithm tries to get as many symmetric faces
pairs as possible. It is divided in several steps:

1) Faces matching. Couples of faces are matched if there
exists an isometry between their corners. Let Λ = {Pk}
be the set of faces pairs where Pk = {F i

k, F
j
k}.

2) Extracting isometries. For each pair Pk, estimate the
least squared solution Rk and tk so that

V
j
k = Rk ∗ V i

k + tk.

3) Selecting symmetries. For each Pk, classify the isometry
Ik corresponding to Rk and tk based on their fixed points
and keep only Pk representing a symmetry. Validate
Pk on the underlying surfaces to decide whether two
corresponding faces are symmetric. Let ∆ = {Qk} be the

set of symmetric faces pairs where Qk = {F i
k, F

j
k , Ik}.

4) Extending symmetries. Merge equal symmetries in ∆.
For each group, relevant isometry and similar patch pairs
are extracted. To have the final result for each group,
single faces intersecting the symmetry plane are also
tested.

B. Matching Face Pairs

In this part, we assume that similar parts of the model are
partitioned into faces in the same way. However, our similarity
detection algorithm does not assume the same parameterization
for similar patches. Given two faces F i = {Si, V i} and
F j = {Sj , V j}, where V i = {vi0, . . . , v

i
n−1} and V j =

{vj0, . . . , v
j
m−1}. We first map ”one-to-one” the corners of V i

into the matching corners of V j where an isometric mapping
may exist. For almost all cases, similar faces share the same
number of corners. However, depending on the software used
for creating the model, similar faces may have extra corners in
the face loop. First, we only keep corners of the trim surface
where the left and right tangent direction are different enough.
This filtering allows to consider only relevant corners. Then,
if faces still have a different number of corners suppose that
n ≤ m. We seek V o = {vo0, . . . , v

o
n−1} ⊂ V j and the mapping

Tij canceling the expression:

n−1
∑

k=0

∣

∣

∣
‖vik − vik+1‖ − ‖von±k[n] − von±(k+1)[n]‖

∣

∣

∣
(3)

where ‖ • ‖ denotes the L2-norm of Euclidean distance.

As the mapping between face corners is just a necessary
condition, a validation on the surfaces will be performed to
identify actual mapping.

C. Extracting isometries

Given two sets V i and V o whose corners are mapped
according to equation (3), i.e. vi0 7→ vo0, . . . , v

i
n−1 7→ von−1,

we want to find out the transformation parameters R (rotation)
and t (translation) that minimizes the mean squared error of
these two point sets:

e2(R, t) =
1

n

n−1
∑

k=0

‖vok − (R ∗ vik + t)‖2. (4)

For simple cases, we solve the linear system A−→x =
−→
b by

using the pseudo inverse, where A and
−→
b are matrix and vector

composed by ordering coordinates of the two set V i and V o,
−→x is the solution representing the transformation parameters.
But this method fails when the corners of V i and V o are
coplanar. Lorusso et al. [22] compare four algorithms to esti-
mate the transformation for this case. From their comparisons,
the singular value decomposition (SVD) of a matrix is the
most efficient and robust method. Arun et al. [23] propose an
algorithm based on the SVD of a 3 × 3 matrix, Umeyama
[24] refines this algorithm to resolve special cases. We follow
the algorithm in [24] to estimate the transformations. Note
that, this algorithm estimates a unique direct isometry and/or
a unique indirect isometry if the corners number of each set
is more than two, i.e. n > 2, and the corners in V i (and V o)
are not colinear. If V i and V o are not coplanar, there exists
only one transformation between them. Otherwise, there exists
two different transformations: a direct and an indirect one.
From (3), the estimated transformations preserve the length
and their associated linear parts are orthogonal, they are then
the isometries. In short, this step gives at most two isometries
that transform V i to V o. Every isometry is defined as:

T ij =

[

Rij t
0 1

]

. (5)



D. Selecting symmetries

According to [25], [26], depending on the nature of its fixed
points, an isometry T ij can be classified into several classes:
translation, rotation, symmetry or combinations of them. We
characterize the symmetries as the isometries with a plane
of fixed points, in our case, such that the eigenspace of Rij

associated with the eigenvalue 1 has dimension 2.

Now, the estimated symmetries are only valid for faces pair
corners. It requires to validate the corresponding symmetries
on the underlying surfaces bounded by these corners. For each
surface, the samples are uniformly taken in term of relative
distance [7], the distance is defined globally for the actual
model. Next, the samples of F i are transformed by applying
T ij to see if the transformed points are the same as the samples
of F j . There is a challenge in this validation since samples
on F i do not necessarily map ”one-to-one” on samples of
F j . This can be done by using the references defined by the
corners of F i and F j . If the parameterization of the two faces
correspond, samples on the faces could be expressed relatively
to the corners. However, this approach fails in the general
setting. We propose then a stochastic validation based on the
shape distribution presented in [27]. The shape distribution is
popular due to its efficiency and simplicity.

For a set of candidate symmetric face pairs {F i
k, F

j
k , Sk},

we define a shape function that measures the distance between
a point on the surface and the symmetry plane of Sk. To
construct the shape distribution histogram of a face, we define
a B fixed size bins and evaluate the distances of all the taken
samples to the symmetry plane. We next count the number
of samples that fall into each bin. Let Hi and Hj be the
histograms equivalent to the shape distribution of F i and F j ,
we use a correlation metric to measure the similarity between
the histograms:

dH(Hi, Hj) =

∑B

k=1(H
i(k)−H

i
))(Hj(k)−H

j
))

√

∑B

k=1(H
i(k)−H

i
))2

∑B

k=1(H
j(k)−H

j
))2

,

(6)
where

H
k
=

1

B

B
∑

l=1

Hk(l).

If the distance between two histograms is under a threshold
defined in term of the bounding box diagonal of the actual
model, the two faces are said similar.

E. Extending Isometries

Now, ∆ =
(

{F i
k, F

j
k , Sk}

)

k
has a set of face pairs that can

share some symmetry planes. These groups of face pairs have
to be merged to form the dominant symmetry of the actual
model. For that, we define a distance between two isometries
as:

d(I, I ′) =
(

1− 〈−→n ,
−→
n′〉

)

+
dist(m,P ′)

DBBox

+
dist(m′, P )

DBBox

. (7)

where −→n (resp.
−→
n′ ), P (resp. P ′) are normal vector and a point

of the symmetry plane corresponding to the isometry I (resp.
I ′), DBBox is the bounding box diagonal of the actual model,

(a) A component (b) An airplane (c) A car

(d) A boat (e) A cup (f) A violin

Fig. 3: Results of symmetry detection.

and m (resp. m′) is the barycenter of the two faces corners
associated to the isometry I (resp. I ′).

The dominant symmetry of the model is the one having the
maximum volume of bounding boxes of its symmetric faces.
Moreover, there might exist single faces that are not similar
to any other faces but that intersect the dominant symmetry
plane. The local symmetry within these faces may contribute
to the dominant symmetry. We filter these faces by testing the
intersection between the symmetry plane and their bounding
boxes and perform a validation based on the shape distribution
of the two sets of points that are located in the left and the
right of the symmetry plane.

The figure 3 presents some of our results of the detection
of (global or partial) dominant symmetries existing in several
NURBS based B-Rep models. The blue and red patches are
symmetric through the dominant symmetry plane.

In conclusion, the main idea of our algorithm is to consider
the transformation between the faces corners in order to
efficiently filter transformations. If an isometry exists and
is a symmetry, it is validated on the faces bounded by the
corresponding corners. The validated symmetries are merged
and an expansion process is performed to get the final results.
The symmetry plane of the dominant symmetry are used as a
first reference to evaluate the canonical frame of aligning the
model.

V. DETERMINING THE TWO REMAINING PLANES

In this section, we show how our algorithm can extract
the two remaining planes, or two remaining axis direction,
for aligning our models. As mentioned above, the first axis is
defined as the normal of the dominant partial symmetry and
is called the reference axis. Then, to define the two remaining
planes, identifying a second plane is sufficient, as the third

(a) A Cup (b) A Plane

Fig. 4: The projection areas of 3D models on different planes containing and
rotating around the reference axis.



(a) A second plane (b) A cup

(c) A car (d) A first plane

Fig. 5: Aligment results.

one is then determined as being orthogonal to the two first
planes. The second axis is perpendicular to the reference axis
and defines a plane orthogonal to the symmetry plane. We
perform an orthographic projection of the model into candidate
planes (Figure 4). For the performance of the algorithm, from
an arbitrary starting orientation, the second axis is generated
by rotating a plane containing the reference axis, around the
reference axis with angle increment of an angle of 1◦. We
only need to consider 90 different orientations of the second
axis that is 90 different planes. For each plane, the area of the
orthographic projection is estimated by counting the number of
pixels within the 2D projection shape. The chosen axis is the
one whose associated plane has the minimum projection area.
Figure 5 shows the results of our alignment technique applied
on different models. In this figure, the normal of the symmetry
plane (red) defined the reference axis, the normal of the blue
plane minimizes the orthographic projection areas, the third is
determined by the laters. Comparing with the results shown in
figure 1, our method rectifies the direction compared to PCA
based approaches, and therefore is more coherent with human
perception. The result (5d) shows that our technique works
well even if the model has a partial symmetry.

VI. EXPERIMENTAL RESULTS

In recent work, image based approaches have been used
for 3D models retrieval; the shape contours of 3D models are
extracted and converted into 2D images supplying silhouette
features to the indexing and searching process [28], [29]. In
fact, the silhouette feature reflects the visual perception while
human tries to describe a 3D object within a specific view.
Benefiting from our results on 3D model alignment, we use
three planes defined by the canonical frame of a given 3D
model to extract three silhouettes from different views. Three
corresponding feature vectors are then extracted and used for
the comparison between models. As the normalized Fourier
descriptor associated with centroid distance computation is
invariant to translation and scaling [30], it is appropriated to
use it with the proposed alignment frame without needing to

scale 3D models. Every model is characterized by three nor-
malized Fourier descriptor vectors VFD1, VFD2 and VFD3. The
similarity measurement between two NURBS-BRep models
M1 and M2 is defined by:

Sim(M1,M2) =
3

∑

i=1

D(V 1
FDi, V

2
FDi). (8)

where D(•, •) denotes the Euclidean distance.

Our database contains approximately 100 NURBS-Brep
models that are downloaded from http://www.grabcad.com.
Our models fall into several categories including 22 air planes,
12 vehicles, 9 instruments, 9 boats, 9 animals, 4 sunglasses,
12 machinery components, 15 household objects and 5 guns.
Figure 7 shows the results of three queries from our database.
While the air planes and the cars are perfectly matched, there
exists an ambiguity between the cups and the helmet. In fact,
when projecting from the upper, the circular silhouettes of the
cup and the helmet are rather similar. For other categories, the
retrieval gives acceptable results. The graph in figure 6 presents
the Recall-Precision curves of the shape retrieval within our
database when aligning models following our approach and
the PCA approach. As shown in this graph, the precision of
our approach is higher than the PCA.

VII. CONCLUSION

In this paper, we have proposed an original approach for
aligning 3D NURBS-BRep models. This paper proposes two
main contributions: first, we derive a method for 3D parametric
model retrieval avoiding to sample points on the surface in
order to adapt classical 3D mesh retrieval techniques. Our
approach determines the dominant partial symmetry of the
model. Whereas using global symmetry has been proposed for
3D mesh models, and shown to be efficient in previous work,
using a partial symmetry is novel. Moreover, the proposed
method for identifying the partial symmetry is efficient, even
for complex models, since it is based on matching of trimming
loops corners, and the parameterization of symmetric surfaces
to match is not required to be the same. From the dominant
symmetry, the remaining alignment axes are determined by
finding a plane, orthogonal to the symmetry plane, giving
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Fig. 6: Evaluation of the two alignment approaches through the precision rates
of the model retrieval within our database.



Fig. 7: Top 4 results of 3 queries for models. The queried models are on the left side, models in the database are on the right side. For each query, the responded
models are highlighted the same color as the queried model.

the minimal projected area. The effectiveness of our approach
has been proved when applying to the NURBS-BRep models
retrieval.
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